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Abstract: Increasing energy has become an important issue in high performance clusters. To balance
the energy and performance, we proposed a novel, energy-aware duplication-based scheduling
(NEADS). An existing energy-aware duplication-based algorithm replicates all qualified predecessor
tasks in a bottom-up manner. Some tasks without direct relation may be replicated to the same
processor, which cannot reduce the communication energy. Instead, the computation overhead may
be increased. In contrast, the proposed algorithm only replicates the directly correlated predecessor
tasks in the energy threshold range without lengthening the schedule length. The proposed algorithm
is compared with the non-duplication algorithm and existing duplicated-based algorithm. Extensive
experimental results show that the proposed algorithm can effectively reduce energy consumption in
various applications. It has advantages over other algorithms on computation-intensive applications.
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1. Introduction

In a high performance computing system, clusters have been widely applied to many fields of
scientific and commercial applications as primary and cost-effective infrastructures. Performance
improvement has long been the sole objective of different architectural and software studies [1].
However, with the increased system scale, high energy cost has become a prominent issue. For example,
on November 2015, the number 1 of the top 500, Tianhe-2 (National University of Defense Technology,
Guangzhou, China) consumed more than 17,000 Kilowatts each hour [2]. Therefore, designing
energy-efficient clusters from hardware and software is highly urgent.

Increasing evidence shows that interconnection fabric consumes considerable amounts of energy
in clusters. For example, interconnections consume 33% of the total energy in the Avici switch
(Avici Systems Inc., North Billerica, MA, USA) [3]. Parallel task scheduling strategies can allocate
the resources according to task priorities, which is one of the software methods for optimizing the
system energy. Among them, task duplication has been proved to be an effective strategy to improve
the performance of parallel task scheduling with precedence constraints [4,5]. For reducing the
communication overheads, tasks are duplicated to several processors and executed in idle cycles of
processors. Duplication-based scheduling algorithms replicate all possible tasks to shorten their length
without considering energy consumption caused by duplicated task execution.

Therefore, some energy-aware duplication-based scheduling algorithms are proposed,
which selectively replicate the tasks. However, these duplicate-based scheduling strategies replicate
tasks only according to the energy difference between current task computation energy and
communication energy of these two tasks. With this condition, no direct correlation tasks may
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be replicated and executed in the same processor. It cannot reduce the communication overhead,
but increase the computation overhead of the duplicated tasks. Thus, the overall energy consumption
would increase.

To better balance the energy and performance, we propose a novel task duplication scheduling
algorithm to replicate tasks according to direct precedence constraints and increased energy threshold.
The proposed algorithm aims to reduce the communication energy without increasing the additional
computation overhead.

Since our algorithm is based on the Directed Acyclic Graph (DAG), some important parameters
of DAG are needed. The notation and description are listed in Table 1. Detailed descriptions are given
respectively as follows. The detailed explanations of these parameters are presented in Section 4.

Table 1. Notation list.

Notation Description

CCR Communication-computation ratio
PRED(vi) The predecessor of vi
SUCC(vi) The successor of vi
EST(vi) The earliest start time of vi
ECT(vi) The earliest complete time of vi

LAST(vi) The latest allowed start time of vi
LACT(vi) The latest allowed complete time of vi
B-level(vi) The longest distance from vi to exit task
T-level(vi) The longest distance from entry task to vi

FP(vi) Favorite predecessor of vi
SFP(vi) Second favorite predecessor of vi

The rest of the paper is organized as follows: In Section 2, we present related work. Section 3
introduces computational models including a task model and an energy consumption model.
In Section 4, the energy-aware duplication-based scheduling strategy is presented. Simulation results
are demonstrated in Section 5. Finally, Section 6 provides the conclusion.

2. Related Work

Many studies have investigated power-aware techniques through scheduling algorithms.
Dynamic power management (DPM) [6] and Dynamic voltage and frequency scaling (DVFS)
techniques are widely adopted to reduce power consumption in clusters [7–10]. DPM is an effective
energy saving method that attempts to adjust the power mode according to the workload
variation [11,12]. In a broad sense, DVFS can be regarded as the CPU level DPM. This strategy
can adjust the voltage or frequency of processors to achieve high energy efficiency for processors.
So it has significant advantage in computation-intensive applications. However, for communication-
intensive applications its benefits could not exist anymore.

A parallel application program can be divided into many tasks with precedence constraints.
These tasks require data processing and data communication. Since task scheduling is an NP-hard
problem, many heuristic scheduling strategies are proposed for performance improvements.
Parallel task scheduling algorithms can be classified into three categories, called list scheduling,
clustering-based scheduling, and duplication-based scheduling respectively. List scheduling assigns
the priorities for tasks and maps tasks to processors based on assigned priorities [13]. Clustering-based
scheduling clusters intercommunicating tasks in groups and allocate tasks of the same group to
the same processor [14]. Duplication-based scheduling focuses on replicating some tasks when the
scheduling length can be shortened [15,16]. Reducing communication overheads is the main goal of
this scheduling strategy.

Baskiyar et al. [17] proposed a scheduling algorithm called EADAGS, which integrated
dynamic voltage scaling and decisive path scheduling for a heterogeneous distributed processing
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system. Dynamic Voltage Scaling (DVS) is applied to the slack time, and the real-time energy
consumption can be calculated. Sinnen et al. focused on the communication contention problem [18].
The communication link competition in task communication is considered. They proposed
an energy-aware list-based scheduling algorithm [18] and duplication-based scheduling algorithm [19].
The communication path is selected based on the routing algorithm. Task execution is related to
the performance of routing algorithm. Choi et al. [20] presented a co-scheduling strategy, which
can integrate the computation intensive tasks and communication intensive tasks by monitoring
the processes. Ma’sko et al. [21] proposed the synthetic algorithm based upon list scheduling and
clustering scheduling for Symmetric Multi-Processing (SMP) clusters. Shojafar et al. proposed the
energy-efficient resource management for data centers [22,23]. A joint meta-heuristic approach to
a cloud job scheduling algorithm is proposed in [24], which uses fuzzy theory and a genetic method.

Duplication-based scheduling strategies aim to reduce communication overheads. However,
the computation overhead would increase because the duplicated tasks are executed in many
processors. Accordingly, the overall energy consumption would augment. Zong et al. [25,26] focused
on the energy optimization of task duplication-based scheduling strategies. They proposed two
energy-aware duplication-based algorithms, called EAD (Energy-Aware Duplication) scheduling
and PEBD (Performance-Energy Balanced Duplication) scheduling, which do not replicate all
performance-oriented tasks. They consider both performance improvement and energy cost.
The energy threshold and energy efficiency threshold are set to be the condition when duplicating
tasks. The favorite predecessor task is defined. If the favorite predecessor satisfies the given condition,
it would be replicated. However, if it is not qualified to replicate, its predecessor task is still judged
under the same condition. Therefore, some tasks may be mapped to the same processor, but they are
not directly correlated. If so, communication energy cannot be reduced, and more computation energy
would be generated.

To address the above problem, a more energy-efficient duplication-based scheduling strategy
is required to reduce the communication overhead and not increase the unnecessary computation
energy consumption.

3. Computation Model

3.1. Task Model

A cluster consists of a set of computation processors, which can be represented as

P = {P1, P2, . . . , Pm} (1)

In the above equation, m is a positive integer and indicates the number of processors. Pi is one of
the processor.

The tasks with precedence constraint can be represented as DAG, which includes the vertexes and
directed edges with computation weight and communication weight. A vertex denotes a task and the
directed edge denotes the communication relation of tasks. A task needs be allocated to a processor
to run, which is indivisible and its execution cannot be interrupted. A task can be represented as the
following vector.

G = (V, E, C, T) (2)

V is the task set, which includes n parallel tasks. It can be represented as

V = {v1, v2, . . . , vn} (3)

E is the communication edge set, which includes all directed edges of DAG. It denotes the
precedence dependencies between tasks and can be represented as
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E =
{

eij =
(
vi, vj

)
|1 ≤ i, j ≤ n

}
(4)

eij denotes the edge from task vi to task vj.
C is the set of communication overhead, which is the weight set of directed edges in DAG. cij

means the communication time from task vi to task vj.
T is the set of computation overhead, which is the weight set of vertexes in DAG. ti denotes the

computation time of task vi.

If there exists an edge eij, we call vi is the predecessor of vj and vj is the successor of vi. Only if the
all predecessor tasks have finished can the current task start to run. The communication overhead is
generated due to the tasks being executed in different processors. So if two related tasks are executed
in the same processor, their communication overhead can be regarded as zero.

The schedule length or makespan of parallel tasks denotes the overall time from the first task
(entry task of DAG) to the last task (exit task of DAG).

3.2. Energy Model

The overall energy includes the computation energy (EP) and communication energy (EC),
which can be represented as the following equation.

E = EP + EC (5)

The computation energy can be represented as the product of the processor speed and execution
time. Rp is the speed of processor, which is assumed to be fixed. EP can be represented as

EP =
n

∑
i=1

Rpti (6)

The communication energy caused by edge eij can be denoted as elij, which can also be represented
as the product of communication rate Rc and the communication time. Therefore, the elij can be
represented as

elij = k · Rc · cij (7)

In the above equation, k is the constant parameter. It denotes the energy consumption per Mbps.
The overall communication energy of parallel tasks is the sum of communication energy of all edges.
Then it can be represented as

EC =
n

∑
i=1

n

∑
j=1

elij =
n

∑
i=1

n

∑
j=1

k · Rc · cij = k · Rc ·
n

∑
i=1

n

∑
j=1

cij (8)

4. Energy-Aware Task Duplication

4.1. Parameters Calculation

Communication computation ratio (CCR) is the ratio of sum of communication time to sum of
computation time. It can be represented as follows.

CCR =
∑ cij

∑ ti
(9)

The earliest start time (EST) of a task can be calculated according to the following equation

EST =

 0 i = 1
max

1≤j≤n−1,eji∈E
EST(vj) + cji 1 < i ≤ n (10)
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The earliest complete time (ECT) of a task can be calculated by its EST and execution time and
represented as

ECT(vi) = EST(vi) + ti (11)

The latest allowable complete time (LACT) of a task needs to be calculated in bottom-up manner.
The LACT of last task of DAG is its ECT. The LACT of other tasks can be calculated by the LACT of
its successor task and the communication overhead between them. The calculation equation can be
represented as

LACT(vi) =

 ECT(vi) i = n
min

1≤j≤n−1,eji∈E
LACT(vj)− cji 1 ≤ i ≤ n− 1 (12)

The latest allowable start time (LAST) of a task can be calculated by its LACT and computation
time. It can be represented as

LAST(vi) = LACT(vi)− ti (13)

The B-level of a task can be calculated as

B− level =

{
0 i f vi has no successor

max
{

B− level(vj) + cij
}

vj ∈ successor(vi)
(14)

Correspondingly, the T-level of a task can be represented as

T − level =

{
0 if vi has no predecessor

max
{

T − level(vj) + cji
}

vj ∈ predecessor (vi)
(15)

The Favorite Predecessor (FP) of a task is defined as the task which has the maximum
communication and computation overhead among all predecessor tasks. It can be represented as

FP(vi) = vj, where ∀eji ∈ E, eki ∈ E, j 6= k|ECT(vj) + cji ≥ ECT(vk) + cki (16)

The Second Favorite Predecessor (SFP) of a task is defined as

SFP(vi) = vj, where ∀eji ∈ E, eki ∈ E, vj 6= FP(vi), j 6= k|ECT(vj) + cji ≥ ECT(vk) + cki (17)

4.2. Task Duplication

The task scheduling process is shown in Figure 1. Precedence constraints of tasks of DAG must be
guaranteed by executing the predecessor tasks before the successor task. So the task sequence needs to
be ordered using the concept of T-level. Tasks are sorted in ascending order, and then the original task
sequence is formed.

Based on the original task sequence, the tasks should be clustered and mapped to different
processors. In the clustering process, the linear clustering method is adopted. The tasks with maximum
communication are allocated to the same processor. Meanwhile, the task duplications are conducted
according to the given condition.

The tasks are sorted in a bottom-up manner in the original task sequence. After the current
task is mapped, the predecessor task would be investigated. Since the FP is the favorite predecessor
task, which has the longest distance between FP and the current task, replicating the FP can reduce
the communication overhead to the greatest extent. SFP is defined, which is the second favorite
predecessor task. If the FP cannot meet the replication condition and the SFP meets the condition,
the SFP would be replicated. Therefore, the communication overhead between SFP and the current
task would be reduced to zero. The new current task would be checked until the task without the
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predecessor task. Then, this round mapping finishes. The next round mapping would start from the
first task of the current task sequence. The algorithm description is given in Figure 2.
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The threshold is defined as the difference between the computation energy of executing replicated
tasks and the saved communication energy. Task duplication is conducted in task clustering and
mapping process in a bottom-up manner. When the FP cannot meet the condition, SFP would
be considered.

If the FP cannot meet the requirement of duplication, the favorite predecessor task of the FP would
not be judged even if it can meet the condition. This is because there is no direct correlation between
the favorite predecessor task of the FP and the current task. In this case, the task duplication only
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increases the computation overhead. This is the essential difference between the proposed algorithm
and EAD [15].

Task duplication condition includes two following items:

• LAST(vi) − LACT(vj) < cij

• EP(vi) − EC(eij) ≤ threshold

The tasks are retrieved in bottom-up manner. The mapping list forms after the entire assignation
has finished. Then, schedule length (makespan) and energy are also calculated based upon the models.

5. Energy Efficiency Evaluation

Simulation experiments are conducted to evaluate the performance and energy saving of the
proposed algorithm. The standard task graph set is adopted [27], which includes random generated
applications and real applications.

5.1. Test Set and Metrics

The three different parallel applications are used in our simulation. They are represented as
a standard task graph, and are shown in Table 2. Among them, a parallel application is generated
randomly. The other two are real parallel application benchmarks.

Table 2. Standard task Graph.

Parallel Application Task Number Edge Number

fpppp 334 1145
Random 50 164

Robot control 88 131

The evaluation metrics consist of makespan and energy consumption. The makespan is also
called schedule length, which is the overall execution time of a parallel application. The makespan
is the metric of efficiency. Energy consumption includes the computation energy consumed by
processors and the communication energy of network. The task duplication-based algorithm belongs
to energy-aware algorithms. To measure our algorithm more comprehensively, the two metrics are
evaluated respectively. The parameters used in calculating energy are obtained from the Lenovo
sure-fire servers R510 (Lenovo Inc., Beijing, China).

5.2. Baseline Algorithms

The baseline algorithms include Task Duplication Based Scheduling (TDS) [4] and Energy Aware
Task Duplication Based Scheduling (EADS) [15].

• TDS: The goal of TDS is to improve performance, which attempts to generate the shortest schedule
length through task duplication. All tasks that can shorten schedule length would be replicated.
The same task may be executed on different processors.

• EADS: EADS is based on TDS and aims to reduce the energy consumption due to replicating
tasks. The FP of the current task is judged based upon the replication condition in the bottom-up
manner. Some indirect tasks may be duplicated in the same tasks.

5.3. Impact of CCR

CCR can measure the total time spent on computation and communication. To investigate
the impact of CCR, we conduct the experiments using the random application, when CCR varies
from 0.1 to 10. The computation energy and communication energy comparison results are shown
respectively in Figure 3a,b.
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Energy comparison and (b) Communication Energy comparison.

The proposed algorithm NEADS can reduce the energy to some extent compared with two
baseline algorithms. When CCR is less than 1, the computation energy has been significantly reduced.
However, when CCR is greater than 1, the reduced computation energy is not obvious. Because NEADS
focuses on diminishing the extra computation overheads of the indirect predecessor tasks, its advantage
of computation energy reduction is more obvious than EADS. The maximum computation energy
reduction over TDS and EADS are 22.5% and 12.7% when CCR is set to 0.1, respectively.

The communication energy has been markedly reduced compared with TDS. But NEADS has not
great advantages when compared with EADS. Since both EADS and NEADS are based on the task
duplication, both of them aim to reduce the communication energy. So NEADS can only achieve small
communication energy reduction compared with EADS.

5.4. Impact of Applications

According to the ratio of computation and communication, the features of parallel applications
can be classified into computation intensive, communication intensive and synthetic. In this section,
the impact of application features on makespan and energy has been investigated. Three applications
(i.e., fpppp, Robot control and random) have different features.

Figure 4 shows the comparison results in fpppp. We can see that the makespans in different
algorithms are almost equal. However, the energy consumption has been obviously reduced in NEADS
compared with other two algorithms. Fpppp belongs to computation intensive applications. Therefore,
the proposed algorithm has advantage in reducing energy over other two algorithms for computation
intensive applications without increasing the makespan.

Math. Comput. Appl. 2016, 22, 2  8 of 12 

 

  
(a) (b) 

Figure 3. Energy comparison in different communication computation ratios (CCR). (a) 

Computational Energy comparison and (b) Communication Energy comparison 

The proposed algorithm NEADS can reduce the energy to some extent compared with two 

baseline algorithms. When CCR is less than 1, the computation energy has been significantly reduced. 

However, when CCR is greater than 1, the reduced computation energy is not obvious. Because 

NEADS focuses on diminishing the extra computation overheads of the indirect predecessor tasks, 

its advantage of computation energy reduction is more obvious than EADS. The maximum 

computation energy reduction over TDS and EADS are 22.5% and 12.7% when CCR is set to 0.1, 

respectively. 

The communication energy has been markedly reduced compared with TDS. But NEADS has 

not great advantages when compared with EADS. Since both EADS and NEADS are based on the 

task duplication, both of them aim to reduce the communication energy. So NEADS can only achieve 

small communication energy reduction compared with EADS. 

5.4. Impact of Applications 

According to the ratio of computation and communication, the features of parallel applications 

can be classified into computation intensive, communication intensive and synthetic. In this section, 

the impact of application features on makespan and energy has been investigated. Three applications 

(i.e., fpppp, Robot control and random) have different features. 

Figure 4 shows the comparison results in fpppp. We can see that the makespans in different 

algorithms are almost equal. However, the energy consumption has been obviously reduced in 

NEADS compared with other two algorithms. Fpppp belongs to computation intensive applications. 

Therefore, the proposed algorithm has advantage in reducing energy over other two algorithms for 

computation intensive applications without increasing the makespan. 

  
(a) (b) 

Figure 4. Makespan and energy comparison of fpppp. (a) Makespan comparison and (b) Energy 

consumption comparison. 
Figure 4. Makespan and energy comparison of fpppp. (a) Makespan comparison and (b) Energy
consumption comparison.



Math. Comput. Appl. 2017, 22, 2 9 of 12

Figure 5 shows the comparison results in the robot control. Both makespan and energy
have no obvious differences. Energy consumption has been slightly lowered. This shows that,
for communication-intensive applications, the proposed algorithm has no distinct advantages.
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Random is a synthetic application. In order to indicate its feature, makespan and energy are
calculated when CCR is defined as 0.1 and 5 respectively. The comparison results are shown in
Figures 6 and 7. When CCR is 0.1, NEADS can dramatically reduce the energy consumption compared
with TDS and EADS. However, when CCR is 5, NEADS has a close value in energy consumption
with EADS. Since CCR can indicate its features, these results are consistent with those in different
applications such as fpppp and robot control.
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5.5. Overall Energy Efficiency

To illustrate overall energy efficiency of the proposed algorithm in synthetic applications,
we conducted the comprehensive tests on multiple synthetic applications. Figures 8 and 9 show
the reduced energy percent in 30 random applications compared with TDS and EADS. The overall
energy has been reduced by 9.39% and 3.52% on average, respectively.
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6. Conclusions

In this paper, we proposed a novel duplication-based energy-aware scheduling algorithm. In the
duplication process, both the favorite predecessor and second favorite predecessor are considered.
When the favorite predecessor (FP) does not meet the duplication condition, the predecessor of FP
would not be checked. Then, the second favorite predecessor would be judged. This avoids indirect
tasks being replicated to the same processor. Correspondingly, extra communication and computation
overhead can be reduced. To demonstrate the effectiveness of the proposed algorithm, we conducted
extensive experiments under various applications. The experimental results show that, for synthetic
applications, NEADS can effectively reduce the energy consumption.
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