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Abstract: The main intention of this article is to examine the heat transmission of the flow of
Eyring–Powell fluid over an unstable oscillatory porous stretching surface. The effect of thermal
radiation on the fluid flow is investigated, where the flow is actuated by the unbounded flexible
surface, which is extended occasionally to and fro on its plane. The rudimentary leading equations are
changed to differential equations through the use of applicable similarity variables. An optimal and
numerical approach was used to find the solution to the modeled problems. The convergence of the
homotopy analysis method (HAM) is shown numerically. The homotopy analysis method predictions
of the structures formed are in close agreement with the obtained results from the numerical method.
Comparisons between HAM and numerical methods are shown graphically as well as numerically.
The convergence of this method is shown numerically. The impacts of the skin friction and heat flux
are shown through a table. The influence of the porosity, oscillation, thermal radiation, and heat
absorption/generation are the main focus of this work. The consequences of emerging parameters
are demonstrated through graphs.

Keywords: Eyring–Powell fluid; thermal radiation; porosity; oscillatory stretched sheet; HAM

1. Introduction

Boundary layer fluid flow problems in different dimensions through a stretching sheet with
heat transfer and magnetohydrodynamic effects have plentiful and inclusive applications in several
engineering and industrial sectors. They include glass blowing melt spinning, heat exchanger design,
fiber and wire coating, production of glass fibers, industrialization of rubber and plastic sheets, etc.
In addition, the action of thermal radiation is vital to calculating heat transmission in the polymer
treating industry. In investigations of all these applications, many investigators deliberate the flow
of different fluid models over a stretching sheet. Sakiadis [1] studied boundary layer flow over a flat
surface. Crane [2] obtained the closed-form solution for the flow instigated by the stretching of a
flexible parallel sheet moving periodically. Gupta and Gupta [3] extended this work by considering
suction/blowing at the surface of the sheet. The dissemination of chemically reactive species over a
moving continuous sheet was studied by Anderson et al. [4]. Pop [5] studied time-dependent flow
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over a stretched surface. The impact of heat transmission on second-grade fluid over a stretching
sheet was explored by Cortell et al. [6]. Areal [7] studied an asymmetric viscoelastic fluid flow past a
stretching sheet for different purposes in the fluid field. Rashdi et al. [8,9] studied entropy generation
in magneto hydrodynamic Eyring–Powell fluid and Carreau nanofluid through a permeable stretching
surface. Hayat et al. [10–13] studied boundary layer flow using different phenomena.

There are no solitary constitutive equations for non-Newtonian fluid that clarify all the distinctive
aspects of compound rheological fluids. The Eyring–Powell model [14], an important subclass of these,
models from the kinetic theory of liquids instead of experimental relations. Recently, Prasad [15]
studied heat transfer and momentum in Eyring–Powell fluid over a nonisothermal stretching
sheet. Noreen et al. [16] examined the peristaltic flow of magnetohydrodynamic Eyring–Powell
fluid in a channel. Ellahi [17] recently completed a numerical study of the magnetohydrodynamic
generalized Couette flow of Eyring–Powell fluid with heat transfer and the slip condition. Ellahi et
al. [18] examined the shape effects of spherical and nonspherical nanoparticles in mixed convection
flow over a vertical stretching permeable sheet. Other related studies concerning Eyring–Powell fluid
can be seen in [19–25].

Thermal radiation is the procedure in which energy is released in the form of electromagnetic
radiation by a surface in all directions. Thermal radiation has numerous uses in the areas of engineering
and heat transfer analysis. In the case of conduction and convection, energy transmission amongst
objects depends almost entirely on the temperature. For natural free convection, or when variable
property effects are included, the power of the temperature difference may be slightly larger than
one, and can reach two. Tawade et al. [26] investigated a thin liquid flow through a stretching
surface with the influence of thermal radiation and a magnetic field. A brief discussion was given
on physical parameters in his work. Ellahi et al. [27] examined the boundary layer magnetic
flow of nano-ferroliquid under the influence of low oscillation over a stretchable rotating disk.
Zeeshan et al. [28] studied the effect of a magnetic dipole on viscous ferrofluid past a stretching
surface with thermal radiation. The Hall effect on Falkner–Skan boundary layer fluid flow over
a stretching sheet was examined by Maqbool et al. [29]. The enhancement of heat transfer and heat
exchange effectiveness in a double-pipe heat exchanger filled with porous media was examined by
Shirvan et al. [30]. Ramesh et al. [31] studied the Casson fluid flow near the stagnation point over
a stretching sheet with variable thickness and radiation. Other related studies concerning stretching
sheets can be seen in [32–34]. Bakier and Moradi et al. [35,36] studied the influence of thermal radiation
on assorted convective flows on an upright surface in a permeable medium. Chaudhary et al. [37]
investigated the thermal radiation effects of fluid on an exponentially extending surface.

The aim of the current research is to investigate the heat transmission of Eyring–Powell fluid
over an unsteady oscillatory porous stretching surface. The homotopy analysis method (HAM) was
used in the present work for the solution of modelled equations that are nonlinear and coupled.
The homotopy analysis method is a substitute method and its main advantage is in its application to
nonlinear differential equations without discretization and linearization. In 1992, Liao [38–40] was the
first to investigate this technique for the solution of this type of problem and generally proved that
this method is rapidly convergent to the approximated solutions. Solutions using this technique are
significant because they involve all the physical parameters of the problem and we can easily discuss
their behavior. Due to its fast convergence, many researchers [41–44] have used this procedure to
solve highly nonlinear combined equations. The effects of all the embedding parameters have been
studied graphically. Khan et al. [45] studied the flow and heat transfer of Eyring–Powell fluid over
an oscillatory stretching sheet with thermal radiation. Shah et al. [46,47] studied the effects of a Hall
current on three-dimensional non-Newtonian nanofluids and micropolar nanofluids in a rotating
frame. Hameed et al. [48] investigated the combined magnetohydrodynamic and electric field effect on
an unsteady Maxwell nanofluid flow over a stretching surface under the influence of variable heat and
thermal radiation. Recently Muhammad et al. [49] studied the rotating flow of magnetohydrodynamic
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carbon nanotubes over a stretching sheet with the impact of non-linear thermal radiation and heat
generation/absorption.

2. Formulation of the Problem

Consider a two-dimensional incompressible boundary layer flow of Eyring–Powell fluid over
an oscillating stretched sheet concurring with plane y (Figure 1). In the Cartesian coordinate system,
x is beside the sheet and y is vertical to the sheet. The fluid flow is assumed to be in an unsteady state
and the stretching sheet is kept porous. Let Tw denote the surface temperature and T∞ denote the
temperature of the fluid as the distance from the surface tends to infinity. It is assumed that Tw > T∞.
The Cauchy stress tensor for Eyring–Powel fluid [15–25] is

→
T = −

→
P
→
I +

→
τ ij, (1)

where
→
τ ij for the Eyring–Powel fluid is

→
τ ij = µ

∂
→
u i

∂xj
+

1
α

sinh−1

(
1
c

∂
→
u i

∂xj

)
. (2)

Here, α and c denote the Eyring–Powel fluid constants. We expand the term sinh−1
(

1
c

∂
→
u i

∂xj

)
as below:

sinh−1

(
1
c

∂
→
u i

∂xj

)
=

1
c

∂
→
u i

∂xj
− 1

6

(
1
c

∂
→
u i

∂xj

)3

,

∣∣∣∣∣1c ∂
→
u i

∂xj

∣∣∣∣∣ < 1. (3)

Figure 1. Geometrical figure of the problem.

Using the boundary layer approximations, the continuity, energy equations and momentum are
as:

∂
→
u

∂x
+

∂
→
v

∂y
= 0 (4)

∂
→
u

∂t
+
→
u

∂
→
u
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+
→
v

∂
→
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∂y
=

(
υ +

1
ρΨΥ

)
∂2→u
∂y2 −

1
2ρΨΥ3

(
∂
→
u

∂y

)2
∂2→u
∂y2 −

υ

k
→
u (5)
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ρCp

((
∂T
∂t

)
+
→
u
(

∂T
∂x

)
+
→
v
(

∂T
∂y

))
= k

(
∂2T
∂y2

)
−
(

∂Qrad
∂y

)
+

Q0

ρCp
(T− T∞) (6)

The terms
→
u and

→
v represent the velocity component in the directions of x and y, respectively;

υ indicates the kinematic viscosity; the symbol ρ denotes the density; Ψ and Υ are the fluid materials;
Cp indicates the specific heat; Q0 is the heat source/sink; k signifies thermal conductivity; and Qrad is
the radiative heat flux is defined as

Qrad = −4σ′

3k′
∂T4

∂y
, (7)

where σ′ denotes the Stefan–Boltzmann constant and k′ is the absorption coefficient.
Expanding Equation (7) by Taylor series, we obtain

T4 = T∞
4 + 4T∞

3(T− T∞) + 6T∞
2(T− T∞)2 + . . . (8)

By neglecting the higher terms from Equation (8), we get

T4 = 4T3
∞T− 3T4

∞. (9)

In observation of Equations (7) and (8), Equation (6) becomes

ρCp

(
∂T
∂t

+
→
u

∂T
∂x

+
→
v

∂T
∂y

)
=

(
k +

16σ′T∞
3

3k′

)
∂2T
∂y2 +

Q0

ρCp
(T− T∞). (10)

The subjected boundary condition for the flow phenomena [45] is

→
u =

→
u w = bx sin ωt,

→
v = 0, T = Tw at y = 0, t > 0,

→
u → 0, T→ T∞ at y→ ∞,

(11)

where the dimensionless variables are given as

y =

√
b
υ

y, τ = tω,
→
u = bxFy(y, τ),

→
v = −

√
υbF(y, τ), G(y, τ) =

T− T∞

Tw − T∞
. (12)

In observation of the dimensionless variables defined above, Equations (5) and (10) reduce to

(1 + K)F′′′ − AF′′ −
(

F′
)2

+ FF′′ − λKF′′ 2F′′′ − κF′ = 0, (13)

(1 + Rd)G′′ + Pr
(

FG′ − AG′
)
− γG = 0, (14)

with the boundary conditions

F′(0, τ) = sin τ, F(0, τ) = 0, G(0, τ) = 1, F′(∞, τ) = 0, G(∞, τ) = 0. (15)

In the above equations, K = 1
µΨΥ and λ = x2b3

2υΥ2 are dimensionless material fluid parameters,
κ = υ

kb indicates the porosity, A = ω
b represents the ratio of the oscillation frequency,

γ = υQ0
kbρCp

(
T−T∞

Tw−T∞

)
represents the heat source/sink, Pr =

µCp
k denotes the Prandtl number, and

Rd = 16σ′T3
∞T

3kk′ is the radiation parameter. According to Javed et al. [27], Equation (15) is subject to the
constraint λK << 1.
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Physical Quantities of Interest

The physical quantities for interest to engineers, such as skin friction C f and the local Nusselt
number Nux, are defined as

C f =
τw

ρu2
w

, Nux =
xqw

k(Tw − T∞)
, qw = −k

(
∂T
∂y

)
y=0

, (16)

In observation of Equation (12), Equation (16) takes the following forms:

Re
1
2
x C f = (1 + K)F′′ − K

3
Ψ(F′′ (0)), Re

1
2
x Nux = −

(
1 +

4
3

Rd
)

G′(0). (17)

3. Solution by HAM

Liao was the first person who used the basic idea of a topology called homotopy and derived a
new method known as the homotopy analysis method. He used two homotopic functions to derive
this technique. Two functions are called homotopic functions when one of them can be continuously
distorted into the other. Let H1, H2 be two functions that are continuous and X1, X2 be two topological
spaces where H1 and H2 map from X1 to X2; then H1 is said to be homotopic to H2 if there is a
continuous function f ,

f : X1 × [0, 1]→ X2, (18)

such that, ∀ x ∈ X1,
f [x, 0] = H1(x) and f [x, 0] = H2(x). (19)

This mapping f is then called homotopic.
In order to solve Equations (13) and (14) with the boundary Condition (15), we use the HAM

according to the following process. The preliminary guesses are

F0(Γ) = 1− e−Γ sin Γ, G0(Γ) = e−Γ. (20)

The linear operators are taken as LF and LG :

LF(F) = F′′′ − F′, LG(G) = G′′ − G. (21)

These operators have the following properties:

LF(ψ1 + ψ2e−Γ + ψ3eΓ) = 0, LG(ψ4e−Γ + ψ5eΓ) = 0, (22)

where ψi(i = 1− 5) are constants.
The nonlinear operators NF and NG are specified as

NF[F(Γ;0)] = (1 + K)
∂3F(Γ;0)

∂Γ3 −A ∂2F(Γ;0)

∂Γ2 −
(

∂F(Γ;0)
∂Γ

)2

−λk
(

∂2F(Γ;0)

∂Γ2

)2
∂3F(Γ;0)

∂Γ3 − κ
∂F(Γ;0)

∂Γ ,
(23)

(1 + Rd)
∂2G(Γ;0)

∂Γ2 + Pr
(

F(Γ;0)
∂G(Γ;0)

∂Γ
−A

∂G(Γ;0)

∂Γ

)
− γG(Γ;0) = 0. (24)

The zero-order problems from Equations (13) and (14) are

(1−0)LF[F(Γ;0)− F0(Γ)] = }FNF[F(Γ;0)],
(1−0)LG[G(Γ;0)−G0(Γ)] = }GNG[F(Γ;0), G(Γ;0)].

(25)
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The equivalent boundary conditions are

F(Γ; 0)|Γ=0 = 0, ∂F(Γ;0)
∂Γ

∣∣∣
Γ=0

= sin τ, ∂F(Γ;0)
∂Γ

∣∣∣
Γ=→∞

= 0,

G(Γ; 0)|Γ=0 = 1, G(Γ; 0)|Γ→∞ = 0,
(26)

where 0 ≤ 0 ≤ 1 is the embedding parameter. When 0 = 0 and 0 = 1, we have

F(Γ; 1) = F(Γ) and G(Γ; 1) = G(Γ). (27)

Expanding F(Γ; 0) and G(Γ; 0) by Taylor series,

F(Γ; 0) = F0(Γ) +
∞
∑

q=1
Fq(Γ)q

G(Γ; 0) = G0(Γ) +
∞
∑

q=1
Gq(Γ)q

(28)

where

Fq(Γ) =
1
q!

∂F(Γ; 0)

∂Γ

∣∣∣∣
=0

and Gq(Γ) =
1
q!

∂G(Γ; 0)

∂Γ

∣∣∣∣
=0

. (29)

Setting 0 = 1 in (29), we obtain

F(Γ) = F0(Γ) +
∞
∑

q=1
Fq(Γ),

G(Γ) = G0(Γ) +
∞
∑

q=1
Gq(Γ).

(30)

The qth-order problem satisfies the following:

LF
[
Fq(Γ)− χqFq−1(Γ)

]
= }FUF

q (Γ)
LG
[
Gq(Γ)− χqGq−1(Γ)

]
= }GUG

q (Γ)
(31)

with the conditions
Fq(0) = F′q(0) = F′q(∞) = 0,
Gq(0) = Gq(∞) = 0.

(32)

Here,

UF
q (Γ) = (1+ K)F′′′q−1− AF′′q−1−

q−1

∑
k=0

F′q−1−kF′k +
q−1

∑
k=0

Fq−1−kF′′k − λk
q−1

∑
k=0

F′′q−1−k

k

∑
j=0

F′′k−jF
′′′
j − κF′q−1 (33)

UG
q (Γ) = (1 + Rd)G′′q−1 + Pr

[
q−1

∑
k=0

Fq−1−kG′k − AG′q−1

]
− γGq−1 (34)

where

χq =

{
0, if ≤ 1
1, if > 1

(35)

4. HAM Solution Convergence

When we compute the series solutions of the velocity and temperature functions in order to use
HAM, the assisting parameters h f , hθ appear. These assisting parameters are responsible for adjusting
the convergence of these solutions. The }-curves of f ′′ (0) and θ′(0), at 12th-order approximations are
plotted in Figures 2 and 3 for dissimilar values of the embedding parameter. The }-curves consecutively
display the valid region.
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Figure 2. The }-curve graph of velocity profile, when Pr = 0.5, K = 0.5, Rd = 0.5, λ = 0.5, κ =

0.5, γ = 0.5, Sinτ = 1.0, A = 0.5.

Figure 3. The }-curve graph of temperature profile, when Pr = 0.5, K = 0.5, Rd = 0.5, λ = 0.5, κ =

0.5, γ = 0.5, Sinτ = 1.0, A = 0.5.

5. Results and Discussion

In this section, we present the special effects of the concerned parameters graphically. In all the
graphs, the values of K and λ are chosen such that the product λK should be much smaller than one.
Figure 4 shows the effect of the rate of the relative amplitude of frequency and the stretching rate A on
the time series of the velocity distribution. It is observed that the amplitude of the flow motion falls
with large values of A. Figure 5 demonstrates the effect of A on the temperature profile. It is observed
that the temperature profile G decreases as A increases. Actually, the amplitude of oscillation rises for
large values of A which, in turn, decreases the temperature. The influence of the Prandtl number (Pr)
on the temperature distribution is shown in Figure 6. The temperature distribution varies inversely
with Pr It is clear that the temperature distribution decreases for a large Pr and increases for small
values of Pr. Physically, the fluids with a small Pr have larger thermal diffusivity, and this effect
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is opposite for a higher Prandtl number. Due to this fact, a large Pr causes the thermal boundary
layer to decrease. The effect is even more distinct for a small Pr, since the thermal boundary layer
thickness is relatively large. The impact of the thermal radiation parameter Rd is presented in Figure 7.
Thermal radiation has a dominating role in the comprehensive surface heat transmission when the
coefficient of convection heat transmission is small. When we increase the thermal radiation parameter
Rd, we see that it augments the temperature in the boundary layer area in the fluid layer. Figure 8
represents the influence of κ on the velocity profile. It is noted that the increasing value of κ increases
the velocity of the fluid during oscillation. The features of the porosity parameter κ on the velocity
field are shown in Figure 9, and have an imperative character in terms of the flow motion. The higher
values of κ increase the porous space; this produces resistance in the flow path and reduces the flow
motion. In fact, growing values of γ show a large number of porous spaces, which create resistance in
the flow path and reduce overall fluid motion. Figure 10 shows the influence of the dimensionless
fluid parameter λ on the velocity profile. Large values of λ speed up the flow motion and increase
its oscillation. Figure 11 presents the influence of the heat source/sink γ on the temperature profile.
It is obvious from the figure that increases in the value enhance the temperature profile γ of the flow.
This occurs due to the fact that the different values of γ perform like a heat generator, releasing heat
energy to the flow. This helps to develop the thermal boundary layer thickness. Figures 12 and 13
show the effect of different values of τ on the velocity and temperature profiles. Greater values of τ

increase the temperature and velocity profiles.
Figures 14 and 15 show the comparison between HAM and numerical solutions using the

ND-solve technique on velocity and temperature profiles, respectively. An excellent agreement
was found between the homotopy analysis method and the ND-solve technique.

Figure 4. Impact of A on velocity profile F′(Γ) when Pr = 0.5, K = 0.5, Rd = 0.5, λ = 0.5, κ =

0.5, γ = 0.5, Sinτ = 1.0.
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Figure 5. Impact of A on temperature profile G(Γ), when Pr = 0.5, K = 0.5, Rd = 0.5, λ = 0.5, κ =

0.5, γ = 0.5, Sinτ = 1.0.

Figure 6. Impact of Pr on temperature profile G(Γ), when A = 0.5, K = 0.5, Rd = 0.5, λ = 0.5, κ =

0.5, γ = 0.5, Sinτ = 1.0.
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Figure 7. Impact of Rd on temperature profile G(Γ), when K = 0.5, Pr = 0.5, λ = 0.5, κ = 0.5, γ =

0.5, Sinτ = 1.0, A = 0.5.

Figure 8. Impact of K on velocity profile F′(Γ), when Pr = 0.5, Rd = 0.5, λ = 0.5, κ = 0.5, γ =

0.5, Sinτ = 1.0, A = 0.5.
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Figure 9. Impact of κ on velocity profile F′(Γ), when Pr = 0.5, Rd = 0.5, λ = 0.5, κ = 0.5, γ =

0.5, Sinτ = 1.0, A = 0.5.

Figure 10. Impact of λ on velocity profile F′(Γ) when Pr = 0.5, Rd = 0.5, K = 0.5, κ = 0.5, γ =

0.5, Sinτ = 1.0, A = 0.5.
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Figure 11. Impact of γ on temperature profile G(Γ), when Pr = 0.5, Rd = 0.5, K = 0.5, κ = 0.5, λ =

0.5, Sinτ = 1.0, A = 0.5.

Figure 12. Impact of τ on velocity profile F′(Γ), when Pr = 0.5, Rd = 0.5, K = 0.5, κ = 0.5, γ =

0.5, λ = 0.5, A = 0.5.
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Figure 13. Impact of τ on temperature profile G(Γ), when Pr = 0.5, Rd = 0.5, K = 0.5, κ = 0.5, γ =

0.5, λ = 0.5, A = 0.5.

Figure 14. HAM and numerical comparison for velocity profile F′(Γ).
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Figure 15. HAM and numerical comparison for temperature profile G(Γ).

Table Discussion

The physical quantities such as the skin friction coefficient C f and heat flux Nu, which are of
engineering interest, are calculated through Tables 1 and 2. The impact of κ, K and λ on the skin friction
coefficient is shown in Table 1. It is observed that higher values of κ, K and λ reduce the coefficient.
The impact of Pr, γ and Rd on heat flux is shown in Table 2. It is observed that higher values of Pr
decrease the heat flux, while higher values of γ and Rd increase the heat flux. The comparison of
HAM and the numerical solution and the absolute error are provided in Tables 3 and 4. Table 3 shows
the comparison of HAM and the numerical solution for the velocity profile, while Table 4 shows the
comparison of HAM and the numerical solution for the temperature profile.

Table 1. The numerical values of skin fraction (1 + K)F′′ (0)− K
3 Ψ(F′′ (0)), when A = 0.5, Ψ = 1 at

time instant τ = π/2.

κ K λ Cf

0.5 - - −1.29447
0.7 - - −1.39927
0.9 - - −1.50053
1.1 1.0 - −1.59913
- 1.3 - −1.68426
- 1.5 - −1.73747
- 1.7 0.5 −1.78810
- - 0.6 −1.81316
- - 0.7 −1.84069

Table 2. The numerical values of heat flux
(

1 + 4
3 Rd

)
G′(0), when A = 0.5, Ψ = 1 at time instant

τ = π/2.

Pr γ Rd Nux

1.0 - - 1.82770
1.2 - - 1.80574
1.4 - - 1.78404
1.6 2.5 - 1.76259
- 2.6 - 1.79740
- 2.7 - 1.83133
- 2.8 0.3 1.85965
- - 0.4 1.97571
- - 0.5 2.08693
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Table 3. The association between HAM and numerical solution for F′(Γ), when K = 0, A = 0.2, κ =

0.5, Rd = 1.0, Sinτ = 1.0, λ = Pr = γ = 0.6.

Γ HAM Solution F
′
(Γ) Numerical Solution F

′
(Γ) Absolute Error AE

0.0 1.12757 × 10−17 0.000000 1.12757 × 10−17

0.5 0.378563 0.381439 0.002876
1.0 0.586888 0.596535 0.009647
1.5 0.699341 0.715829 0.016488
2.0 0.758826 0.779103 0.020276
2.5 0.789566 0.808656 0.019089
3.0 0.804988 0.816817 0.011828
3.5 0.812414 0.866641 0.054227
4.0 0.815772 0.873029 0.057257
4.5 0.817129 0.875971 0.058842
5.0 0.817552 0.876772 0.059220

Table 4. The association between HAM and numerical solution for G(Γ), when K = 0, A = 0.2, κ =

0.5, Rd = 1.0, Sinτ = 1.0, λ = Pr = γ = 0.6.

Γ HAM Solution G(Γ) Numerical Solution G(Γ) Absolute Error AE

0 1.000000 1.000000 0.000000
1.0 0.513778 0.543757 0.029978
2.0 0.266242 0.288424 0.022182
3.0 0.133781 0.152038 0.018257
4.0 0.065247 0.080017 0.014769
5.0 0.030998 0.042041 0.011042
6.0 0.014391 0.021973 0.007582
7.0 0.006548 0.011297 0.004748
8.0 0.002927 0.005503 0.002575
9.0 0.001288 0.002181 0.000892
10.0 0.000559 2.093 × 10−6 0.000557

6. Conclusions

In this article, we analyzed an Eyring–Powell fluid over an oscillatory thermally conductive
stretching sheet in the presence of thermal radiation and a heat source/sink. A coordinate
transformation was used to transform the semi-infinite flow domain to a finite computational domain.
The homotopy analysis method was used to solve the modeled problem. The main remarks from this
study are as follows:

• The amplitude of the velocity decreased with an increase in A and porosity κ, while it increased
with an increase in the dimensionless fluid parameters K and λ.

• The temperature increased with an increase in A, the radiation parameter Rd, and the heat
source/sink γ, while it decreased with an increase in the Prandtl number Pr and the ratio of the
oscillation frequency of the sheet to its stretching rate A.

• The local Nusselt number increased with an increase in the Prandtl number Pr, the heat
source/sink γ, the dimensionless fluid parameter K and the radiation parameter Rd, while
it decreased with an increase in the porosity κ and the dimensionless fluid parameter λ.
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Nomenclature

P pressure (Pa)
c constant
X,Y topological space
x,y coordinates
→
u ,
→
v velocity components

(
ms−1)

Cp specific heat
(

J
kgK

)
Ψ, Υ fluid materials
Q0 heat source/sink
k thermal conductivity (Wm−1K−1)

Qrad radiative heat flux
(

Wm−2
)

k′ absorption coefficient
K fluid parameter
A ratio of the oscillation frequency
Rd radiation parameter
Pr Prandtl number
C f skin fraction coefficient
Nux local Nusselt number
Greek Letters
µ dynamic viscosity (mPa)
υ constant
υ kinematic viscosity (m2/s)
ρ density (kg/m3)
σ′ Stefan–Boltzmann constant
κ porosity term
γ heat source/sink
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