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Abstract: The quest for an efficient nature-inspired optimization technique has continued over the
last few decades. In this paper, a hybrid nature-inspired optimization technique has been proposed.
The hybrid algorithm has been constructed using Mean Grey Wolf Optimizer (MGWO) and Whale
Optimizer Algorithm (WOA). We have utilized the spiral equation of Whale Optimizer Algorithm
for two procedures in the Hybrid Approach GWO (HAGWO) algorithm: (i) firstly, we used the
spiral equation in Grey Wolf Optimizer Algorithm for balance between the exploitation and the
exploration process in the new hybrid approach; and (ii) secondly, we also applied this equation
in the whole population in order to refrain from the premature convergence and trapping in local
minima. The feasibility and effectiveness of the hybrid algorithm have been tested by solving some
standard benchmarks, XOR, Baloon, Iris, Breast Cancer, Welded Beam Design, Pressure Vessel Design
problems and comparing the results with those obtained through other metaheuristics. The solutions
prove that the newly existing hybrid variant has higher stronger stability, faster convergence rate
and computational accuracy than other nature-inspired metaheuristics on the maximum number of
problems and can successfully resolve the function of constrained nonlinear optimization in reality.

Keywords: function optimization; heuristic hybridization; exploration; exploitation; Whale and
Mean Grey Wolf Optimizer

1. Introduction

Recently, many metaheuristic algorithms have been developed by researchers and scientists
in different fields. These include Differential Evolution (DE), Particle Swarm Optimization (PSO),
Genetic Algorithm (GA), Differential Evolution (DE), Ant Colony Optimization (ACO), Bat Algorithm
(BA), Biogeographically Based Optimization (BBO), Firefly Algorithm (FA), Sine Cosine Algorithm
(SCA), Robust Optimization (RO), Grey Wolf Optimizer (GWO), Whale Optimizer Algorithm (WOA),
Mean Grey Wolf Optimizer (MGWO) and many others. The common goal of these algorithms
is to improve quality of solutions, stability and convergence performance. In order to do this,
nature-inspired techniques should be equipped with exploration and exploitation.

Exploitation is the convergence ability to the most excellent solution of the problem near a good
optimal solution and exploration is the capability of an algorithm to locate whole parts of a problem
search space. Finally, the goal of all metaheuristics is to balance the capability of exploration and
exploitation in order to search for the best global optimal solution in the search space. The process
continues over a number of generations (iterative process) till the solutions are found to be most
suitable for the environment.
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GWO has recently been developed and is metaheuristics-inspired from the hunting mechanism
and leadership hierarchy of grey wolves in nature and has been successfully applied for
solving optimizing key values in the cryptography algorithms [1], feature subset selection [2],
time forecasting [3], optimal power flow problem [4], economic dispatch problems [5], flow shop
scheduling problem [6] and optimal design of double later grids [7]. Several algorithms have also been
developed to improve the convergence performance of GWO that includes parallelized GWO [8,9],
a hybrid version of GWO with PSO [10] and binary GWO [11].

The article is organized as follows. In Sections 1 and 2 in this text, we introduce the introductory
and related works of the old and new meta-heuristics. Sections 3 and 4 describe the mathematical
model of WOA and MGWO. A new hybrid approach is fully described in Section 5. The details of
parameter settings and tested benchmark functions are presented in Sections 6 and 7. The performance
of the new hybrid existing variant is verified in Section 8. Section 9 describes the analysis of the
meta-heuristics. In order to show the performance of the developed variant, twenty three standard
benchmarks, four bio-medical sciences, Welded Beam Design, Pressure Vessel Design problems are
studied in Sections 10-13. Finally, some conclusions are derived in Section 14.

2. Related Works

Metaheuristic global optimization techniques are stochastic variants that have become the most
popular solutions for solving real life applications and global optimization functions in the last few
decades; they have the strong robustness, flexibility, characteristics of simplicity, and so on. Some of
the most famous of these algorithms are BA [12], GA [13], Harmony Search (HS) [14], ACO [15],
Cuckoo Search (CS) [16], Bacterial Foraging Optimization (BFO) [17], PSO [18], Artificial Bee Colony
(ABC) [19], Black Hole (BH) [20], One Half Personal Best Position Particle Swarm Optimizations
(OHGBPPSO) [21], Half Mean Particle Swarm Optimization Algorithm (HMPSO) [22], Personal Best
Position Particle Swarm Optimization (PBPPSO) [23], Hybrid Particle Swarm Optimization
(HPSO) [24], Hybrid MGBPSO-GSA [25] and MGWO [26], Gravitational Search Algorithm (GSA) [27],
Artificial Neural Network (ANN) [28], SCA [29], Adaptive Group Search Optimization (AGSO) [30],
Ant Lion Optimizer (ALO) [31], Biogeography Based Optimization (BBO) [32], Moth Flame Optimizer
(MFO) [33], Krill Herd Algorithm (KHA) [34], Grasshopper Optimization Algorithm (GOA) [35],
Multi-Verse Optimizer (MVO) [36], Black-Hole-Based Optimization (BHBO) [37], Dragonfly Algorithm
(DA) [38], HPSOGWO [39], MOSCA [40] and so forth.

Bentouati et al. [41] presented a new power system planning strategy by combining Pattern Search
(PS) algorithm with WOA. The existing variant has been carried out on the IEEE 30-bus test system
considering several objective functions, such as voltage profile improvement, generating fuel cost,
emission reduction and minimization of total power losses which were also verified. The obtained
numerical and statistical solutions are verified with recently published population-based metaheuristic
variants. Simulation solutions clearly conceal the speed and effectiveness of the presented approach
for solving the OPF function.

A new hybrid approach has been developed by [42] called Hybrid GWOSCA which is
a combination of GWO used for exploitation phase and SCA for the exploration phase in an uncertain
environment. The position and convergence performance of the grey wolf (alpha) is improved
using position update equations of SCA. Experimental solutions obtained with existing approaches
are verified with other metaheuristics approaches. On the basis of the numerical and statistical
experimental results, the proposed existing hybrid algorithm can highly be effective in solving standard
test functions and recent real life problems with or without constrained and unknown search space.

Tawhid and Ali [43] presented a new hybrid approach between the GWO and the GA variant
in order to minimize a simplified model of the energy function of the molecule. This research used
three different procedures: (i) they used the GWO variant to balance between the exploitation and
the exploration process in the proposed variant; (ii) they used the dimensionality reduction and the
population partitioning processes by dividing the population into sub-populations and using the
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arithmetical crossover operator in each sub-population in order to increase the diversity of the search
in the algorithm; (iii) they used the GA operator in the whole population in order to refrain from
premature convergence and trapping in local minima. The performance of the new hybrid algorithm
has been tested on several standard test functions and performance of the algorithm has been compared
with different metaheuristics. Experimental solutions prove that the hybrid approach is promising
and competent for searching the near global optimal minimum value of the molecular energy function
faster than other meta-heuristics.

Emary et al. [44] used three modern techniques, namely Antlion Optimizer, MFO and GWO in
domain of machine learning for feature selection. Solutions on a set of standard machine learning data
using a set of assessment indicators proved advances in optimization approach performance when
using variational repeated periods of declined exploration rates over using systematically decreased
exploration rates.

Emary et al. [45] proposed a variant of the recently introduced WOA based on adaptive switching
of random walk per individual search agent. The basic approach stochastically switches amid the
two random walks at each iteration regardless of the search member performance and regardless
of the fitness of terrain around it and in which a newly existing approach called Adaptive Whale
Optimization Algorithm (AWOA), an adaptive switching amid the two random walks is recommended
based on the agent’s performance. The proposed AWOA was benchmarked using 29 standard test
functions with uni-modal, multi-modal, and composite test functions. Performance over such functions
proves that the capability of the proposed variant outperforms the original WOA. The performance has
been tested on the 29 standard functions and its convergence performance over such functions proves
the capability of the newly existing approach to outperform the basic Whale Optimizer Algorithm.

In this paper, we propose a new hybrid whale optimizer algorithm and mean grey wolf optimizer
algorithm in order to solve the standard benchmark, XOR, Baloon, Iris, Breast Cancer, Welded Beam
Design and Pressure Vessel Design functions. We call the proposed algorithm Whale Optimizer
Algorithm and Mean Grey Wolf Optimizer Algorithm (HAGWO). The proposed HAGWO algorithm
is based on two procedures. In the first procedure, we used the spiral equation in GWO algorithm
for balance between the exploitation and the exploration process in the new hybrid approach. In the
second procedure, we also apply this equation in the whole population in order to refrain from the
premature convergence and trapping in local minima. The partitioning idea can improve the diversity
search of the proposed variant. The combination between these two procedures accelerates the search
and helps the algorithm to reach the optimal or near optimal solution in reasonable time.

3. Whale Optimizer Algorithm (WOA)

Mirjalili and Lewis [46] proposed a new nature-inspired technique, namely, Whale Optimizer
Algorithm (WOA), which mimics the social behavior of humpback whales. The algorithm is inspired
by the bubble-net hunting strategy.

The mathematical model for WOA is given as follows:

Encircling prey: Whale encircles the small fishes (prey) then modifies its position towards the
global optimum solution over the course of increasing number of generation from start to a maximum
number of generations.

Ezlc?f—ﬁtl (1)
X1 =2, — a.d @)
The coefficient 4 and ¢ are calculated as follows:
4 =2ar—a 3)
¢ =2r @)
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where t is the current time, dand ¢ are coefficient vectors, Xx the position vector of the best solution
obtained so far, X the position vector, r is random vector in [0,1], “| |”
element by element multiplication.

Bubble-net attacking method: In order to reach a mathematical equation for the bubble net
behavior of whales, two separate methods are as follows:

the absolute value and an

1.  Shrinking encircling mechanism: this method is used by linearly decreasing the value of
— —
a ~ [0,2]. Random value for a vector a ~ [—1,1].

2. Spiral updating position: position update amid whale and small fishes (prey) that showed a
helix-shaped movement is given as follows:

—/ %
M= d " cos(2ntl) + x ®)

—/
where d = ‘? * —?‘ and indicates the distance of the ith whale to the prey, b is a constant for

defining the shape of the logarithmic spiral, [ is a random number in [—1, 1].
In addition, if probability is 50%, then positions of whales are calculated as follows:

. {?;—2.3 if p<05
Xt+1 = § —/ Lk (6)
d e’ cos(2mtl) + x; if p>05
where p is random number in [0,1]. In addition to the bubble-net method, the humpback whales search
for prey randomly.
In this mechanism, the whales search for small fishes (prey) randomly and change their positions
according the position of other search agents.
In order to force the whale to move away from the reference whale, we use the d>1lord <1
It is mathematically calculated as follows:

- - = —

d=|C.Xpgug — Xt @)
— — - 7

Xt41 = Xpgng — .4 ®)

- . .
where x,,,4 is a random position vector (a random whale) chosen from the current population.

4. Mean Grey Wolf Optimizer (MGWO)

A modified variant of Grey Wolf Optimization Algorithm, namely Mean Grey Wolf Optimization
algorithm has been developed by Singh and Singh [26] by modifying the position updated (encircling
behavior) equations of Grey Wolf Optimization Algorithm. This variant has been developed for the
purpose of improving the exploration and exploitation performance of the basic GWO algorithm. It is
also inspired by the hunting mechanism and leadership hierarchy of grey wolves in nature.

The Mean Grey Wolf Optimization (MGWO) approach is outlined as:

The encircling behavior of each agent of the crowd is calculated by the following
mathematical equations:

— t t
d=|cx,—puxx ©)
t+1 t -
I o =x,—a.d (10)

p

The vectors a and ¢ are formulate as below:

N
a

=2l.n (11)
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? = 2.}’2 (12)

where t indicates the current iteration, 4 and ¢ are coefficient vectors, 71,1y are random vectors in
[0,1], ?p is the vector of the prey, and ¥ indicates the position vector of a grey wolf.

Hunting: In order to mathematically simulate hunting behavior, we suppose that the alpha,
beta and delta have better knowledge about the potential location of the prey. The following equations
are developed in this regard.

— — —
dy = ?1.?11—]/[)(?, dﬁzl?z.xﬁ—yx;, d,szl?g,.?g—‘uX} (13)
— — —
X1=xXe— a1.(da), X2 = xp— ar.(dg), X3= 25— a3.(dy) (14)

(15)

Search for prey and attacking prey: The 4 is random value in the gap [—2a,2a]. When random
value ’;‘ < 1 the wolves are forced to attack the prey. Searching for prey is the exploration ability and

attacking the prey is the exploitation ability. The arbitrary values of 4 are utilized to force the search
to move away from the prey.

When ‘;’ > 1, the members of the population are enforced to diverge from the prey.

5. Hybrid Algorithm

Several scientists/researchers have been developing several hybrid nature-inspired approaches
for improving the exploration and exploitation performance of existing algorithms. According to
Talbi [47], two variants can be hybridized in low-level or high-level with relay or coevolutionary
techniques as heterogeneous or homogeneous.

In this text, we hybridize Whale Optimizer Algorithm with Mean Grey Wolf Optimizer algorithm
using low-level coevolutionary mixed hybrid. The hybrid is low-level because we merge the
functionality of both approaches. It is co-evolutionary because we do not use both variant one after
another. In other words, they run in parallel. It is mixed because there are two different approaches that
are involved to generate a final optimal solution of the test benchmark and real life problems. On behalf
of this modification, we improve the capability of exploitation in Mean Grey Wolf Optimizer with the
capability of exploration in Whale Optimizer Algorithm to show the strengths of both approaches.

Under this research, the Whale Optimizer Algorithm is used for the exploration phase as it uses
logarithmic spiral problems, so it covers broader areas in uncertain search spaces. Since both of the
variants are randomization approaches, we use unknown term search space during the computation
over the course of iteration from starting to maximum iteration limit. Exploration phase means the
ability of the variant to try out large numbers of feasible solutions. Position of grey wolf that is liable
for finding the global optimum solution of the problem is replaced with the position of whale that is
equivalent to position of grey wolf but highly efficient to move a solution towards an optimal one.
Whale Optimizer Algorithm directs the wolves towards an optimal value and reduces computational
time. We know that that Grey Wolf Optimizer is a recognized approach that exploits the best possible
solution from its unknown search space. Therefore, mixture of best characteristic (exploitation with
Mean Grey Wolf Optimizer and exploration with Whale Optimizer Algorithm) guarantees to obtain
best possible global optimal solution of the real life and standard problems that also avoid local
stagnation or local optima problems. Hybrid WOA-MGWO merges the best strength of both Mean
Grey Wolf Optimizer in exploitation and Whale Optimizer Algorithm in the exploration phase towards
the targeted optimum solution.
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Mathematical model for HAGWO is given as follows:

In HAGWO variant, the position of alpha, beta and delta have been updated using spiral updating
equation of whale optimizer algorithm for the purpose of improving the convergence performance
of MGWO algorithm. The rest of the operations of Mean GWO and WOA algorithm are the same.
The following spiral and hunting position update equations are developed in this regard.

—/
M=puxdecos(2nl) + ¥, (16)
— — —
d,;(:‘?y?a—“uXM, dﬁ:‘?z.?ﬁ—“uXM, ng‘?g.})(s—]/lXM (17)
=/ — — .
where d = |x * —x ‘ and indicates the distance of the ith whale to the prey, b is a constant for defining
- = —

the shape of the logarithmic spiral, d ., d g and d s are position of three best search agents, y is a mean
and [ is a random number in [—1, 1].

Pseudo Code of HAGWO

Initialize the population
Find the fitness of each search member
X # is the best search member
While (t < max. number of generations)
For every search member
Update a, 7, ?,l and p
if (p < 0.5)
if ()2‘ <1

update the position of the current search member by the Equation (1)
else if ((7’ > 1)

select a random search member (Ymnd)

update the position of the current search member by the Equation (8)
end if
else if (p > 0.5)

update the position of the present search member by using Equations (16) and (17)
end if
end for
Find the fitness of all search members

L= = —

Update x*,d,x,dﬁ and d
t=t+1
end while

—
return x *

6. Parameter Setting

Computational Experiments were performed to fine tune the values of various parameters for its
best performance. For that purpose, all measured values of parameters viz. number of search agents
~20 and number of generations ~[5, 5000], were tested.

7. Test Problems

It is often found that the evaluation of a newly developed approach is evaluated only on a standard
benchmark function. However, in this article we consider a test of Unimodal, Multimodal and fixed
dimension multimodal functions with varying difficulty levels and problem sizes. The capability of the
newly hybrid variant, Particle Swarm Optimization, Grey Wolf Optimizer, Whale Optimizer algorithm
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and Mean Grey Wolf Optimizer has been verified on these three types of function sets. The exact
details of these test problems are given in Tables 1-3.

Table 1. Unimodal benchmark functions.

Function Dim Range fnin Graph

Parameter space

n 5
F(x)= Y x? 30 [~100,100] 0 -
i=1 T
% -100 400 X
Parameter space
12000
10000
- 8000
n n :: 6000
RB(x) = Y |xi| + IT|x] 30 [-10,10] 0 -
i=1 i=1 F 4
2000
0.
100
%, 100 oo "
Parameter space
n i 2 ::
FBx) =Y (X x) 30 [~100,100] 0 -
i=1 j—1 i
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Table 1. Cont.
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Function Dim Range Janin Graph
Filx) = B :
maxi{[w 1< i <n) 30 [—100,100] 0 :
%, 100 100 X
Parameter space
F5(x) = :
n=1 2 30 ~30,30 0 -
zl [100(xi+1 —x2) 4 (x; — 1)2] [ I 7
=
X -2000 200 %
Parameter space
0 B
Fo(x) = ¥ ([x; +05])° 30 [~100,100] 0 -
i=1 &
% 40" am X
Parameter space
.
34
:725
n ; 2
Fr(x) = ¥ ix} +rand[0,1) 30 [—1.28,1.28] 0 R
i=1 £
1
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Table 2. Multimodal benchmark functions.

Function Dim Range fmin Graph
Parameter space
1000 . ﬂ
n 5
F(x) = ¥ —x; sin(\/|xi|) 30 [—500,500] 4189829 x 5
i=1 g
o0, .-
a0
:: B0
Fy(x) = Y [x} — 10 cos(27r;) + 10] 30 [-5.12,5.12] 0 < sl
i=1 =

20




Math. Comput. Appl. 2018, 23, 14

Table 2. Cont.
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Function Dim Range fmin Graph
Parameter space
n
Fip(x) = —20exp <—O.21 / %'): x?)
; i=1 30 [—32,32] 0
—exp (% '21 cos(27rx,)> +20+e
i=
K, 20 0 %
Parameter space

0

e

— 100

Fi1(x) = qog Ly X2 — InI cos(\%) +1 30 [—600,600] 0 e
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Function Dim Range fmin Graph
Parameter space
— = f0sintru) £ 5 (v - 1)2 Y 2
Fp(x) = 7410sin(my;) + .):1 (yi —1)7|1+10sin”(7tyi1) + (Yn-1)
i—
n -
+ Y u(x;,10,100,4) <
i=1 £
yi =1+ X : 30 [—50,50] 0 g
k(xi—a)™  x;>a
u(xi/arkrm) =<0 —a<x<a
k(—x;j—a)" x; < —a
Pararmeter space
189+
n
Fis(x) = 0.1{sin2(37'[xi) + % (x = 1)?[14sin?(3rx; +1)] + (x5 — 1)*[1+ sin? (2712, )| }
| i1 30 [—50,50] 0
+ Y u(x;,5,100,4

i=1
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Table 3. Fixed-dimension multimodal benchmark functions.

Function

Dim Range

f min

Graph

25

Fis(x) = {550+ & —
14() <500 jgl YA, (Xi—uij

2
u ) X1 (biz+h,‘X2)
b b bixitag

Fig(x) = 4x} —2.1xf + 12§
+x1%p — 4x§ + 4x§

4

2

[_515]

[_515]

-1
)6> 2 [-6565] 1

0.00030

—1.0316

W o= o= oo
58 &5 3
38 & 8

FIACK, oy 2%y,

FIS(x, oy %)

FI708, %, %)

w
=1
=}

S
R =}
4 3 3

w

Farameter space

% 100" 100

Parameter space

xiot : ‘

Parameter space

@
=
8

@
2
=1

=
=]
8

w
=]
=i
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Table 3. Cont.
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Function Dim Range  f ..

Graph

2
Fr(x) = (xa— fhd+ 2 —6) 2 [-55] 0398
+10(1 - 8%{) cosxy +10

19 — 14x; + 342
fis() = [l Tl Uz( v +323 ﬂ

30+ (2x7 — 3x7)2

2 [-22] 3
o 18 — 32x; + 1223
+48x; — 36x1x7 +27x3

X

Lo

4 2
Fio(x) = ~Leew (—4 aj (x]- - pl-j> ) 3 [13] 386
=

FIB(x, %, 2%, % )

FI8(x 1oy g0 %y )

002
-0.04
008
-008
0.1
012
014
018
018
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Parameter space

Parameter space
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Table 3. Cont.

Function Dim Range  f .. Graph

Parameter space

4 6 2 :jw
Fao(x) = = ¥ crexp( = X a5 — py) 6 [0 332 -
i=1 j=1 & o
0.16
0.18
EI;
5
o
1)
%y § 5 X
5 -1 :: E
Fa() =~ L [(x—a)(X—a)" +¢i] 4 [10] -10152 -
i= I
Parameter space
1
Fy(x) = — Zl[(X*“i)(X*ui)TJFCi] 4 [010] 104028 -
= §




Math. Comput. Appl. 2018, 23,14 15 of 32

Table 3. Cont.

Function Dim Range  f... Graph

Parameter space

F230, 1y 4 %,)

Bs(x) = - L [(X—a) (X —a)" +¢i] 4 [010] —10.5363

8. The Performance of the HAGWO Algorithm

The performance of several population-based metaheuristics has been verify with the newly
existing variant in order to test the stability, convergence rate and computational accuracy on the
number of iterations in Figure 1. We have taken the similar parameter constants (in Section 6) for
the entire variants to make a valid comparison. We illustrate the results in Figure 1 by plotting the
worst optimal values of problem values against the number of iterations for a simplified model of the
molecule with a distinct size from 20 to 100 dimensions.

The figure shows that the standard test function values quickly decrease as the number of
generations increase for newly existing variant solutions than those of the other metaheuristics.
In Figure 1, HAGWO, PSO, GWO, WOA and MGWO variants suffer from slow convergence and get
stuck in the partitioning procedure; nevertheless, many local minima and invoking the Mean Grey
Wolf variant in the newly existing hybrid algorithm avoid trapping in local minima and accelerate
the search.

Objective space

=

Best score obtained so far
Best score obtained so far

=N

2 4 6 8 10 12 1 16 18 2
Iteration Iteration

(a) (b)

Figure 1. Cont.
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Objective space

Objective space
T T T T 50
——GW0
i 50
LN —PS0 ||
WOA _ 50
_ —— HAGWO 50 2
E MGWO 5
o ] 40
T o A 0 £
H s ——— }
£ z
< : ki
: 8 30 g . 2
el : ) B 1 |
2 : % ——GWO : : 0
& : 20 a ——FPS0 : :
g 1wk WOA R RSN SRR S T ST S
ol : 1 10 ——HAGWO : : 10
: MGWO : E
L I i i i i i i ; n Wl
5 M 15 20 25 30 35 4 45 50 5 60 10 | 0 40 50 60 0 80
Iteration Iteration
(o) (d)

60

50

40

Best score obtained so far

S S pmmroy RN T, SR AR S O
—PSs0 :
n WoA ;
10 [ o [ R . e W
i MGWO :
1I[I ZI[I 3h 4‘[I 5‘[I ﬁI[I T‘II Bh 90 100
Iteration
(e)
Figure 1. Convergence graph of metaheuristics. (a) Dim 20; (b) Dim 40; (c) Dim 60; (d) Dim 80;
(e) Dim 100.
9. Analysis

The capability of improved metaheuristic has been tested on 29 benchmark functions. We have
chosen these benchmark functions to be able to compare our numerical and statistical results to those
of the recently nature-inspired techniques. These tested functions are shown in Tables 1-3, where dim
represents the dimension of the objective function, Range boundary of the objective function’s search
space and fn is the optimum.

The HAGWO variant was run 20 times on each standard function. The numerical and statistical
solutions (standard deviation and average) are reported in Tables 1-9. For verifying the solutions,
the HAGWO variant is compared with PSO, GWO, WOA and MGWO algorithms. In WOA, MGWO
and the newly developed approach HAGWO, the balance amid the local and global exploration
abilities is mainly controlled by the mean. The numerical and statistical experimental solutions have
been performed to illustrate this. By best parameter settings, it was found that the best global optimal
solutions lie within a reasonable number of generations. A number of criteria have been used to
evaluate the capability of GWO, PSO, WOA, MGWO with HAGWO. The mean and standard deviation
statistical values are used to evaluate the reliability. The average computational time of the successful
runs and the average number of problem evaluations of successful runs, are applied to estimate the
cost of the standard problem.

For Unimodal benchmark functions, the quality of the global optimal solution obtained is
considered by the maximum, minimum, standard deviation and mean of the objective function
values out of twenty runs. This is shown in Tables 4 and 5 and convergence performance of PSO, GWO,
WOA, MGWO and HAGWO algorithms are shown in Figure 2.
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Furthermore, the performance of the algorithms in solving multimodal benchmark functions is
shown in Table 6, Table 7 and the convergence curve is shown in Figure 3, respectively.

Furthermore, the statistical and numerical global optimal solutions using PSO, GWO, WOA,
MGWO and HAGWO variants on fixed dimensional multimodal benchmark functions are given in
Tables 8 and 9. The performance of algorithms is shown in Figure 4.

Ohjective space Objective space
- T

i 10 : H
GWO 50 ———Gwo g 50
pso | ——Pso
WOA WoA

5 HAGWO 50 . —— HAGWO 50

E < MGWO

Rl — mGwo || s 0™

= H 40

3 40 3

£ £

= =

e 30 H 50

S ot : H : i 8 g

@ B -

- i 20 g 20

g -_ 2

: 10 1
ceed w0 L 2 \
1 1 i i L I i i L i L L i L it L i
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Hteration Iteration
(a) (b)
Objective space Objective space
0’ T 3 =
g e ; 60 : g GWo 60
: 5 : : : g i |——pso
: : : : : 5 WOA
T : H : 2 4 50 o g .| ——HAGWO || 50
= : : ——GWo & : : MGWO
E 5 g {| ——pso " .’Z : : : "
I . o : .
5 1 ] : e
iv & : I
H 30 H N & : : 30
H 5 S : :
% w' 20 % g i 20
@ =} B H
: 10 : 10
w0k 8 : L : : i T S S P S R I IR
L i i i L i 1 L i L i i i L I
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Figure 2. Convergence Curve of PSO, GWO, WOA, MGWO and HAGWO variants on Unimodal
benchmark functions.
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Table 4. Numerical results of unimodal benchmark functions.
Problem PSO GWO WOA MGWO HAGWO
*l' fmin fmux fmin fmax fmin fmax fmin fmux fmin fmax
1 7.8901 x 1072 62609 x 10*  1.2292 x 10722 5.7592 x 10* 0 7.2834 x 10*  7.4502 x 10727  7.2336 x 10* 0 7.5361 x 10%
2 59781 x 10712 1.1398 x 10'2 12084 x 107153 82863 x 101! 0 7.6425 x 1013 93431 x 10°15*  6.0482 x 1013 0 8.8066 X 1013
3 27.2552 1.4283 x 10° 82741 x 1012 1.9326 x 10° 6.6018 x 10* 1.3360 x 10° 6.0565 x 10~13 1.6858 x 10° 5.9829 x 10~V  2.4735 x 10°
4 1.9922 89.3164 3.3355 x 1064 84.5135 13.6245 89.1133 1.8414 x 10~ 82.5356 1.5274 x 1086 89.9799
5 130.8650 3.0054 x 108 27.9593 3.5339 x 108 28.7815 3.3241 x 108 27.1707 2.9514 x 108 27.1630 3.7213 x 108
6 76619 x 1075 6.4409 x 10* 1.9983 6.7418 x 10* 1.0113 7.5845 x 10% 1.7551 7.3870 x 10% 1.7255 7.5449 x 10*
7 0.0691 82.0814 0.0012 81.8383 42362 x 1074 137.7861 3.1935 x 1074 140.1725 0.0012 141.0199
Table 5. Statistical results of unimodal benchmark functions.
Problem PSO GWO WOA MGWO HAGWO
+ . o n T Iz o Iz o . o
1 99.1220 1.7580 x 10° 90.2939 1.8259 x 10° 71.4189 1.7312 x 10° 102.3734 2.0195 x 103 77.6527 1.9623 X 103
2 22796 x 1010 1.6119 x 1010 1.9355 x 108 1.1882 x 1010 1.5336 x 1010 1.0808 x 102 1.2096 x 1010 8.5535 x 101! 1.7613 x 1010 1.2454 x 1012
3 2.3823 x 103 1.3443 x 10* 1.9391 x 10° 1.2191 x 10* 5.3442 x 10% 2.9219 x 10% 1.9383 x 10° 1.1327 x 10* 1.8372 x 103 1.4026 x 10*
4 1.7351 3.6600 0.5260 5.2238 22.8982 11.5619 0.4520 5.0290 1.9694 12.1502
5 1.2183 x 10° 1.5789 x 107 2.7240 x 10° 2.5709 x 107 3.5593 x 10° 2.6816 x 107 2.4950 x 10° 2.1397 x 107 2.0059 x 10° 2.0732 x 107
6 1.0927 x 103 6.6662 x 103 796.3752 5.1671 x 103 887.1449 6.1512 x 103 1.0961 x 10° 6.8357 x 103 691.9697 5.6904 x 103
7 23.5823 32.2722 0.1980 2.9834 0.3679 5.8363 0.3163 5.5002 0.2879 5.5672
Table 6. Numerical results of multimodal benchmark functions.
Problem PSO GWO WOA MGWO HAGWO
~L fmin fmax fmin fmax fmin fmax fmin fmax fmin fmux
8 —6.5676 x 10> —2.5481 x 10°  —6.1169 x 10° —864.3118 —8.7219 x 10° —3.0712 x 10>  —5.0428 x 10°  —1.5535 x 10>  —9.0083 x 103 —1.4592 x 103
9 46.7630 4321257 0 457.9386 0 466.5042 0 425.4633 0 477.4335
10 5.5924 x 10~ 20.9199 7.9936 x 10715 20.84.27 4.4409 x 10715 209134 7.9936 x 10~1° 20.8774 4.4409 x 1015 20.9385
11 0.0123 690.0217 0 666.3022 0 623.4277 0.0083 705.5196 0 710.0255
12 2.7804 5.7234 x 108 4.3888 6.7091 x 108 0.5737 5.4619 x 108 5.5598 6.1162 x 108 0.1551 7.1939 x 108
13 3.0253 1.1558 x 10° 2.0670 9.2722 x 108 1.5688 1.6628 x 10° 3.0729 1.1356 x 10° 1.2865 9.3192 x 108
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Table 7. Statistical results of multimodal benchmark functions.

Problem PSO GWO WOA MGWO HAGWO
4 H 4 Iz 4 Iz 1 w 4 H 4

—6.2997 x 103 857.6904 —4.1179 x 103 1.0767 x 10°  —8.4186 x 103 378.1677 —3.6282 x 103 761.7072 —8.4892 x 10° 622.2040

151.9952 129.9151 12.6542 45.1218 5.1226 37.8648 6.0697 34.7850 2.9663 29.5347

25215 3.2684 0.2513 1.8198 0.2607 1.7464 0.2415 1.7742 0.1296 1.3559

12.6332 70.7797 1.9879 25.2536 1.9234 27.8438 1.6198 23.8614 1.6759 26.8415

2.5010 x 107 1.0165 x 108 2.5134 x 107 1.0722 x 108 42413 x 107 1.1477 x 108 5.7916 x 107 1.5932 x 108 4.6413 x 107 1.3041 x 108
2.6298 x 107 1.4156 x 108 3.2950 x 107 1.5177 x 108 8.8731 x 107 2.9685 x 108 3.8630 x 107 1.6992 x 108 3.1642 x 107 1.3828 x 108

Table 8. Numercial results of fixed-dimension multimodal benchmark functions.

Problem PSO GWO WOA MGWO HAGWO

‘l’ fmin fmax fmin fmax fmin fmux fmin fmux fmin fmax
14 7.8740 4129323 13.6186 22.0408 2.9822 210.6945 9.6391 18.7819 2.9821 493.6227
15 8.6440 x 104 0.4044 46612 x 1074 0.0760 42691 x 1074 0.1871 44429 x 1074 0.0702 3.1020 x 10~4 0.4770
16 —1.0316 0.5530 —1.0316 —0.4506 —1.0316 0.2993 —1.0316 0.4158 —1.0316 3.1477
17 0.3982 1.1732 0.4004 1.1432 0.4145 1.4559 0.3985 4.0587 1.4624 0.4635
18 3.0009 110.4515 3.0046 187.0153 3.0011 241.6666 3.0009 207.6478 3.0009 415.2426
19 —3.8624 —2.6790 —3.8617 —2.6833 —3.7304 —3.3467 —3.8624 —2.7356 —3.8624 —2.5019
20 —3.2031 —2.2384 —3.3025 —0.7864 —2.9526 —2.9526 —2.8402 —1.6544 —3.3201 —0.7698
21 —2.6305 —0.6444 —10.1517 —0.3554 —5.0551 —0.3800 —101521 —0.6119 —10.1532 —0.2680
22 —10.4016 —1.1161 —10.4028 —1.0080 —5.0876 —0.8341 —10.4022 —0.8415 —10.4028 —0.8049

23 —5.1756 —1.0843 —10.5361 —0.8808 —9.9864 —0.5751 —10.5353 —0.5825 —10.5361 —0.4436
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Table 9. Statistical results of fixed-dimension multimodal benchmark functions.

Problem PSO GWO WOA MGWO HAGWO

A i o ] o ] o u o u o

8 20.1530 56.9403 13.9616 1.6660 7.8693 29.3410 9.4639 2.5297 13.4478 69.3887
9 0.0035 0.0373 0.0013 0.0054 0.0030 0.0142 0.0012 0.0047 0.0015 0.0214

10 —0.9955 0.2106 —1.0194 0.0817 —1.0038 0.1513 —0.9955 0.2106 —0.9679 0.4297

11 0.5563 0.2268 0.5161 0.1831 0.7692 0.9017 0.6865 0.9173 0.4635 0.2174

12 30.5241 37.9585 7.6988 26.3454 8.8125 34.1104 7.8123 28.9425 12.1049 58.4134
13 —3.7394 0.2649 —3.8041 0.1681 —3.6656 0.1125 —-3.7793 0.1772 —3.7514 0.2717

14 —2.9378 0.3013 —3.0727 0.3977 —2.8403 0.2221 —2.7525 0.1956 —2.8669 0.4184

15 —2.5199 0.2835 —7.0626 2.6720 —5.0296 0.2538 —7.6430 1.6995 —8.5355 2.5679

16 —9.5802 2.0466 —7.8806 2.1526 —5.0617 0.2709 —9.0605 1.5746 —9.9991 0.9721

17 —4.8679 0.7136 —7.6961 2.4874 —7.7094 2.5030 —8.7497 2.7833 —8.7497 2.7833
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The performance of the newly existing variant has been tested on the standard, bio-medical and
engineering real life functions in terms of minimum objective function values, maximum objective
function values, mean and standard deviations (Tables 4-9).

Here, the maximum and minimum values represent the best possible cost of the functions in
the number of iterations. On the other sides, the mean and standard deviation statistical values are
used to evaluate the reliability. Furthermore, the convergence graphs of the functions represent the
convergence performance of the algorithms.

Summing up, Tables 4, 6 and 8 show that the newly hybrid approach provides the best possible
optimal values of the functions in terms of minimum and maximum values of the functions as
compared to others meta-heuristics, and Tables 5, 7 and 9 illustrate that the hybrid approach also gives
superior quality of standard and mean values of the functions which outperforms others. At the end,
the convergence of graphs (Figures 2—4) proves that, the existing approach finds the best possible
optimal values of the standard functions in the least number of iterations in comparison to others.

10. Experiments and Discussion on the Results

Performance of the proposed variant was tested on a set of 23 standard functions (Unimodal,
Multimodal and Fixed dimension multimodal). These functions were chosen as the test functions.
Computer programs for solving the numerical problems using PSO, WOA, GWO, MGWO and
HAGWO pseudo code were coded in MATLAB R2013a and implemented on Intel HD Graphics,
i5 Processor 430 M, 15.6” 3GB Memory, 320 GB HDD, 16.9 HD LCD and Pentium-Intel Core (TM).
The maximum number of generations~5000; all this parameter setting is used to test the ability
of meta-heuristics.

As per the numerical results of Table 4, improved hybrid variant is capable to give very
competitive global optimal solutions. This variant outperforms all other metaheuristics in all unimodal
functions. It may be noted that these test problems are suitable for benchmarking exploitation.
These numerical and statistical global optimal solutions indicate that the improved hybrid variant is
more reliable in giving superior quality of solutions in terms of exploiting the global optimum.

While observing Table 6, the superiority of the result obtained is measured by the minimum and
maximum objective function value, average and standard deviation and the objective function values
out of 20 runs. It can be seen that HAGWO gives a better quality of results as compared to other
metaheuristics. Thus, for the multimodal benchmark functions, HAGWO outperforms PSO, GWO,
WOA, MGWO with respect to efficiency, reliability, cost and robustness.

Fixed-dimension multimodal functions have many local optima with the number growing
exponentially with dimension. This makes them fitting for benchmarking the exploration capacity
of a variant. As per the results shown in Table 8, the HAGWO variant is competent to provide
very competitive solutions to these problems as well. This variant outperforms PSO, WOA, GWO
and MGWO on the majority of these test functions. Hence, HAGWO variant has merit in terms
of exploration.

A number of criteria have been applied to find out the performance of PSO, GWO, WOA, MGWO
and the new hybrid approach of GWO variants. The mean and standard deviation statistical values are
used to evaluate the reliability in Tables 5, 7 and 9. The average computational time of the successful
runs and the average number of function evaluations of successful runs, are applied to estimate the
cost of the standard function.

In Figures 2—4, the convergence performance of PSO, GWO, WOA, MGWO and HAGWO variants
in solving unimodal benchmark functions is compared; obtained convergence solutions prove that
the HAGWO variant is more able to find the best optimal solution in minimum number of iterations.
Hence, the HAGWO variant avoids premature convergence of the search process to local optimal
points and provides superior exploration of the search course.



Math. Comput. Appl. 2018, 23,14 24 of 32

To sum up, all simulation solutions assert that the new hybrid existing approach is very helpful in
improving the efficiency of the Whale Optimizer Algorithm and Mean Grey Wolf Optimizer Algorithm
in terms of result quality as well as computational efforts.

11. Bio-Medical Science Real Life Applications

In this section, four dataset problems: (i) Iris (ii) XOR (iii) Baloon and (iv) Breast Cancer are
employed (Mirjalili, S. [48]). These real-life problems have been solved using the new hybrid variant
and compared with PSO, WOA, GWO and MGWO meta-heuristics. Different parameter settings
have been used for running the code of meta-heuristics and these parameter settings are described
in Appendix A Table Al. The capability of the variants has been compared in terms of minimum
objective function value, maximum objective function value, average, standard deviation, classification
rate and convergence rate of the algorithms in Table 10. All these real-life applications are discussed
step by step in this section:

The performance of the metaheuristics has been tested on different parameter settings as shown
in Appendix A Table A2. The experimental numerical and statistical results of HAGWO, PSO, WOA,
GWO and MGWO on these datasets have been given in Table 10 and convergence performance of the
algorithms is shown Figure 5. In Table 10, we show that HAGWO algorithm gives superior quality of
numerical and statistical solutions in comparison to other meta-heuristics. The results of the HAGWO
algorithm indicate that it has the highest capability to avoid the local optima and is considerably
superior to other algorithms like PSO, WOA, GWO and MGWO.

Secondly, the performance of meta-heuristics has been compared in terms of average, standard
deviation classification rate (in Table 10) and convergence rate (in Figure 5). The low average and
standard deviation shows the superior local optima avoidance of the algorithm. On the basis of the
obtained solutions, we have concluded that the new hybrid algorithm gives highly competitive results
as compared to other metaheuristics and the convergence graph shows that HAGWO gives better
solutions than PSO, WOA, GWO and MGWO variants.

Table 10. Numerical and Statistical solutions of Bio-Medical problems.

i) Iris Dataset Problem
Algorithm Best Min Value  Best Max Value Average S.D. Classification Rate
PSO 0.6667 0.8418 0.6895 0.0336 37.22%
WOA 0.7029 0.8572 0.7263 0.0374 89.31%
GWO 0.6667 0.8756 0.6714 0.0249 91.333%
MGWO 0.6667 0.8133 0.6789 0.0154 91.334%
HAGWO 0.6668 0.8807 0.6728 0.0281 93.00%
(ii) XOR Dataset Problem
Algorithm Best Min Value  Best Max Value Average S.D. Classification Rate
PSO 2.0621 x 1072 0.1771 0.0162 0.0481 37.50%
WOA 0.0705 0.1523 0.0943 6.9504 98%
GWO 8.2721 x 107° 0.1327 0.0156 0.0375 100%
MGWO 5.0578 x 107> 0.2159 0.0348 0.0634 100%

HAGWO 0.0427 0.2300 0.0029 0.0469 100%
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(iii) Baloon Dataset Problem
Algorithm  Best Min Value  Best Max Value Average S.D. Classification Rate
PSO 5.6029 x 10~28 0.1596 0.0161 0.0409 100%
WOA 7.7005 x 104 0.0313 0.0076 0.0080 100%
GWO 3.5126 x 10717 0.1168 0.0064 0.0261 100%
MGWO 22483 x 10712 0.0556 0.0071 0.0173 100%
HAGWO 1.6372 x 1075 0.1798 0.0143 0.0438 100%
(iv) Breast Cancer Dataset Problem
Algorithm Best Min Value  Best Max Value Average S.D. Classification Rate
PSO 0.0054 0.0441 0.0130 0.0070 14.00%
WOA 0.0018 0.0416 0.0033 0.0043 97.21%
GWO 0.0014 0.0464 0.0065 0.0093 99.00%
MGWO 0.0017 0.0387 0.0066 0.0096 99.11%
HAGWO 0.0013 0.0464 0.0026 0.0042 100%
Objective space Objective space
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Figure 5. (a) Convergence graph of Iris dataset problem; (b) Convergence graph of XOR dataset

problem; (c) Convergence graph of Baloon dataset problem; (d) Convergence graph of Breast cancer

dataset problem.



Math. Comput. Appl. 2018, 23,14 26 of 32

12. Welded Beam Design

This function is designed for the minimum cost subject to constraints on side constraints, buckling
load on the bar (p.), shear stress (1), end deflection of the beam (J) and bending stress in the beam ().
There are four design variables: h(x1),1(x2), t(x3) and b(x4). The WBD function can be mathematical
formulated as below [49]:

Min : f(Y) = 1.10471x%x; + 0.04811x3x4(14.0 + x3), (18)
Subjectto : g1(Y) = 7(Y) — Tmax <0, (19)

22(Y) = oY) — Oimax <0, 20)
$3(Y)=x1—x4 <0, (21)

24(Y) = 0.10471x% + 0.04811x3x4(14.0 + x5) — 5.0 < 0, (22)
g5(Y) =0.125 — x; <0, (23)

86(Y) = 6(Y) — dmax < 0, (24)

g7(Y) =p—pc(Y) <0, (25)

where

M= p(L+x,/2), T" = MR/], T(Y) = \/(r')2 + 277" (x2/2R) 4 (T7)?,

] =2{V2xix%[3/12+ (v +x%)/2)°] },

R = \/x§/4 + ((x1 4+ x3)/2)%,0(Y) = 6pL3 /x4%3,

pe(Y) = (4.013E\/x§x2/36/L2) (1 - (x3/2L)\/E/4G),(5(Y) = pL3/Exixy,
L=14in, p=60001b, G =12x10°psi, E =30x10° psi, Omax = 30,000 psi, Tmax = 13,600 psi,
Smax = 0.25in,
Y = (x1,%2,x3,%4), (0.1, 0.1, 0.1, 0.1) <Y < (2, 10, 10, 2).

During last few years, many scientists and researchers have used several types of nature-inspired
metaheuristics to locate the best optimal results of the Welded Beam Design (WBD) problem
in the literature, such as Genetic Algorithm (GA) [50-52], Unified particle swarm optimization
(UPSO) [53], Artificial Bee Colony algorithm (ABC) [54], Co-evolutionary Differential Evolution
(CDE) [55], Co-evolutionary Particle Swarm Optimization (CPSO) [56], harmony search algorithm
(IHS) [57], Moth-Flame Optimization algorithm (MFO) [33], Adaptive Firefly Algorithm (AFA) [58],
Charged System Search (CSS) [59] and Lightning Search Algorithm-Simplex Method (LSA-SM) [49].

In Table 11 and Figure 6, we compare the optimal solutions of the new hybrid approach (HAGWO)
and other metaheuristics found in the literature, where the newly existing variant achieves better
quality of solutions that are better than several latest metaheuristics with minimum cost of 1.661258
for the welded beam design problem.
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Table 11. Best optimal solutions of the welded beam design by metaheuristics.

Algorithm Optimum Variables §it%

- h 1 t b -
GA 0.208800 3.420500 8.997500 0.210000 1.748309
GA 0.205986 3.471328 9.020224 0.206480 1.728226
GA 0.2489 6.1730 8.1789 0.2533 2.4328

UPSO 0.2407 6.4851 8.2399 0.2497 2.4426
ABC 0.205730 3.470489 9.036624 0.205730 1.7248852
CDE 0.203137 3.542998 9.033498 0.206179 1.733462

CPSO 0.202369 3.544214 9.048210 0.205723 1.728024
HIS 0.20573 3.47049 9.03662 0.20573 1.7248
MFO 0.2057 3.4703 9.0364 0.2057 1.72452
AFA 0.205730 3.40489 9.036624 0.205730 1.724852
CSS 0.2058 3.4681 9.0380 0.2057 1.7249

LSA-SM 0.2057296 3.253120 9.036624 0.2057296 1.695247
HAGWO 0.2055235 3.201258 9.033258 0.2052125 1.661258
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Figure 6. Comparison of best optimal value of the metaheuristics on welded beam design problem.

13. Pressure Vessel Design

This problem is a cylindrical vessel whose ends are capped by a hemispherical head as shown in
Figure 7. The main objective is to minimize the total cost. The pressure vessel design problem can be
mathematically formulated as below [49]:

Min : f(Y) = 0.06224x1x3x4 + 1.7781x2x3 + 3.1661x3x, + 19.84x3x3, (26)
sit.: g1(Y) = —x1 +0.0193x3 <0, (27)
92(Y) = —x5 +0.00954x3 < 0, (28)
4
23(Y) = —mxdxy — 5mcg’ 41296000 < 0, (29)
ga(Y) = x4 — 240 <0, (30)

1 x 0.0625 < x1,x2 <99 x 0.0625 and 10 < x3, x4 < 200

where x is the thickness of the shell, x; is thickness of the head, x3 is inner radius and x4 length of the
cylindrical section of the vessel [57].
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Figure 7. The Pressure Vessel Design Problem.

During the last few decades, several researchers have used different types of metaheuristics to
find the best possible optimal solutions of the Pressure Vessel Design Problem in the literature such
as Genetic Algorithm (GA) [50-52], Artificial Bee Colony algorithm (ABC) [54], Co-evolutionary
Differential Evolution (CDE) [55], Co-evolutionary Particle Swarm Optimization (CPSO) [56],
Improved Harmony Search (IHS) algorithm [57], Moth-Flame Optimization algorithm (MFO) [33],
Adaptive Firefly Algorithm (AFA) [58], Bat Algorithm (BA) [60], Cuckoo Search algorithm (CS) [61],
Evolution Strategies (ES) [62], Ant Colony Optimization (ACO) [63], Teaching-Learning-Based
Optimization (TLBO) [64] and Lightning Search Algorithm-Simplex Method (LSA-SM) [49].

The experimental solutions of the different metaheuristics pressure vessel design are represented
in Table 12. It can be seen that the best optimal value of the pressure vessel design problem by HAGWO
is 5924.2536. Hence HAGWO algorithm provides the superior quality of the solutions in comparison
to others.

Table 12. Best optimal solutions of the welded beam design by metaheuristics.

Algorithm Optimum Variables 1Y)
- X1 X2 X3 X4 -
GA 0.812500 0.437500 40.323900 200.000000 6288.7445
CPSO 0.812500 0.437500 42.091266 176.746500 6061.0777
GA 0.812500 0.437500 42.097398 176.654050 6059.9463
HIS 0.75 0.375 38.86010 221.36553 5849.76169
CDE 0.812500 0.437500 42.098411 176.746500 6061.0777
BA 0.8125 0.4375 42.0984456 176.6365958 6059.7143348
ABC 0.812500 0.437500 42.098446 176.636596 6059.714339
AFA 0.8125 0.4375 42.09844611 176.6365894 6059.7142719
CS 0.8125 0.4375 42.0984456 176.6365958 6059.7143348
ES 0.8125 0.4375 42.098087 176.640518 6059.7456
ACO 0.8125 0.4375 42.103624 176.572656 6059.0888
TLBO NA NA NA NA 6059.714335
MFO 0.8125 0.4375 42.098445 176.636596 6059.7143
LSA-SM 0.8103764 0.4005695 41.98842 178.0048 5942.6966
HAGWO 0.8102456 0.4003526 41.78451 178.0012 5924.2536

14. Conclusions and Future Work

In the current study, we have developed an improved hybrid algorithm utilizing the strengths of
Whale Optimizer Algorithm and Grey Wolf Optimizer algorithm. The global optimal solution quality of
benchmark function has been improved with Hybrid WOA-MGWO as it extracts quality characteristics
of both WOA and MGWO. Whale Optimizer Algorithm (WOA) is used for the exploration phase
as it uses a spiral function, hence, it covers a broader area in an uncertain search space. Hence,
Whale Optimizer algorithm directs the members more rapidly towards global optimal value and
reduces computational time. Twenty three benchmark functions are utilized to test the quality of
the hybrid variant compared to PSO, WOA, GWO and MGWO. The experimental numerical and
statistical solutions have shown that an improved hybrid strategy is most suitable for giving the
superior quality of solutions with a minimum number of iterations, therefore, the HAGWO variant
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avoids premature convergence of the search process to local optima and gives superior exploration
due to the search procedure.

This article also considers solving bio-medical science dataset (XOR, Baloon, Iris, and Breast
Cancer) and engineering (Welded Beam Design and Pressure Vessel Design) problems. The solutions
of these problems indicate that the proposed approach is applicable to solve challenging problems
with unknown search spaces.

Future work will focus on two parts: (i) Structural Damage Detection, composite functions,
aircraft wings, feature selection, the gear train design problem, bionic car problem, cantilever beam,
and mechanical engineering functions; and (ii) Developing new variants based on nature-inspired
algorithms for these tasks. Finally, we expect that this work will encourage young researchers who are
working on recent evolutionary metaheuristics concepts.

Author Contributions: Narinder Singh designed the numerical experiments, developed code and prepared the
manuscript. Both the authors revised and finalized the final draft of manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A
Table A1. Classification datasets (Mirjalili [48]).
Classification Number of Number of Number of Test Samples Number of
Datasets Attributes Training Samples P Classes
3-bits XOR 3 8 8 as training samples 2
Baloon 4 16 16 as training samples 2
Iris 4 150 150 as training samples 3
Breast Cancer 9 599 100 2

Table A2. The parameter settings of algorithms.

Parameter Value
a Linearly decreased from 2 to 0
Search Agents 200
Maximum number of iterations 100-200
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