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Abstract: The concept of length-biased distribution is applied in expending proper models for
lifetime data. The length-biased distribution is a special case of well-known weighted distribution.
In this article, we introduce a length-biased weighted Lomax distribution (LBWLD) with k presence
of outliers and estimate the parameter of R = P(Y < X) when the random variables X and Y are
independent and have LBWLD in presence of outliers and without outliers, respectively. The bias and
mean square error (MSE) of the estimator are examined with simulations of numerical and bootstrap
resampling. Analysis of a real data set is considered for illustrative purposes.

Keywords: Lomax distribution; length-biased weighted Lomax distribution; outliers; maximum
likelihood estimation; mean squared error

1. Introduction

In recent years, the Lomax distribution (Pareto distribution II), has been applied in the field of
life testing because it fits the business failure data. The Lomax distribution is presented by Lomax [1].
In 2010, Abdullah and Abdullah [2] estimated the parameters of the Lomax distribution based on
generalized probability weighted moments. The Lomax distribution was applied in the theoretical
background in a number of ways. Weighted distribution theory gives a unified approach to deal
with model specification and data interpretation problems. Weighted distributions are frequent in
studies related to reliability, survival analysis, analysis of family data, biomedicine, ecology and several
other areas; Stene [3] and Oluyede and George [4]. Gupta and Tripathi [5], Patil and Rao [6] and
Das and Roy [7] researched the length-biased Weighted Generalized Rayleigh distribution with its
properties. Moreover, they devised a length-biased Weighted Weibull distribution [8]. Many authors
have researched important findings on weighted distributions. A unified concept of weighted
distribution was proposed by Rao [9] where sampling situations example of being modeled are
identified through weighted distributions. In the context of reliability, the life of a component
which has a random strength X and is subject to a random stress Y is described by stress-strength
models. The failed component at the instant means the stress is assigned to exceed the strength,
and in case X > Y, the component functions properly. Consequently, R = P(Y < X) is a measure of
component reliability. The parameter of R is the reliability parameter. This type of function can be
of practical importance in many applications. For example, provided that X is the response for a
control group, and Y is the treatment group, then R = P(Y < X), which is a measure of the effect of the
treatment. This R = P(Y < X) can be applied when estimating heritability of a genetic trait. For more
information on R, Halperin et al. [10], Simonoff et al. [11], Reiser and Farragi [12] and Bamber [13] are
recommended. Bamber [13] provides a geometrical interpretation of A(X, Y) = P(X < Y) + 1

2 P(X = Y)
and reveals that A(X,Y) is a practical formula in measuring the size of the difference between two
populations. Weerahandi and Johnson [14] suggested inferential procedures for P(X > Y) by considering
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that X and Y are independent normal random variables. Nadarajah [15] examined the reliability for
Laplace distribution and its generalizations, where he proposes the double Lomax distribution and
introduces its appliance to the stress-strength model. The double Lomax distribution is the ratio
independent and analogously classical Laplace distributions. For given random variables X and Y, the
distribution ratio X/Y is of absorption in biological and physical sciences, econometrics, and ranking
and selection. The archetypes in the context consist of Mendelian inheritance ratios in genetics, mass
to energy ratios in nuclear physics, target to control precipitation in meteorology, inventory ratios in
economics, and the stress-strength model in the realm of reliability. The function R = P(X > Y) is of
practical use in many cases like clinical trials, genetics, and reliability. Let X be a nonnegative random
variable with its probability density function (PDF) of f (x), and then the PDF of the weight random
variable Xw yields through

fw(x) =
w(x) f (x)
E(w(x))

; x ≥ 0,

where
E(w(x)) =

w ∞

0
w(x) f (x)dx; 0 < E(w(x)) < ∞.

The random variable Xw is named the weight version of X and its distribution corresponds to that
of X and is named the weighted distribution with weight function w(x). Consequently, at w(x) = x,
the obtained distribution is named a length-biased distribution and the PDF of a length-biased random
variable X yields

f (x) =
x f (x)
E(X)

; x ≥ 0.

1.1. Lomax Distribution and Properties

A random variable X is distributed as Lomax distribution (LD) with two parameters of θ (shape
parameter) and λ (scale parameter) if it is of the following PDF

f (x; θ, λ) =
θ

λ
(1 +

x
λ
)
−(θ+1)

; x ≥ 0, θ, λ > 0.

It is easy to show that

E(X) =
λ

θ − 1
; θ > 1, Var(X) =

λ2θ

(θ − 1)2(θ − 2)
; θ > 2.

The corresponding cumulative distribution function (CDF) is exposed through

F(x; θ, λ) = 1−
(

1 +
x
λ

)−θ
; θ > 2.

It is assumed that (X1, . . . , Xn) is a random sample of size n from LD, where the maximum
likelihood estimators (MLEs) of the parameters of λ and θ, represented by λ̂ and θ̂, are obtained
through direct maximization of the log-likelihood function. Different log-likelihood functions with
respect to parameters are achieved through normal equations

n
θ
− Σn

i=1 log(1 +
xi
λ
) = 0,

n
λ
− (θ + 1)Σn

i=1(
xi

λ(λ + xi)
) = 0. (1)

The MLEs are simultaneous solutions of the nonlinear normal Equation (1). So, by simplification
of (1), we have

θ̂(λ) =
n

Σn
i=1 log(1 + xi

λ )
, λ̂(θ) =

n

(θ + 1)Σn
i=1

(
xi

λ(λ+xi)

) .

The estimators cannot be written in a closed-form expression.
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1.2. LBWLD and Properties

An LBWLD is derived by weights of w(x) = x in the weighted Lomax distribution [16]

f (x; θ, λ) =
θ(θ − 1)

λ2 x(1 +
x
λ
)
−(θ+1)

; x ≥ 0, θ > 1, λ > 0.

It is easy to show that

E(X) =
2λ

θ − 2
; θ > 2, Var(X) =

2λ2θ

(θ − 2)2(θ − 3)
; θ > 3.

The corresponding CDF is

F(x; θ, λ) = 1−
(

1 +
x
λ

)−θ
(

1 +
xθ

λ

)
,

where θ and λ are the shape and scale parameters, respectively.
Let (Y1, . . . , Ym) be a random sample of size m from LBWLD with two parameters of θ and λ.

The log-likelihood function would be

l(θ, λ) = mlog(θ(θ − 1))− 2mlogλ + Σm
i=1logyi − (θ + 1)Σm

i=1 log
(

1 +
yi
λ

)
.

The partial derivatives of l(θ, λ) with respect to θ and λ are, respectively

m(2θ − 1)
θ(θ − 1)

− Σm
i=1 log(1 +

yi
λ
) = 0,

2m
λ
− (θ + 1)Σm

i=1(
yi

λ(λ + yi)
) = 0.

The MLE η̂ = (θ̂, λ̂) of η = (θ, λ) is obtained with simultaneous solutions nonlinear system of
normal equations, given by

m(2θ − 1)
θ(θ − 1)

= Σm
i=1 log(1 +

yi
λ
),

2m
λ

= (θ + 1)Σm
i=1(

yi
λ(λ + yi)

). (2)

2. Joint Distribution of Random Variables (X1,. . . , Xn) in Presence of k Outliers

According to Dixit [17], let random variables (X1, ..., Xn) be such that k of them (the number of
outliers) are distributed as LBWLD with parameters of β (shape parameter) and λ (scale parameter)
and the remaining (n-k) random variables are distributed as LBWLD with parameters of α (shape
parameter) and λ (scale parameter). The joint distribution of (X1, ..., Xn) with k outliers is expressed as

f (x) = C(n, k)−1 (β(β− 1))k(α(α− 1))n−k

λ2 ∏n
i=1 xi(1 +

xi
λ
)
−(α+1)

Σ∗∏k
r=1 (1 +

xAr

λ
)

α−β
,

where Σ∗ = Σn−k+1
A1=1 Σn−k+2

A2=A1+1... Σn
Ak=Ak−1+1.

It is easy to show that marginal distribution of X is expressed as [18]

f (x; α, β, λ) =
bα(α− 1)

λ2 x
(

1 +
x
λ

)−(α+1)
+

bβ(β− 1)
λ2 x

(
1 +

x
λ

)−(β+1)
; x ≥ 0, α, β > 1, λ > 0. (3)

The CDF is

F(x; α, β, λ) = b(1−
(

1 +
x
λ

)−α(
1 +

xα

λ

)
) + b(1−

(
1 +

x
λ

)−β
(

1 +
xβ

λ

)
),

where b = k
n and b = 1− b.
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3. Method of Maximum Likelihood Estimation (MLE)

The MLEs of the parameters are achieved through direct maximization of the log-likelihood
function. Partial derivations of log-likelihood functions with respect to parameters and setting the
results equal to zero will produce normal equations. The MLE is the result of solving a nonlinear
system of normal equations. It is more practical to apply nonlinear optimization algorithms like the
quasi-Newton algorithm to maximize the log-likelihood function in its numerical sense.

Provided that (X1, ..., Xn) is a random sample of size n from LBWLD with presence of k outliers,
then the log-likelihood function is presented as

(α, β, λ) = logL(α, β, λ) = −logC(n, k) + klog
(

β2 − β
)
+ (n− k) log

(
α2 − α

)
−

2nlogλ + Σn
i=1logxi − (α + 1)Σn

i=1 log(1 + xi
λ ) + logΣ∗∏k

r=1

(
1 + xAr

λ

)α−β
.

The partial derivatives of l(α, β, λ) with respect to α, β and λ are as

∂l(α, β, λ)

∂α
=

(n− k)(2α− 1)
α(α− 1)

− Σn
i=1 log(1 +

xi
λ
) +

Σ∗∏k
r=1

(
1 + xAr

λ

)α−β
log ∏k

r=1

(
1 + xAr

λ

)
Σ∗∏k

r=1

(
1 + xAr

λ

)α−β
= 0,

∂l(α, β, λ)

∂β
=

k(2β− 1)
β(β− 1)

−
Σ∗∏k

r=1

(
1 + xAr

λ

)α−β
log ∏k

r=1

(
1 + xAr

λ

)
Σ∗∏k

r=1

(
1 + xAr

λ

)α−β
= 0,

∂l(α, β, λ)

∂λ
= −2n

λ
+ (α + 1)Σn

i=1
xi

λ(λ + xi)
−

(α− β)Σ∗∏k
r=1

(
1 + xAr

λ

)α−β
Σk

r=1
xAr

λ(λ+xAr )

Σ∗∏k
r=1

(
1 + xAr

λ

)α−β
= 0.

The MLE η̂ = (α̂, β̂, λ̂) of η = (α, β, λ) is obtained as simultaneous solutions in a nonlinear system
of normal equations, given by

(n− k)(2α− 1)
α(α− 1)

+
Σ∗∏k

r=1

(
1 + xAr

λ

)α−β
log ∏k

r=1

(
1 + xAr

λ

)
Σ∗∏k

r=1

(
1 + xAr

λ

)α−β
= Σn

i=1 log(1 +
xi
λ
), (4)

k(2β− 1)
β(β− 1)

=
Σ∗∏k

r=1

(
1 + xAr

λ

)α−β
log ∏k

r=1

(
1 + xAr

λ

)
Σ∗∏k

r=1

(
1 + xAr

λ

)α−β
, (5)

λ(α + 1)Σn
i=1

xi
λ(λ + xi)

−
λ(α− β)Σ∗∏k

r=1

(
1 + xAr

λ

)α−β
Σk

r=1
xAr

λ(λ+xAr )

Σ∗∏k
r=1

(
1 + xAr

λ

)α−β
= 2n. (6)

Maximum Likelihood Estimator of R = P(Y < X)

Let the random variables X and Y be independent and Y be LBWLD to parameters of (θ, λ) and
the random variables (X1, . . . , Xn) are such that k of them are distributed as LBWLD to parameters of
(β, λ), and the remaining (n-k) random variables are distributed as LBWLD with parameters of (α, λ).
The parameters of (θ, α, β) are the shape parameters and parameter of λ is the scale parameter. Using
the marginal distribution of X given by (3), we obtain
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R = P(Y < X) =
∫ ∞

0

∫ x
0

θ(θ−1)
λ2 y

(
1 + y

λ

)−(θ+1)dy
[

bα(α−1)
λ2 x

(
1 + x

λ

)−(α+1)
+ bβ(β−1)

λ2 x
(
1 + x

λ

)−(β+1)
]
dx =

bθ(θ−1)(θ+3β−2)
(β+θ)(1−(β+θ))(2−(β+θ))

+ bθ(θ−1)(θ+3α−2)
(α+θ)(1−(α+θ))(2−(α+θ))

.

The value of R does not depend on parameter of λ.
If we insert k = 0, then X and Y will be LBWLD, without outliers, with different shape parameters

and identical scale parameter. So

R = P(Y < X) =
θ(θ − 1)(θ + 3− 2)

(α + θ)(1− (α + θ))(2− (α + θ))
.

Suppose (Y1, ..., Ym) is a random sample for random variable Y from LBWLD to parameters of
(θ, λ). The MLEs (θ̂, α̂, β̂) of the parameters of (θ, α, β) are yielded with simultaneous solutions in
nonlinear system of normal equations, (2) and (4)–(6). If (θ, α, β) replaces (θ̂, α̂, β̂) into R, then they will
obtain the MLE R̂ of the parameter of R.

4. Numerical Experiments

The Equation F(x) = u, where u is an observation as the uniform distribution (0, 1) and F(x) is the
CDF of LBWLD with Presence of Outliers distributions, is applied in running simulation by generating
random samples that follow LBWLD with Presence of Outliers distributions. The iterations of this
simulation are 1000 per sample size, (m, n) = (10, 10), (20, 20), (50, 50), (10, 30), (10, 50), (30, 10), (50, 10),
in two cases of known and unknown λ, for k = 0, 1, 2; λ = 2; α = 7; β = 5, and θ = 4. The averages
bias and the means squared error of estimations of parameters of α, β, θ, λ, and R were computed for
these simulations. The results have been truncated after four decimal places.

4.1. Bootstrap Procedure

We consider the bootstrap resampling method for deriving the bias-corrected MLEs based on
the idea of Efron [19]. Let x = {x1, ..., xn} be a random sample of size n from the random variable X
with distribution function F and τ̂ = h(x) be an estimator of parameter τ = g(F) that is a function
of F known. In this procedure, we generate a large number of pseudo-samples x∗ = {x∗1, ..., x∗n}
from the sample x and compute the corresponding bootstrap replicates τ̂, say τ̂∗ = h(x∗). Thus,
the empirical distribution of τ̂∗ is used to estimate the distribution function of τ̂. Therefore, we
generate N bootstrap samples independently from the sample x and compute the corresponding
bootstrap estimates (τ̂∗(1), ..., τ̂∗(N)). The second-order bias-corrected MLEs for τ can be obtained as
τB = 2τ̂ − τ̂∗, where τ̂∗ = 1

N ΣN
i=1τ̂∗(i) [20].

4.2. Results

Tables 1 and 2 present the values of the averages bias and the MSEs of the estimates for LBWLD
with outliers in two cases of known and unknown λ and values of bootstrap method based on 500
resampling are reported within brackets. The values of MSEs of the estimations of α,β, θ, λ, and R
often decrease while sample sizes n and m increase. Average biases and MSEs decrease by applying
a bootstrap procedure. The sampling experiments and all computations were performed using R
(V. 3.4.3) software.
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Table 1. Average Bias and mean square errors (MSEs) for (θ̂, α̂, β̂, R̂) (λ is known, λ = 2, α = 7, β = 5, θ = 4).

k (m, n) Bias(θ̂) MSE(θ̂) Bias(α̂) MSE(α̂) Bias(β̂) MSE(β̂) Bias(R̂) MSE(R̂)

0

(10, 10) 0.1777 0.6642 0.4956 2.879

- -

0.002 0.0089
(0.1035) (0.5926) (0.1643) (2.6043) (0.0012) (0.0078)

(20, 20) 0.0965 0.2846 0.2252 1.1884 0.0023 0.004
(0.0539) (0.2601) (0.0829) (1.1737) (0.0008) (0.0033)

(50, 50) 0.0257 0.0903 −0.02 0.4169 0.0053 0.0018
(0.0094) (0.0579) (−0.0081) (0.3652) (0.0021) (0.0016)

(10, 30) 0.2630 0.9787 −0.0728 0.6040 0.0256 0.0083
(0.1491) (0.9532) (−0.0235) (0.6004) (0.0073) (0.0065)

(10, 50) 0.4301 0.769 0.0158 0.4197 0.0129 0.0061
(0.1463) (0.6011) (0.0074) (0.3891) (0.0049) (0.0057)

(30, 10) 0.0427 0.1508 0.3797 2.5054 −0.0034 0.0068
(0.0197) (0.0982) (0.0683) (2.3406) (−0.0007) (0.0049)

(50, 10) 0.0143 0.102 0.3671 2.4787 −0.0038 0.0054
(0.0095) (0.007) (0.1105) 2.2834) (−0.0012) (0.0039)

1

(10, 10) 0.2798 0.8891 −0.7307 1.0846 1.3279 3.0497 0.0508 0.0114
(0.0238) (0.6916) (−0.2837) (1.04613) (0.4927) (2.5729) (0.0216) (0.0089)

(20, 20) −0.166 0.2775 −0.8895 1.0125 0.9462 2.0133 0.0238 0.0034
(−0.0734) (0.2376) (−0.3156) (0.8296) (0.0816) (2.0019) (0.0101) (0.003)

(50, 50) 0.082 0.1261 −0.232 0.393 0.5182 2.0159 0.0143 0.0030
(0.0164) (0.1079) (−0.1067) (0.2162) (0.2376) (1.9437) (0.0071) (0.0017)

(10, 30) 0.2042 0.8145 −0.2779 0.5969 0.6013 2.7171 0.0315 0.0094
(0.0794) (0.7001) (−0.1106) (0.3941) (0.2389) (2.0437) (0.0068) (0.0085)

(10, 50) −0.2365 0.3066 −0.1874 0.2956 1.5741 3.0463 −0.0144 0.0036
(−0.0857) (0.2477) (−0.0736) (0.2577) (0.5642) (2.1634) (−0.0069) (0.0027)

(30, 10) 0.1639 0.2575 −0.5999 0.9701 0.9584 3.5822 0.0414 0.0059
(0.0699) (0.2262) (−0.2638) (0.6957) (0.3766) (3.0421) (0.0183) (0.0051)

(50, 10) 0.0149 0.1065 −0.8144 1.1065 1.117 2.8738 0.0364 0.0037
(0.0057) (0.0891) (−0.1149) (1.0236) (0.2459) (2.5882) (0.0134) (0.0023)

2

(10, 10) 0.2307 0.5697 −1.0046 1.6083 1.5446 7.1450 0.0509 0.0101
(0.0786) (0.5531) (−0.4169) (1.2681) (0.8837) (5.4953) (0.0221) (0.0082)

(20, 20) −0.0437 0.2383 −0.5288 0.6237 1.7306 4.6385 0.0097 0.0024
(−0.0193) (0.2046) (−0.1937) (0.6176) (0.7308) (3.9176) (0.0037) (0.0019)

(50, 50) 0.1315 0.109 −0.4862 0.4466 1.4114 2.7341 0.033 0.0021
(0.0533) (0.0874) (−0.1303) (0.3583) (0.4692) (2.1346) (0.0049) (0.0017)

(10, 30) 0.2540 0.8483 −0.4458 0.6660 1.1649 2.7889 0.0374 0.0078
(0.0841) (0.6729) (−0.1197) (0.642) (0.0974) (2.0858) (0.0173) (0.0055)

(10, 50) 0.3617 0.8422 −0.3122 0.3586 1.2256 2.4825 0.0418 0.0069
(0.0519) (0.6503) (−0.1804) (0.3042) (0.604) (1.9925) (0.0138) (0.0052)

(30, 10) 0.0465 0.1896 −0.9052 1.8056 0.5538 3.0168 0.0443 0.0071
(0.0081) (0.1364) (−0.3972) (1.4519) (0.2172) (2.0826) (0.0199) (0.0067)

(50, 10) 0.087 0.1125 −0.8716 1.6284 0.8903 3.5537 0.0411 0.0064
(0.0026) (01027) (−0.3304) (1.3726) (0.3371) (2.6735) (0.0153) (0.0049)

Table 2. Average Bias and MSEs for (θ̂, α̂, β̂, λ̂, R̂) (λ is unknown, λ = 2, α = 7, β = 5, θ = 4).

k (m, n) Bias(θ̂) MSE(θ̂) Bias(α̂) MSE(α̂) Bias(β̂) MSE(β̂) Bias(λ̂) MSE(λ̂) Bias(R̂) MSE(R̂)

0

(10, 10) 1.4208 9.2244 1.1415 16.6559

- -

0.9217 6.2925 0.0770 0.0381
(0.5043) (8.1636) (0.5819) (12.6429) (0.3706) (5.7923) (0.0169) (0.0308)

(20, 20) 1.0802 8.5436 1.1970 16.3828 0.7274 4.1251 0.0463 0.0359
(0.2982) (6.8431) (0.7441) (13.1642) (0.4467) (3.909) (0.0187) (0.0235)

(50, 50) 0.5604 2.1340 1.1679 10.6799 0.4568 1.6848 0.0063 0.0049
(0.2013) (1.8906) (0.4927) (9.699) (0.1692) (1.5617) (0.0023) (0.0043)

(10, 30) 0.6324 5.0385 0.3961 12.3881 0.2262 1.9292 0.0388 0.0104
(0.2964) (4.0052) (0.1928) (10.9871) (0.0672) (1.3863) (0.0213) (0.0076)

(10, 50) 0.4301 3.3806 0.5893 11.6472 0.2621 1.7616 0.0185 0.0064
(0.1627) (1.8726) (0.2213) (9.1627) (0.1168) (1.3607) (0.0069) (0.0053)

(30, 10) 0.3907 2.8727 0.959 13.3461 0.3507 1.7833 0.0023 0.0042
(0.1927) (2.5102) (0.6132) (11.7429) (0.2265) (1.563) (0.0008) (0.0033)

(50, 10) 0.4464 2.6139 1.3108 12.7951 0.3811 1.6407 −0.006 0.0035
(0.1762) (2.1472) (0.5106) (11.0624) (0.2361) (1.2391) (−0.0021) (0.0034)
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Table 2. Cont.

1

(10, 10) 0.2671 3.6920 −0.0349 12.597 1.28 9.476 0.1808 1.7161 0.0304 0.0123
(0.1065) (2.8976) (−0.0094) (11.2067) (0.8131) (8.201) (0.1035) (1.6015) (0.0089) (0.0089)

(20, 20) −0.2886 1.4603 −0.5423 5.8502 0.7005 7.1436 −0.2061 0.9535 0.0058 0.0041
(−0.1102) (1.0553) (−0.3798) (4.8455) (0.4102) (5.9314) (−0.1244) (0.9013) (0.0039) (0.0038)

(50, 50) −0.0882 1.1903 0.0359 5.6179 0.0997 4.4333 −0.0286 0.6767 −0.0048 0.0022
(−0.0273) (0.9677) (0.0247) (3.7369) (0.0616) (3.195) (−0.0166) (0.4592) (−0.0032) (0.002)

(10, 30) −0.7491 1.2002 −1.7413 8.0579 −0.0827 3.1955 −0.7284 0.8882 0.0305 0.0051
(−0.2943) (1.1763) (−1.0025) (7.0341) (−0.0701) (2.4681) (−0.4239) (0.8102) (0.0116) (0.0047)

(10, 50) −0.2938 1.2297 −1.0995 7.6932 −0.2627 1.6751 −0.3839 0.9041 0.0402 0.0048
(−0.1514) (1.1833) (−0.7793) (6.1106) (−0.1524) (1.6017) (−0.1262) (0.7581) (0.0173) (0.0038)

(30, 10) 0.4111 2.7002 0.8199 10.4623 1.8155 13.3161 0.2865 1.4344 0.0232 0.0068
(0.1761) (2.0596) (0.5911) (9.6197) (1.1078) (11.2647) (0.0678) (1.1214) (0.0106) (0.0066)

(50, 10) 0.4313 1.9358 0.7317 7.3343 1.6602 14.4777 0.3404 1.0343 0.0037 0.0044
(0.2144) (1.3712) (0.3627) (5.9132) (1.0562) (13.8713) (0.1261) (0.8276) (0.0021) (0.004)

2

(10, 10) 0.5306 4.0137 0.4682 10.383 1.9795 12.3963 0.3455 1.999 0.0205 0.0117
(0.1963) (3.5147) (0.2109) (7.7981) (0.8052) (9.6824) (0.2209) (1.7013) (0.0109) (0.0077)

(20, 20) 0.0559 1.4795 0.0568 7.017 1.046 6.1927 −0.0907 0.711 0.005 0.0047
(0.0346) (1.2006) (0.0366) (5.9943) (1.0024) (5.811) (−0.056) (0.4273) (0.0026) (0.0038)

(50, 50) 0.2864 1.5215 0.6017 8.5793 0.4162 3.7811 −0.0907 0.711 0.0077 0.0028
(0.1806) (1.324) (0.3913) (7.0642) (0.2648) (2.9167) (−0.0389) (0.6988) (0.0048) (0.0019)

(10, 30) −0.326 2.0059 −0.8033 6.4739 0.0577 2.6519 −0.3543 0.8374 0.0183 0.0057
(−0.1744) (1.5783) (−0.5627) (6.1634) (0.0204) (2.1062) (−0.1634) (0.7018) (0.0103) (0.0052)

(10, 50) −0.3079 2.5945 −1.2414 5.7281 −0.3951 2.4483 −0.445 1.5109 0.0388 0.0054
(−0.2109) (2.1617) (−1.1435) (4.6001) (−0.0849) (1.9736) (−0.2634) (0.9274) (0.0095) (0.0046)

(30, 10) 0.3205 2.9004 0.7782 15.3845 1.6217 12.8923 0.2998 1.3399 0.0072 0.0076
(0.1932) (2.4107) (−0.2353) (12.3712) (0.5743) (10.4129) (−0.1406) (1.0377) (0.0054) (0.0051)

(50, 10) 0.7885 1.9817 1.6293 14.3568 2.8004 17.1023 0.6473 1.3393 −0.0035 0.0065
(0.4462) (1.6433) (0.8724) (11.762) (1.0079) (14.3726) (0.3709) (1.1611) (−0.0025) (0.0047)

5. Application

In order to illustrate the usefulness of the proposed model, we consider data reported by King
et al. [21]. A laboratory investigator interested in the relationship between diet and the development
of tumors divided rats into two groups and fed them with saturated fat and unsaturated fat diets,
respectively. The data represent the tumor-free time, the time from injection to the time that a tumor
develops or to the end of the study. Group One contains m = 30 data (Unsaturated Fat) and Group
Two n = 25 data (Saturated Fat). The data are as follows.

Unsaturated Fat

112, 68, 84, 109, 153, 143, 60, 70, 98, 164, 63, 63, 77, 91, 91, 66, 70, 77, 63, 66, 66, 94, 101, 105, 108, 112, 115,
126, 161, 178.

Saturated Fat

124, 58, 56, 68, 79, 89, 10786, 142, 110, 96, 142, 86, 75, 117, 98, 105, 126, 43, 46, 81, 133, 165, 170, 200, 200.

The required numerical evaluations were carried out using the Package of R software. We fitted
length-biased weighted Lomax distributions with presence of outliers for k = 0, 1, 2 to this data.
These three distributions were fitted into the subject data using maximum likelihood estimation.
The MLEs, estimated standard errors (SE) of the parameters and the corresponding log-likelihood
values (−2Log−L), Akaike information criterions (AIC; [22]), and P-values for Kolmogorov-Smirnov
test (K-S P-value) are displayed in Table 3.

The model with a minimum of AIC value was chosen as the best model to fit the data. From Table 3
we conclude that the LBWLD with presence of k = 1 outliers is better than others.
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Table 3. Maximum likelihood estimators (MLEs), standard errors (SE), Likelihood, Akaike information
criterions (AIC) and K-S P-value values.

k λ̂ SE(λ̂) θ̂ SE(θ̂) α̂ SE(α̂) β̂ SE(β̂) R̂ −2Log−L AIC K-S
p-Value

0 115.8826 42.9286 4.3728 1.1209 2.738 0.54891 - - 0.7031 317.0236 323.0236 0.2896
1 113.89 47.3094 3.6107 1.104 4.1799 0.5221 1.3303 0.3213 0.4549 312.6703 320.6703 0.2879
2 92.4893 35.5477 3.7304 0.9435 4.1878 0.52552 1.4047 0.3861 0.4858 312.8561 320.8561 0.2838

6. Conclusions

This paper proposed a length-biased weighted Lomax distribution with presence of outliers.
The MLES of the parameters have been investigated. The problem of estimating R = P(Y < X) parameters
for length-biased weighted Lomax distributions with Presence of Outliers have been addressed.
The simulation experiment was carried out for k = 0, 1, 2; λ = 2; α = 7; β = 5; and θ = 4, and the
results were given in Tables 1 and 2. The average bias and the MSE of the estimates based on 1000
replications and bootstrap method based on 500 resampling were reported. The results indicated that
the MSEs of the estimations decrease when sample sizes increase and the average biases and MSEs of
the estimations decrease when applying the bootstrap method. The usefulness of the distributions
was illustrated in the analysis of real data. The results indicated that the LBWLD in presence of k = 1
outliers may be used for a wider range of statistical applications.
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