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Abstract: The occurrence of the Gibbs phenomenon near irregular initial data points is a widely
known fact in curve generation by interpolating subdivision schemes. In this article, we propose a
family of 5-point nonlinear ternary interpolating subdivision schemes. We provide the convergence
analysis and prove that this family of subdivision schemes is C2 continuous. Numerical results are
presented to show that nonlinear schemes reduce the Gibbs phenomenon significantly while keeping
the same order of smoothness.
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1. Introduction

Subdivision schemes have become very important tools to generate smooth curves and surfaces
from initial data points. There are two main categories of subdivision schemes: interpolating
subdivision schemes and approximating subdivision schemes. In interpolating subdivision schemes,
the initial or existing data points are kept intact and additional data points are inserted in-between at
each level of subdivision. On the other hand, in approximating subdivision schemes existing points
are replaced by their approximations and new points are inserted between them at each level of
refinement. This makes approximating schemes smoother than interpolating subdivision schemes.
However, the limiting curve for approximating schemes does not pass through the given initial data
points, especially at and near larger jumps or discontinuities. Curves generated by interpolating
subdivision schemes pass through the given initial data points but produce oscillations also known
as the Gibbs phenomenon near the points with large jumps or discontinuities. These jumps are not
desirable for some applications.

Nonlinear subdivision schemes like ENO, WENO, PPH and PCHIP [1–9], were introduced during
last several years to address Gibbs phenomenon. The arithmetic mean of second differences was
replaced by their harmonic mean in a linear subdivision scheme to change it to a nonlinear scheme
in [1,2]. The geometric mean of first differences was used instead of the arithmetic mean of first
differences in [4]. In this article, we propose a family of 5-point nonlinear ternary interpolating
subdivision schemes by replacing the arithmetic mean of third differences with the modified geometric
mean of third difference and prove that this family of subdivision schemes is C2 continuous.

We have arranged this article in the following fashion. In Section 2, preliminary concepts and
their properties along with some basic terminology are discussed, in Section 3, nonlinear interpolating
subdivision schemes are introduced. Convergence analysis of these schemes is provided in Section 4
and some numerical results are presented in Section 5.
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2. Preliminaries

A general form of (2n− 1)-points linear univariate ternary interpolating subdivision scheme
S which maps set of data points f k = { f k

i }i∈Z into the next refinement level of data points f k+1 =

{ f k+1
i }i∈Z is defined as

f k+1
3i−1 =

n−1

∑
j=−(n−1)

aj f k
i+j,

f k+1
3i = f k

i ,

f k+1
3i+1 =

n−1

∑
j=−(n−1)

a−j f k
i+j.

(1)

The above equation can also be expressed as f k+1 = S( f k). A necessary condition for the uniform
convergence of the ternary interpolating subdivision scheme (1) given by [10] is

n−1

∑
j=−(n−1)

aj =
n−1

∑
j=−(n−1)

a−j = 1. (2)

For (x, y) ∈ R2, we define a nonlinear function called the Modified Geometric Mean or MGM as

MGM(x, y) =

{
sign(x)

√
xy if xy > 0

0 if xy ≤ 0,
(3)

where sign(x) = 1 if x ≥ 0 and sign(x) = −1 if x < 0. Nonlinear function MGM defined above has
several interesting properties like,

MGM(x, y) = MGM(y, x). (4)

MGM(−x,−y) = −MGM(x, y). (5)

|MGM(x, y)| ≤ max(|x|, |y|). (6)

|AM(x, y)−MGM(x, y)| ≤ |AM(x, y)| ≤ max(|x|, |y|) (7)

where AM(x, y) = x+y
2 .

We recall PPH function (x, y) ∈ R2 defined by [1,2] as

PPH(x, y) =

{
(1 + sign(xy)) xy

x+y for xy > 0
0 if xy ≤ 0.

(8)

PPH function defined above also satisfy the properties in (4)–(7).

3. 5-Point Nonlinear Ternary Interpolating Subdivision Schemes

In this section, we construct a class of 5-point nonlinear interpolating subdivision schemes. We
start with a well known linear 5-point ternary interpolating subdivision scheme f k+1 = S( f k).

f k+1
3i−1 = (w− 4

81 ) f k
i−2 + (−4w + 10

27 ) f k
i−1 + (6w + 20

27 ) f k
i + (−4w− 5

81 ) f k
i+1 + w f k

i+2,
f k+1
3i = f k

i ,
f k+1
3i+1 = w f k

i−2 + (−4w− 5
81 ) f k

i−1 + (6w + 20
27 ) f k

i + (−4w + 10
27 ) f k

i+1 + (w− 4
81 ) f k

i+2.
(9)

This linear subdivision scheme S is C2 for 1
324 < w < 1

162 as proved by Zheng et al [11]. We define
δ fi = d3 fi = fi+3 − 3 fi+2 + 3 fi+1 − fi. The above scheme can be rewritten as
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f k+1
3i−1 = (−w

2 −
5

162 ) f k
i−2 + ( 1

3 − w) f k
i−1 + (6w + 20

27 ) f k
i + (−7w− 2

81 ) f k
i+1

+( 5
2 w− 3

162 ) f k
i+2 + ( 1

27 − 3w)(
δ f k

i−2+δ f k
i−1

2 ),
f k+1
3i = f k

i ,
f k+1
3i+1 = ( 5

2 w− 3
162 ) f k

i−2 + (−7w− 2
81 ) f k

i−1 + (6w + 20
27 ) f k

i + ( 1
3 − w) f k

i+1

+(−w
2 −

5
162 ) f k

i+2 − ( 1
27 − 3w)(

δ f k
i−2+δ f k

i−1
2 ).

(10)

Replacing the arithmetic mean AM(δ f k
i−2, δ f k

i−1) =
δ f k

i−2+δ f k
i−1

2 in Equation (10) by the modified
geometric mean MGM(δ f k

i−2, δ f k
i−1) as defined in (3), we get a class of nonlinear 5-point ternary

interpolating schemes f k+1 = SNL( f k).

f k+1
3i−1 = (−w

2 −
5

162 ) f k
i−2 + ( 1

3 − w) f k
i−1 + (6w + 20

27 ) f k
i + (−7w− 2

81 ) f k
i+1

+( 5
2 w− 3

162 ) f k
i+2 + ( 1

27 − 3w)MGM(δ f k
i−2, δ f k

i−1),
f k+1
3i = f k

i ,
f k+1
3i+1 = ( 5

2 w− 3
162 ) f k

i−2 + (−7w− 2
81 ) f k

i−1 + (6w + 20
27 ) f k

i + ( 1
3 − w) f k

i+1
+(−w

2 −
5

162 ) f k
i+2 − ( 1

27 − 3w)MGM(δ f k
i−2, δ f k

i−1).

(11)

Similarly, if we replace the arithmetic mean
δ f k

i−2+δ f k
i−1

2 in Equation (10) by modified harmonic
mean also known as the PPH function, PPH(δ f k

i−2, δ f k
i−1) as defined in (8), we get another class of

nonlinear 5-point ternary interpolating schemes.

f k+1
3i−1 = (−w

2 −
5

162 ) f k
i−2 + ( 1

3 − w) f k
i−1 + (6w + 20

27 ) f k
i + (−7w− 2

81 ) f k
i+1

+( 5
2 w− 3

162 ) f k
i+2 + ( 1

27 − 3w)PPH(δ f k
i−2, δ f k

i−1),
f k+1
3i = f k

i ,
f k+1
3i+1 = ( 5

2 w− 3
162 ) f k

i−2 + (−7w− 2
81 ) f k

i−1 + (6w + 20
27 ) f k

i + ( 1
3 − w) f k

i+1
+(−w

2 −
5

162 ) f k
i+2 − ( 1

27 − 3w)PPH(δ f k
i−2, δ f k

i−1).

(12)

4. Convergence Analysis of Nonlinear Subdivision Schemes

Nonlinear schemes (11) can be expressed as

f k+1
3i−1 = (−w

2 −
5

162 ) f k
i−2 + ( 1

3 − w) f k
i−1 + (6w + 20

27 ) f k
i + (−7w− 2

81 ) f k
i+1 + ( 5

2 w− 3
162 ) f k

i+2
+( 1

27 − 3w){MGM(δ f k
i−2, δ f k

i−1) + AM(δ f k
i−2, δ f k

i−1)− AM(δ f k
i−2, δ f k

i−1)},
f k+1
3i = f k

i ,
f k+1
3i+1 = ( 5

2 w− 3
162 ) f k

i−2 + (−7w− 2
81 ) f k

i−1 + (6w + 20
27 ) f k

i + ( 1
3 − w) f k

i+1 + (−w
2 −

5
162 ) f k

i+2
−( 1

27 − 3w){MGM(δ f k
i−2, δ f k

i−1) + AM(δ f k
i−2, δ f k

i−1)− AM(δ f k
i−2, δ f k

i−1}.

(13)

By simplifying,

f k+1
3i−1 = (w− 4

81 ) f k
i−2 + (−4w + 10

27 ) f k
i−1 + (6w + 20

27 ) f k
i + (−4w− 5

81 ) f k
i+1 + w f k

i+2
+( 1

27 − 3w){MGM(δ f k
i−2, δ f k

i−1)− AM(δ f k
i−2, δ f k

i−1)},
f k+1
3i = f k

i ,
f k+1
3i+1 = w f k

i−2 + (−4w− 5
81 ) f k

i−1 + (6w + 20
27 ) f k

i + (−4w + 10
27 ) f k

i+1 + (w− 4
81 ) f k

i+2
−( 1

27 − 3w){MGM(δ f k
i−2, δ f k

i−1)− AM(δ f k
i−2, δ f k

i−1)}.

(14)

In general,
f k+1 = SNL( f k) = S( f k) + F(δ f k). (15)

where SNL represents a nonlinear subdivision scheme, S is the linear interpolating subdivision
scheme (9), which is C2 continuous for 1

324 < w < 1
162 , and F(δ f k) is given by
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F(δ f k)3i−1 = ( 1
27 − 3w){MGM(δ f k

i−2, δ f k
i−1)− AM(δ f k

i−2, δ f k
i−1)},

F(δ f k)3i = 0,
F(δ f k)3i+1 = −( 1

27 − 3w){MGM(δ f k
i−2, δ f k

i−1)− AM(δ f k
i−2, δ f k

i−1)}.
(16)

Proposition 1. The subdivision scheme S defined in (9) satisfies the following inequalities.

1. |δS( f k)3i−1| ≤ ( 11
81 − 8w)||δ f k||∞ for 0 < w < 1

81 ,
2. |δS( f k)3i| ≤ ( 3

81 + 12w)||δ f k||∞ for w > 0,
3. |δS( f k)3i+1| ≤ ( 11

81 − 8w)||δ f k||∞ for 0 < w < 1
81 .

Proof. Consider
δS( f k)3i−1 = δ f k+1

3i−1 = f k+1
3i+2 − 3 f k+1

3i+1 + 3 f k+1
3i − f k+1

3i−1

By using the definition of subdivision scheme S given in (9), we get,

δS( f k)3i−1 = ( 4
81 − 4w) f k

i−2 + (17w− 19
81 ) f k

i−1 + ( 33
81 − 28w) f k

i
+(22w− 25

81 ) f k
i+1 + ( 7

81 − 8w) f k
i+2 + w f k

i+3.
(17)

which simplifies to

δS( f k)3i−1 = (4w− 4
81

)δ f k
i−2 + (

7
81
− 5w)δ f k

i−1 + wδ f k
i .

For 0 < w < 1
81 , above equation gives,

|δS( f k)3i−1| ≤ (
4
81
− 4w)|δ f k

i−2|+ (
7

81
− 5w)|δ f k

i−1|+ w|δ f k
i |

|δS( f k)3i−1| ≤ ( 11
81 − 8w)maxj{|δ f k

j |} = ( 11
81 − 8w)||δ f k||∞. (18)

which proves the first inequality of Proposition 1. For the second inequality, consider,

δS( f k)3i = δ f k+1
3i = f k+1

3i+3 − 3 f k+1
3i+2 + 3 f k+1

3i+1 − f k+1
3i

Using the subdivision scheme S in (9) and simplifying, we get,

δS( f k)3i = 3w f k
i−2 + (−15w− 3

81 ) f k
i−1 + (30w + 9

81 ) f k
i

+(−30w− 9
81 ) f k

i+1 + (15w + 3
81 ) f k

i+2 − 3w f k
i+3.

(19)

δS( f k)3i = −3wδ f k
i−2 + (6w +

3
81

)δ f k
i−1 − 3wδ f k

i

|δS( f k)3i| ≤ | − 3w||δ f k
i−2|+ |6w +

3
81
||δ f k

i−1|+ |3w||δ f k
i |

For w > 0, we have,

|δS( f k)3i| ≤ (12w +
3

81
)max

j
{|δ f k

j |} = (12w +
3

81
)||δ f k||∞. (20)

Similarly, for the third inequality, consider,

δS( f k)3i+1 = δ f k+1
3i+1 = f k+1

3i+4 − 3 f k+1
3i+3 + 3 f k+1

3i+2 − f k+1
3i+1

Again, using the definition of the subdivision scheme S in (9) and simplifying, we get,

δS( f k)3i+1 = −w f k
i−2 + (8w− 7

81 ) f k
i−1 + (−22w + 25

81 ) f k
i

+(28w− 33
81 ) f k

i+1 + (−17w + 19
81 ) f k

i+2 + (4w− 4
81 ) f k

i+3
(21)
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δS( f k)3i+1 = wδ f k
i−2 + (

7
81
− 5w)δ f k

i−1 + (4w− 4
81

)δ f k
i

For 0 < w < 1
81 , we get,

|δS( f k)3i+1| ≤ (
11
81
− 8w)||δ f k||∞. (22)

Proposition 2. Function F defined in (16) satisfies the following inequalities.

1. |δF(δ f k)3i−1| ≤ 3( 1
27 − 3w)||δ f k||∞, for 0 < w < 1

81 ,
2. |δF(δ f k)3i| ≤ 6( 1

27 − 3w)||δ f k||∞, for 0 < w < 1
81 ,

3. |δF(δ f k)3i+1| ≤ 3( 1
27 − 3w)||δ f k||∞, for 0 < w < 1

81 .

Proof. Since
δF(δ f k)3i−1 = F(δ f k)3i+2 − 3F(δ f k)3i+1 + 3F(δ f k)3i − F(δ f k)3i−1

therefore,

δF(δ f k)3i−1 = ( 1
27 − 3w){MGM(δ f k

i−1, δ f k
i )− AM(δ f k

i−1, δ f k
i ) + 3MGM(δ f k

i−2, δ f k
i−1)

−3AM(δ f k
i−2, δ f k

i−1) + 0−MGM(δ f k
i−2, δ f k

i−1) + AM(δ f k
i−2, δ f k

i−1)}
(23)

δF(δ f k)3i−1 = ( 1
27 − 3w){MGM(δ f k

i−1, δ f k
i )− AM(δ f k

i−1, δ f k
i )}

+2( 1
27 − 3w){MGM(δ f k

i−2, δ f k
i−1)− AM(δ f k

i−2, δ f k
i−1)}

(24)

By Equation (7),

|MGM(δ f k
i−1, δ f k

i )− AM(δ f k
i−1, δ f k

i )| ≤ max{|δ f k
i−1|, |δ f k

i |} ≤ ||δ f k||∞

and
|MGM(δ f k

i−2, δ f k
i−1)− AM(δ f k

i−2, δ f k
i−1)| ≤ max{|δ f k

i−2|, |δ f k
i−1|} ≤ ||δ f k||∞.

For 0 < w < 1
81 , Equation (24) gives

|δF(δ f k)3i−1| ≤ 3(
1
27
− 3w)||δ f k||∞. (25)

Proofs of other two inequalities in Proposition 2 are very similar and straight forward.

To prove the convergence of nonlinear scheme SNL, we recall the following result from [1–3].

Theorem 1. For F, S and δ given in (15) if ∃M > 0 such that ∀g ∈ l∞(Z)

||F(g)||∞ ≤ M||g||∞, (26)

and ∃ c < 1 such that

||δS( f ) + δF(δ f )||∞ ≤ c||δ f ||∞, (27)

then the subdivision scheme SNL is uniformally convergent. Moreover, if S is Cα convergent then, for all
sequence f ∈ l∞(Z), S∞

NL( f ) is at least Cβ with β = min(α,− log2(c)).

Since ternary subdivision has three different formulas at points 3i− 1, 3i, & 3i + 1, in order to
prove conditions (26) and (27) of Theorem 1 for our nonlinear schemes, we have to consider each of
them separately.
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Case 1: At the point 3i− 1:

|δS( f k)3i−1 + δF(δ f k)3i−1| ≤ |δS( f k)3i−1|+ |δF(δ f k)3i−1|

By Proposition 1 (part 1) and Proposition 2 (part 1), for 0 < w < 1
81 , we get,

|δS( f k)3i−1 + δF(δ f k)3i−1| ≤ (
11
81
− 8w)||δ f k||∞ + 3(

1
27
− 3w)||δ f k||∞.

|δS( f k)3i−1 + δF(δ f k)3i−1| ≤ (
20
81
− 17w)||δ f k||∞ f or 0 < w <

1
81

. (28)

Case 2: At the point 3i:

|δS( f k)3i + δF(δ f k)3i| ≤ |δS( f k)3i|+ |δF(δ f k)3i|

By Proposition 1 (part 2) and Proposition 2 (part 2), for 0 < w < 1
81 , we get,

|δS( f k)3i + δF(δ f k)3i| ≤ (
3

81
+ 12w)||δ f k||∞ + 6(

1
27
− 3w)||δ f k||∞.

|δS( f k)3i + δF(δ f k)3i| ≤ (
7
27
− 6w)||δ f k||∞ f or 0 < w <

1
81

. (29)

Case 3: At the point 3i + 1:

|δS( f k)3i+1 + δF(δ f k)3i+1| ≤ |δS( f k)3i+1|+ |δF(δ f k)3i+1|

By Proposition 1 (part 3) and Proposition 2 (part 3), for 0 < w < 1
81 , we get,

|δS( f k)3i+1 + δF(δ f k)3i+1| ≤ (
11
81
− 8w)||δ f k||∞ + 3(

1
27
− 3w)||δ f k||∞.

|δS( f k)3i+1 + δF(δ f k)3i+1| ≤ (
20
81
− 17w)||δ f k||∞ f or 0 < w <

1
81

. (30)

Let c = max{ 20
81 − 17w, 7

27 − 6w} then for 0 < w < 1
81 , we get c < 1. Therefore, from (28)–(30),

we have,

||δS( f k) + δF(δ f k)||∞ ≤ c||δ f k||∞ (31)

for c < 1 with 0 < w < 1
81 . Which proves Equation (27).

Now to prove Equation (26), we consider F(g) at n = 3i− 1 as defined in (16), and by using the
fact (7), we have,

|F(g)3i−1| ≤ (
1

27
− 3w)||g||∞, f or 0 < w <

1
81

. (32)

At n = 3i,
|F(g)3i| = 0 (33)

and similarly, at n = 3i + 1, by using Property (7),

|F(g)3i+1| ≤ (
1

27
− 3w)||g||∞, f or 0 < w <

1
81

. (34)

Let M = ( 1
27 − 3w) then M > 0, for 0 < w < 1

81 . Therefore, from Equations (32)–(34), we get,

||F(g)||∞ ≤ M||g||∞. (35)
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which proves Equation (26) and consequently proves that our class of 5-point nonlinear ternary
interpolating subdivision schemes SNL given in (11) is uniformly convergent for 0 < w < 1

81 .
It is noted that c as given in (31) can be restricted as c ≤ 13

54 for 1
324 ≤ w < 1

162 . Which gives β = 2
as defined in Theorem 1 and hence proves that S∞

NL is C2 for 1
324 ≤ w < 1

162 .
Since functions PPH and MGM are nonlinear and satisfy properties given in (4)–(7) which we

used for MGM to prove the convergence of (11). Therefore, it can easily be verified by replacing MGM
function with PPH function in the above proof that subdivision schemes (12) are also C2 continuous.

5. Numerical Results

We picked three examples with a varying number of irregularities in initial data points. In Figure 1,
two smooth curves are generated from the initial control or data points, one with linear scheme (9)
and another with a nonlinear scheme (11) both with w = 1/230. One can easily see oscillations or
Gibbs phenomenon for linear scheme but for the nonlinear scheme it is reduced. Figure 2, shows
different initial data points and the corresponding smooth curves: one with the linear scheme (9) and
one with nonlinear scheme (11) with w = 1/230. In Figure 3, initial data points are selected from
the step function and the corresponding smooth curves are generated with the linear scheme (9) and
nonlinear scheme (11) with w = 1/230. Improvement is evident. Curves generated from nonlinear
schemes reduce the Gibbs phenomenon.

Nonlinear 

Initial data points

Linear

Figure 1. Initial control points and curve generated by 5-point linear ternary interpolating subdivison
scheme (5th level) in (9) and 5-point nonlinear ternary interpolating subdivision scheme (11) with
w = 1/230.

Initial data points

Nonlinear

Linear

Figure 2. Initial control points and curve generated by 5-point linear ternary interpolating subdivison
scheme (5th level) in (9) and 5-point nonlinear ternary interpolating subdivision scheme (11) with
w = 1/230.
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Initial data points
Nonlinear
Linear

Figure 3. Initial control points and curve generated by 5-point linear ternary interpolating subdivison
scheme (5th level) in (9) and 5-point nonlinear ternary interpolating subdivision scheme (11) with
w = 1/230.

6. Conclusions

In this article, we proposed a class of 5-point nonlinear interpolating subdivision schemes. It is
proved that our schemes are at least C2 continuous. Numerical results are presented to show that
curves generated by these schemes reduce the Gibbs phenomenon while keeping the same level
of smoothness.

Conflicts of Interest: The author declares no conflict of interest.
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