
Mathematical 

and Computational 

Applications

Article

Bifurcation and Chaos in Real Dynamics of a
Two-Parameter Family Arising from Generating
Function of Generalized Apostol-Type Polynomials

Mohammad Sajid ID

College of Engineering, Qassim University, Buraidah, Saudi Arabia; msajd@qu.edu.sa; Tel.: +966-507017848

Received: 13 January 2018; Accepted: 1 February 2018; Published: date

Abstract: The aim of this paper is to investigate the bifurcation and chaotic behaviour in the
two-parameter family of transcendental functions fλ,n(x) = λ x

(ex+1)n , λ > 0, x ∈ R, n ∈ N\{1}
which arises from the generating function of the generalized Apostol-type polynomials. The existence
of the real fixed points of fλ,n(x) and their stability are studied analytically and the periodic points of
fλ,n(x) are computed numerically. The bifurcation diagrams and Lyapunov exponents are simulated;
these demonstrate chaotic behaviour in the dynamical system of the function fλ,n(x) for certain
ranges of parameter λ.
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1. Introduction

The bifurcation and chaos in the real dynamics of logistic maps f (x) = ax(1− x), x ∈ [0, 1],
a > 0 are vastly investigated numerically, computationally and theoretically; see for instance [1,2].
Stavroulaki and Sotiropoulos [3] have shown bifurcation and chaos in logistic-like maps f (x) =

rxλ(1− x)µ, x ∈ [0, 1] for real positive parameters r, λ and µ. The real dynamics of some generalized
logistic maps are investigated in [4]. The dynamics of the real cubic polynomials is a little more
complicated than that of the quadratic polynomials. The real dynamics of the cubic polynomials
are given in [5,6]. Generally, the dynamics of transcendental functions is more complicated than
polynomials. For sine families λsinx and λsin2x, chaotic behaviour in the real dynamics can be seen
in [7]. The chaotic behaviour in the dynamics of the one-dimensional families of maps corresponds
to Fibonacci-generating functions associated with the golden-, the silver- and the bronze mean is
explored in [8]; and in [9], it is described with periodic boundary conditions. The bifurcation and
chaotic behaviour in the real dynamics of one-parameter families of transcendental functions are
found in [10–12]. The real dynamics of one-parameter family of function (bx − 1)/x is explored in [13].
A graphical tool that allows the study of the real dynamics of iterative methods whose iterations
depend on one-parameter, is discussed in [14]. The fixed points are also very important to describe
the behaviour of dynamical systems. The real fixed points of one-parameter families of functions are
found in [10,15–17] and the two-parameter families are studied in [18,19].

The real dynamics of functions has become an important research area, partially due to the
dynamics in the complex plane which is induced using its real dynamics. Such investigations
are interesting for the description of Julia sets, Fatou sets and other properties in the complex
dynamics; see for instance [20–26]. Moreover, the study of real dynamics has attracted much interest
from researchers due to the fast-growing availability of computer software for both simulation and
graphics. These computer implementations demonstrate and disclose unexpected and beautiful
patterns, generating a number of predictions that lead to new developments in nonlinear phenomena
in dynamical systems such as the phenomenon of chaos.
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In recent years, chaos has been observed in a large number of experiments and it fabricates
the highest quality research in different disciplines of science, engineering and technology [27–29].
Chaos is commonly characterized by the sensitive dependence on the initial conditions of the dynamics.
There are many methods to identify and quantify the chaos in dynamics. It can be identified by looking
for period doubling or observing time series behavior and it can be quantified by computing Lyapunov
exponents [1,30].

For a periodic point x0 of period p, the orbit x0, x1 = f (x0), x2 = f 2(x0), . . . , xp−1 = f p−1(x0)

is called a cycle or a periodic cycle of x0. The periodic point x0 of period p is classified as follows:
If |( f p)′(x0)| < 1, then the periodic point x0 is called attracting. If |( f p)′(x0)| > 1, then the periodic
point x0 is called repelling. If |( f p)′(x0)| = 1, then the periodic point x0 is called neutral (rationally or
irrationally indifferent). If p = 1, then the point x0 is said to be a fixed point of function f (x).

The Lyapunov exponent of the function f (x), for a given trajectory {xk : k = 0, 1, 2, . . . } starting
at x0, is defined as

L = lim
k→∞

1
k

k−1

∑
i=0

ln | f ′(xi)|. (1)

It is well known that the behaviour of a dynamical system is chaotic if the Lyapunov exponent of
the function f (x) is a positive number [30,31].

Let

F =
{

fλ,n(x) = λ
x

(ex + 1)n : λ > 0, x ∈ R, n > 1, where n is a natural number
}

be a two-parameter family of transcendental functions which is neither even nor odd and not periodic.
Our two-parameter family of functions is, to some extent, generalized form of a one-parameter

family of functions λ 2x
(ex+1) [10]. Moreover, our family of transcendental functions is associated

with a unified family of the generating function of the generalized Apostol-type polynomials

∑∞
k=0 F

(α)
k (x; λ, µ, ν)(α ∈ N, λ, µ, ν ∈ C) of order α [32],(

2µtν

λet + 1

)α

ext =
∞

∑
k=0
F (α)

k (x; λ, µ, ν)
tk

k!
; |t| < |log(−λ)|. (2)

Setting x = 0, λ = 1, µ = 0, α = n and ν = 1
n , we have

t
(et + 1)n =

∞

∑
k=0
F (n)

k (0; 1, 0,
1
n
)

tk

k!
; |t| < |log(−1)|. (3)

This research work focuses on the real dynamics of the two-parameter family of transcendental
functions since scanty researches on transcendental functions and their applications in science and
engineering are available. The objectives to study this two-parameter family of transcendental functions
are to compute the real fixed points, periodic points and determine their nature. Moreover, the chaotic
phenomena are observed by drawing bifurcation diagrams and quantifying the chaos by calculating
the positive Lyapunov exponents for different parameter values.

The present paper is organized as follows: In Section 2, the real fixed points of the function
fλ,n ∈ F and their stability are investigated analytically. For some values of parameter λ, the numerical
computation of the real periodic points and their nature are given in Section 3 for the function fλ,n ∈ F .
For λ > λ∗, it is observed that the period doubling occurs in the real dynamics of fλ,n ∈ F which is
visualized by bifurcation diagrams in Section 4. In Section 5, the chaotic behaviour in the real dynamics
of fλ,n ∈ F is found by computing positive Lyapunov exponents. Finally, in Section 6, conclusions are
drawn about this research work.
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2. Real Fixed Points of fλ,n ∈ F and Their Nature

The existence and stability of the real fixed points of the function fλ,n ∈ F are described in the
present section. The following theorem shows the real fixed point of the function fλ,n(x):

Theorem 1. Let fλ,n ∈ F . Then, the function fλ,n(x) has one fixed point 0 for all λ, one nonzero real fixed
point xλ,n for λ > 1 and fλ,n(x) has no nonzero real fixed points for λ ≤ 1. Further, the fixed point xλ,n of
fλ,n(x) is negative for 1 < λ < 2n and is positive for λ > 2n.

Proof. For fixed points of fλ,n(x), we have to solve the equation λ x
(ex+1)n = x. This gives us x = 0 and

λ = (ex + 1)n. Hence, x = 0 and xλ,n = ln(λ1/n − 1) are solutions. There are no real nonzero solutions
for λ ≤ 1. Therefore, the function fλ,n(x) has a fixed point 0 for all λ and another real nonzero fixed
point xλ,n = ln(λ1/n − 1) for λ > 1.

Further, it is easily seen that, for 1 < λ < 2n, the fixed point xλ,n of fλ,n(x) is negative. For λ > 2n,
the fixed point xλ,n of fλ,n(x) is positive.

To determine the nature of the real fixed points of fλ,n(x), the following lemma is needed in the
proof of Theorem 2:

Lemma 1. Suppose that
h(x) = 1− nx

1 + e−x , x ∈ R, n ∈ N\{1}.

Then, the function h(x) has maximum at x = x̃, where x̃ is the unique negative root of the equation
ex + x + 1 = 0.

Moreover, limx→−∞ h(x) = 1, h(0) = 1, limx→+∞ h(x) = −∞, h(x∗) = −1, where x∗ is the unique
positive root of the equation (2− nx)ex + 2 = 0 for n ∈ N\{1}.

Proof. Since h′(x) = −n 1+e−x+xe−x

(1+e−x)2 , then, for extrema, we have h′(x) = 0. It gives that ex + x + 1 = 0.

This equation has only one real root, say x̃. With a brief analysis, it is shown that h′′(x̃) < 0. Hence
h(x) has maximum at x = x̃.

It is seen that the function x
1+e−x tends to 0 as x → −∞ and tends to ∞ as x → ∞. Then,

lim
x→−∞

h(x) = 1− n lim
x→−∞

x
1 + e−x = 1

h(0) = 1− n× 0 = 1

lim
x→+∞

h(x) = 1− n lim
x→+∞

x
1 + e−x = −∞

h(x∗) = 1− nx∗

1 + e−x∗ = 1− nx∗
nx∗

2
= −1 since 1 + e−x∗ =

nx∗

2
.

The graph of the function h(x) = 1− nx
1+e−x is given in Figure 1 for n = 3.

Figure 1. Graph of h(x) = 1− nx
1+e−x for n = 3.
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Let us define
λ∗ = (ex∗ + 1)n

where x∗ is the unique positive root of the equation (2− nx)ex + 2 = 0 for n ∈ N\{1}.
The nature of the real fixed points of fλ,n(x) is explored in the following theorem:

Theorem 2. Let fλ,n ∈ F .

(a) The fixed point 0 of the function fλ,n(x) is attracting for λ < 2n, rationally indifferent for λ = 2n and
repelling for λ > 2n.

(b) The fixed point xλ,n (negative) of the function fλ,n(x) is repelling for 1 < λ < 2n and the fixed point xλ,n
(positive) of the function fλ,n(x) is attracting for 2n < λ < λ∗, rationally indifferent for λ = λ∗ and
repelling for λ > λ∗.

Proof. We have

f ′λ,n(x) = λ
(1− nx)ex + 1
(ex + 1)n+1 (4)

(a) For fixed point 0, we obtain f ′λ,n(0) = λ
2n . Hence, 0 < f ′λ,n(0) < 1 for λ < 2n, f ′λ,n(0) = 1 for

λ = 2n and f ′λ,n(0) > 1 for λ > 2n. Therefore, it follows that the fixed point 0 of fλ,n(x) is
attracting for λ < 2n, rationally indifferent for λ = 2n and repelling for λ > 2n.

(b) For λ > 0 and x ∈ R, it is easily seen that fλ,n(x) > 0 for x > 0 and fλ,n(x) < 0 for x < 0.
Since xλ,n is a fixed point of fλ,n(x), then, by Equation (4),

f ′λ,n(x) = (exλ,n + 1)n (1− nxλ,n)exλ,n + 1
(exλ,n + 1)n+1 = 1− nxλ,n

1 + e−xλ,n
. (5)

The fixed point xλ,n of fλ,n(x) is negative for 1 < λ < 2n by Theorem 1. By Equation (5), it is seen
that, using Lemma 1, f ′λ,n(xλ,n) > 1 for 1 < λ < 2n. Hence, the fixed point xλ,n (negative) of the
function fλ,n(x) is repelling for 1 < λ < 2n.

The fixed point xλ,n of fλ,n(x) is positive for λ > 2n by Theorem 1. Similarly as above, applying
Lemma 1, we have −1 < f ′λ,n(xλ,n) < 1 for 2n < λ < λ∗, f ′λ,n(xλ,n) = −1 for λ = λ∗ and
f ′λ,n(xλ,n) < −1 for λ > λ∗. It follows that the fixed point xλ,n (positive) of fλ,n(x) is attracting
for 2n < λ < λ∗, rationally indifferent for λ = λ∗ and repelling for λ > λ∗.

This completes the proof of theorem.

For λ > λ∗, there exist periodic points of periods greater than or equal to 2. We discuss these
cases in the next section using numerical simulations.

3. Numerical Simulation of Real Periodic Points of fλ,n ∈ F and Their Nature

In this section, the numerical simulation of real periodic points of fλ,n ∈ F and their nature are
discussed since the theoretical computation of the periodic points of fλ,n(x) is significantly complicated.
For λ > λ∗, the function fλ,n(x) has periodic points of period greater than or equal to 2 in (0, ∞)

in addition to having one fixed point 0 for all λ and another nonzero fixed point xλ,n for λ > 1.

These periodic points are roots of f k
λ,n(x) ≡ λ

f k−1
λ,n (x)

(e f k−1
λ,n (x) + 1)n

= x. The periodic cycles of period

2, 4, 8, 16, . . . come into existence when parameter λ increases beyond λ∗. For n = 2, the periodic
points of period 2 start from λ ≈ 21.1.
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3.1. Numerical Computation of Real Periodic Points of Period 2, 4, 8 and Their Nature

Here, we numerically compute the real periodic points of period 2, 4 and 8 for n = 2, 3, 4, 5 and
their nature.

For n = 2, the following periodic points of period 2, 4, 8 of fλ,n(x) are computed numerically for
different values of parameter λ = 22, 33, 36.5 respectively:

• If λ = 22, then the 2-cycle periodic points p1 and p2 of fλ,n(x) are obtained as p1 ≈ 1.01017 and
p2 ≈ 1.58368. Then, f ′λ,n(p1) ≈ −0.75410 and f ′λ,n(p2) ≈ −1.03846. It follows that

| f ′λ,n(p1) f ′λ,n(p2)| ≈ 0.78310 < 1.

Hence, the periodic 2-cycle of f22,2(x) is attracting.

• If λ = 33, then the 4-cycle periodic points p1, p2, p3 and p4 of fλ,n(x) are found as p1 ≈ 0.66802,
p2 ≈ 2.53250, p3 ≈ 0.45284 and p4 ≈ 2.25765. Then, f ′λ,n(p1) ≈ 0.442755, f ′λ,n(p2) ≈ −0.66020,
f ′λ,n(p3) ≈ 2.225257 and f ′λ,n(p4) ≈ −0.91365. It follows that

| f ′λ,n(p1) f ′λ,n(p2) f ′λ,n(p3) f ′λ,n(p4)| ≈ 0.59429 < 1.

Consequently, the periodic 4-cycle of f33,2(x) is attracting.

• If λ = 36.5, then the 8-cycle periodic points p1, p2, p3, p4, p5, p6, p7 and p8 of fλ,n(x) are
determined as p1 ≈ 0.72695, p2 ≈ 2.81755, p3 ≈ 0.32694, p4 ≈ 2.09487, p5 ≈ 0.91843,
p6 ≈ 2.72820, p7 ≈ 0.37455 and p8 ≈ 2.26953. Then, f ′λ,n(p1) ≈ 0.077016, f ′λ,n(p2) ≈ −0.50097,
f ′λ,n(p3) ≈ 3.973252, f ′λ,n(p4) ≈ −1.19712, f ′λ,n(p5) ≈ −0.92929, f ′λ,n(p6) ≈ −0.56587,
f ′λ,n(p7) ≈ 3.36965 and f ′λ,n(p8) ≈ −0.99739. It follows that

| f ′λ,n(p1) f ′λ,n(p2) f ′λ,n(p3) f ′λ,n(p4) f ′λ,n(p5) f ′λ,n(p6) f ′λ,n(p7) f ′λ,n(p8)| ≈ 0.32434 < 1.

It gives that the periodic 8-cycle of f36.5,2(x) is attracting.

For n = 3, the following periodic points of period 2, 4, 8 of fλ,n(x) are determined for different
values of parameter λ = 46, 70, 75.5 respectively:

� If λ = 46, then the 2-cycle periodic points q1 and q2 of fλ,n(x) are obtained as q1 ≈ 0.73369 and
q2 ≈ 1.15201. Then, f ′λ,n(q1) ≈ −0.76478 and f ′λ,n(q2) ≈ −1.03566. It follows that

| f ′λ,n(q1) f ′λ,n(q2)| ≈ 0.79205 < 1.

Therefore, the periodic 2-cycle of f46,3(x) is attracting.

� If λ = 70, then the 4-cycle periodic points q1, q2, q3 and q4 of fλ,n(x) are found as q1 ≈ 0.30215,
q2 ≈ 1.62401, q3 ≈ 0.50745 and q4 ≈ 1.88509. Then, f ′λ,n(q1) ≈ 2.5735, f ′λ,n(q2) ≈ −0.95922,
f ′λ,n(q3) ≈ 0.18476 and f ′λ,n(q4) ≈ −0.6267. It follows that

| f ′λ,n(q1) f ′λ,n(q2) f ′λ,n(q3) f ′λ,n(q4)| ≈ 0.28584 < 1.

Hence, the periodic 4-cycle of f70,3(x) is attracting.

� If λ = 75.5, then the 8-cycle periodic points q1, q2, q3, q4, q5, q6, q7 and q8 of fλ,n(x) are determined
as q1 ≈ 0.23708, q2 ≈ 1.53525, q3 ≈ 0.64523, q4 ≈ 1.98419, q5 ≈ 0.26455, q6 ≈ 1.63556, q7 ≈ 0.53548
and q8 ≈ 2.03524. Then, f ′λ,n(q1) ≈ 3.90099, f ′λ,n(q2) ≈ −1.17236, f ′λ,n(q3) ≈ −0.82934,
f ′λ,n(q4) ≈ −0.56440, f ′λ,n(q5) ≈ 3.40632, f ′λ,n(q6) ≈ −1.01707, f ′λ,n(q7) ≈ −0.05044 and
f ′λ,n(q8) ≈ −0.51257. It follows that

| f ′λ,n(q1) f ′λ,n(q2) f ′λ,n(q3) f ′λ,n(q4) f ′λ,n(q5) f ′λ,n(q6) f ′λ,n(q7) f ′λ,n(q8)| ≈ 0.19175 < 1.
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It shows that the periodic 8-cycle of f75.5,3(x) is attracting.

For n = 4, the following periodic points of period 2, 4, 8 of fλ,n(x) are simulated numerically for
different values of parameter λ = 110, 150, 157 respectively:

◦ If λ = 110, then the 2-cycle periodic points r1 and r2 of fλ,n(x) are obtained as r1 ≈ 0.0.43129 and
r2 ≈ 1.14116. Then, f ′λ,n(r1) ≈ −0.12111 and f ′λ,n(r2) ≈ −0.92955. It follows that

| f ′λ,n(r1) f ′λ,n(r2)| ≈ 0.11258 < 1.

It gives that the periodic 2-cycle of f110,4(x) is attracting.

◦ If λ = 150, then the 4-cycle periodic points r1, r2, r3 and r4 of fλ,n(x) are found as r1 ≈ 0.21480,
r2 ≈ 1.28064, r3 ≈ 0.42942 and r4 ≈ 1.55642. Then, f ′λ,n(r1) ≈ 3.12683, f ′λ,n(r2) ≈ −1.00887,
f ′λ,n(r3) ≈ −0.14664 and f ′λ,n(r4) ≈ −0.57154. It follows that

| f ′λ,n(r1) f ′λ,n(r2) f ′λ,n(r3) f ′λ,n(r4)| ≈ 0.26439 < 1.

Hence, the periodic 4-cycle of f150,4(x) is attracting.
◦ If λ = 157, then the 8-cycle periodic points r1, r2, r3, r4, r5, r6, r7 and r8 of fλ,n(x) are determined

as r1 ≈ 0.42190, r2 ≈ 1.62991, r3 ≈ 0.18441, r4 ≈ 1.23029, r5 ≈ 0.50506, r6 ≈ 1.59082,
r7 ≈ 0.20503 and r8 ≈ 1.30738. Then, f ′λ,n(r1) ≈ −0.07420, f ′λ,n(r2) ≈ −0.50363, f ′λ,n(r3) ≈ 3.9848,
f ′λ,n(r4) ≈ −1.15288, f ′λ,n(r5) ≈ −0.81868, f ′λ,n(r6) ≈ −0.55243, f ′λ,n(r7) ≈ 3.49452 and
f ′λ,n(r8) ≈ −1.00556. It follows that

| f ′λ,n(r1) f ′λ,n(r2) f ′λ,n(r3) f ′λ,n(r4) f ′λ,n(r5) f ′λ,n(r6) f ′λ,n(r7) f ′λ,n(r8)| ≈ 0.27283 < 1.

Therefore, it is shown that the periodic 8-cycle of f157,4(x) is attracting.

For n = 5, the following periodic points of period 2, 4, 8 of fλ,n(x) are computed for different
values of parameter λ = 250, 300, 326 respectively:

∗ If λ = 250, then the 2-cycle periodic points s1 and s2 of fλ,n(x) are obtained as s1 ≈ 0.30730 and
s2 ≈ 1.04996. Then, f ′λ,n(s1) ≈ 0.39167 and f ′λ,n(s2) ≈ −0.84551. It follows that

| f ′λ,n(s1) f ′λ,n(s2)| ≈ 0.33116 < 1.

Therefore, the periodic 2-cycle of f250,5(x) is attracting.

∗ If λ = 300, then the 4-cycle periodic points s1, s2, s3 and s4 of fλ,n(x) are found as s1 ≈ 0.32153,
s2 ≈ 1.26519, s3 ≈ 0.19598 and s4 ≈ 1.09897. Then, f ′λ,n(s1) ≈ 0.26777, f ′λ,n(s2) ≈ −0.60932,
f ′λ,n(s3) ≈ 2.59193 and f ′λ,n(s4) ≈ −0.91327. It follows that

| f ′λ,n(s1) f ′λ,n(s2) f ′λ,n(s3) f ′λ,n(s4)| ≈ 0.38622 < 1.

Hence, the periodic 4-cycle of f300,5(x) is attracting.

∗ If λ = 326, then the 8-cycle periodic points s1, s2, s3, s4, s5, s6, s7 and s8 of fλ,n(x) are determined
as s1 ≈ 0.42288, s2 ≈ 1.33958, s3 ≈ 0.16831, s4 ≈ 1.10601, s5 ≈ 0.34247, s6 ≈ 1.37777, s7 ≈ 0.14871
and s8 ≈ 1.03027. Then, f ′λ,n(s1) ≈ −0.87890, f ′λ,n(s2) ≈ −0.54122, f ′λ,n(s3) ≈ 3.57407,
f ′λ,n(s4) ≈ −0.97699, f ′λ,n(s5) ≈ −0.00549, f ′λ,n(s6) ≈ −0.48589, f ′λ,n(s7) ≈ 4.16123 and
f ′λ,n(s8) ≈ −1.14778. It follows that

| f ′λ,n(s1) f ′λ,n(s2) f ′λ,n(s3) f ′λ,n(s4) f ′λ,n(s5) f ′λ,n(s6) f ′λ,n(s7) f ′λ,n(s8)| ≈ 0.02115 < 1.

Therefore, it is shown that the periodic 8-cycle of f326,5(x) is attracting.
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3.2. Numerical Computation of Real Periodic Points of Period 3 and Their Nature

We numerically compute the real periodic points of period 3 for n = 2, 3, 4, 5 corresponding to
λ = 54, 108, 229, 479 respectively and their nature.

• For n = 2 and λ = 54, the 3-cycle periodic points p1, p2 and p3 of fλ,n(x) are determined as
p1 ≈ 0.68468, p2 ≈ 4.15465, and p3 ≈ 0.05354. Then, f ′λ,n(p1) ≈ 0.54416, f ′λ,n(p2) ≈ −0.09255 and
f ′λ,n(p3) ≈ 12.08398. It follows that

| f ′λ,n(p1) f ′λ,n(p2) f ′λ,n(p3)| ≈ 0.60855 < 1.

Consequently, the periodic 3-cycle of f54,2(x) is attracting.

• For n = 3 and λ = 108, the 3-cycle periodic points q1, q2 and q3 of fλ,n(x) are computed as
q1 ≈ 0.04340, q2 ≈ 0.54863, and q3 ≈ 2.90935. Then, f ′λ,n(q1) ≈ −0.10856, f ′λ,n(q2) ≈ 11.79935 and
f ′λ,n(q3) ≈ −0.22903. It follows that

| f ′λ,n(q1) f ′λ,n(q2) f ′λ,n(q3)| ≈ 0.29338 < 1.

Hence, the periodic 3-cycle of f108,3(x) is attracting.

• For n = 4 and λ = 229, the 3-cycle periodic points r1, r2 and r3 of fλ,n(x) are calculated as
r1 ≈ 0.02880, r2 ≈ 0.38893 and r3 ≈ 2.37205. Then, f ′λ,n(r1) ≈ 12.71683, f ′λ,n(r2) ≈ 0.44378 and
f ′λ,n(r3) ≈ −0.09322. It follows that

| f ′λ,n(r1) f ′λ,n(r2) f ′λ,n(r3)| ≈ 0.52608 < 1.

It shows that the periodic 3-cycle of f229,4(x) is attracting.

• For n = 5 and λ = 479, the 3-cycle periodic points s1, s2 and s3 of fλ,n(x) are simulated as
s1 ≈ 0.30982, s2 ≈ 2.01355 and s3 ≈ 0.02187. Then, f ′λ,n(s1) ≈ 0.69152, f ′λ,n(s2) ≈ −0.08560 and
f ′λ,n(s3) ≈ 13.38513. It follows that

| f ′λ,n(s1) f ′λ,n(s2) f ′λ,n(s3)| ≈ 0.79232 < 1.

It gives that the periodic 3-cycle of f479,5(x) is attracting.

We can easily observe the existence of periodic points of periods greater than or equal to 2 in the
next section through bifurcation diagrams.

4. Bifurcation Diagrams and Route to Chaos

Using graphical simulation, we explore the dynamical behaviour of fλ,n ∈ F through plots of
bifurcation diagrams in this section. It is known that if the period-doubling occurs in the real dynamics
of function, then it is a route to chaos in the real dynamics of function and period 3 implies chaos [1].
From Theorem 2, it is observed that the nature of the fixed points of fλ,n(x) changes when parameter
λ crosses a certain parameter value. Further, if the parameter λ increases, then the periodic points of
period 2 or more occur in the dynamical system. It can be seen by bifurcation diagrams in Figure 2 for
n = 2, 3, 4, 5 with 1 ≤ λ ≤ 90, 1 ≤ λ ≤ 150, 1 ≤ λ ≤ 300 and 1 ≤ λ ≤ 550 respectively. It is easily seen
that the period-doubling occurs in these bifurcation diagrams. Moreover, period 3 is also visible in
these bifurcation diagrams.
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(a) (b)

(c) (d)

Figure 2. Bifrucation diagrams for (a) n = 2; (b) n = 3; (c) n = 4; (d) n = 5.

In bifurcation diagrams (Figure 2a–d), it is observed that when n increases from 2 to 5, then the
period-doubling happens for larger values of parameter λ. The occurrence of periodic-doubling
in the bifurcation diagrams leads to a route to chaos in the real dynamics of fλ,n ∈ F .
Moreover, white regions represent the appearance of periodic windows inside bifurcation diagrams. It
is also seen that a periodic 3-window also occurs in the bifurcation diagrams of fλ,n(x) for n = 2, 3, 4, 5
corresponding to λ = 54, 108, 229, 479 respectively which also represents chaotic behaviour in the
dynamical system. After this periodic 3-window, a new 6-period cycle comes into existence. After that,
we enter into a very complicated dynamics region.

In the next section, Lyapunov exponents are computed corresponding to values of parameter λ

for which period-doubling happens in the bifurcation diagrams.

5. Lyapunov Exponents

To quantify the chaos, the Lyapunov exponent of the function fλ,n ∈ F needs to be computed
which is the main key for the chaotic systems. It is known that if the Lyapunov exponent is positive,
then it represents chaotic behaviour in the dynamical system [1]. Using Formula (1), the Lyapunov
exponent of the function fλ,n ∈ F is computed as

L = lim
k→∞

1
k

k−1

∑
i=0

ln
[

λ
|(1− nxi)exi + 1|

(exi + 1)n+1

]
.



Math. Comput. Appl. 2018, 23, 7 9 of 11

For our computation, we choose x0 = 0.5 and k = 5000. The computed values of Lyapunov
exponents are demonstrated in Figure 3 for n = 2, 3, 4, 5 with 30 ≤ λ ≤ 90, 60 ≤ λ ≤ 150,
140 ≤ λ ≤ 300 and 300 ≤ λ ≤ 550 respectively. From these figures, it is observed that the Lyapunov
exponents are positive for certain ranges of parameter λ which exhibits sensitive dependence on the
initial conditions. Hence, the chaotic behaviour exists in the real dynamics of fλ,n ∈ F .

(a) (b)

(c) (d)

Figure 3. Lyapunov exponents for (a) n = 2; (b) n = 3; (c) n = 4; (d) n = 5.

The bifurcation diagrams in Figure 2 and the corresponding Lyapunov exponents L in Figure 3, for
intervals of parameter λ, are represented as follows: when Lyapunov exponents are positive, then the
bifurcation diagrams have dark regions which show chaotic behaviour in the real dynamics fλ,n(x) for
certain ranges of parameter values. Moreover, for some ranges, Lyapunov exponents are negative and
bifurcation diagrams have white regions; this shows that the chaotic regions break up into non-chaotic
temporarily and then return to being chaotic.

6. Conclusions

In the present paper, the bifurcation and chaotic behaviour have been determined in the real
dynamics of the two-parameter family of transcendental functions; this family of functions arises from
the generating function of the generalized Apostol-type polynomials. The real fixed points of these
transcendental functions and their stability have been obtained analytically while the periodic points
of these functions have been computed numerically. The existence of chaotic behaviour has been
observed by periodic doubling and it has been exhibited by bifurcation diagrams. Chaos in the real
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dynamics has been quantified by computing positive Lyapunov exponents. The following are possible
future research directions: Such results could also be obtained for other kinds of generating functions.
Moreover, such results could be extended for a family of functions involving three-parameter values
as well as for a family of functions in two or more dimensions.
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