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Abstract: Usually, the parameters of a Weibull distribution are estimated by maximum likelihood
estimation. To reduce the biases of the maximum likelihood estimators (MLEs) of two-parameter
Weibull distributions, we propose analytic bias-corrected MLEs. Two other common estimators
of Weibull distributions, least-squares estimators and percentiles estimators, are also introduced.
Based on a comparison of their performances in the simulation study, we strongly recommend the
analytic bias-corrected MLEs for the parameters of Weibull distributions, especially when the sample
size is small.
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1. Introduction

We investigate several different estimations of the parameters of the two-parameter Weibull
distribution, and analyze two different methods to reduce the biases of maximum likelihood estimators
(MLEs).

The following formula is the cumulative distribution function of a Weibull distribution:

F(x; k, λ) =

{
1− e−(

x
λ )

k
, x > 0, λ > 0, k > 0

0 x ≤ 0
, (1)

and its probability density function is:

f (x; k, λ) =

{
( 1

λ )
kkxk−1e−(

x
λ )

k
, x > 0, λ > 0, k > 0

0 x ≤ 0
, (2)

The Weibull distribution was first identified by Fréchet in 1927, and it was named after Waloddi
Weibull, a Swedish mathematician who described this distribution in detail in 1951. Rammler [1] used
it to explain a particle size distribution.

The Weibull distribution is not a single distribution, but is in fact a family of distributions,
because of the distribution having the shape parameter. The shape parameter enables Weibull
distributions to take on various shapes, contingent on the value of the shape parameter. Those
distributions are particularly useful in modeling applications since they are flexible enough to model
various datasets.

The Weibull distribution has a relatively simple form. Nevertheless, the shape parameter enables
the Weibull to assume a variety of shapes. This combination of simplicity and flexibility in the shape of
the Weibull distribution makes it an effective distributional model in reliability applications. The ability
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to model various distributional shapes by using a relatively simple distributional form is possible with
many other distributional families, as well.

The Weibull distribution is associated with various other distributions. For instance, it is well
known that a Weibull distribution contains the exponential distribution (when k = 1) and the Rayleigh
distribution (when k = 2). Recently, Ling and Giles [2] studied the Rayleigh distribution and the
bias adjustment of the Rayleigh distribution. The Weibull distribution is a special condition of the
generalized extreme value distribution, which was proposed by Fréchet [3]. This closely-related
Fréchet distribution has the probability density function:

fFrechet(x; k, λ) =

{
k
λ (

x
λ )
−1−ke−(

x
λ )
−k

x > 0, λ > 0, k > 0
0 x ≤ 0.

, (3)

Actually, fFrechet(x; k, λ) = − fWeibull(x;−k, λ). A Weibull distribution is also characterized in
terms of a uniform distribution; when U is uniformly distributed on (0, 1), then the random variable
λ(− ln(U))1/k is Weibull distributed with parameters k and λ.

The Weibull distribution has been used in numerous fields, such as production, industry, data
analysis, reliability in devices, materials testing and environmental assessment. This distribution was
studied and used in an aircraft system to investigate operational reliability by Kaltschmidt et al. [4].
Nikolaj [5] showed that this distribution can be used in oil pollution examination. Singh [6] studied the
Weibull distribution and worked in hydrology by using this distribution. Aarset [7] applied a Weibull
distribution to test failure times of devices, and the data were further analyzed and modified by Lai
et al. [8]. It was used in breakdown voltage estimation by Hirose [9], and Fabiani [10] used it to test
electrical breakdown of insulating materials. It was applied to censored data by Ghitany et al. [11]. In
the study of wind energy, the Weibull distribution was also applied by Akdaǧ et al. [12].

Additionally, we have also considered the exponential distribution. When the value of k is one,
the Weibull distribution becomes the exponential distribution, which is studied widely. The cumulative
distribution function of the exponential distribution is:

F(x; k, λ) =

{
1− e−λx, x > 0, λ > 0
0 x ≤ 0

, (4)

and its probability density is:

f (x; k, λ) =

{
λe−λx, x > 0, λ > 0
0 x ≤ 0

, (5)

Maximum-likelihood estimators of the Weibull distribution are commonly used. However, they
are biased, and thus, in this paper, we propose analytic bias-corrected MLEs for the two-parameter
Weibull distribution. The analytic bias-corrected MLEs are considered in Section 2 and compared with
the other bias-corrected MLEs, which are also known as bootstrap bias-corrected MLEs. In Sections 3
and 4, we introduce two other commonly-used estimators. Monte Carlo experiments are conducted
for the simulation study. Tabular and graphical representations of the results are presented in this
section. The results indicate that the analytic bias-corrected estimators are superior to not only
traditional bootstrap bias-corrected estimators, but also the other two commonly-used estimators.
Thus, the analytic bias-corrected estimators should be highly recommended. Finally, we apply these
estimators to an actual situation and draw conclusions.
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2. Maximum Likelihood Estimators and Different Bias-Corrected Maximum Likelihood Estimators

2.1. Maximum Likelihood Estimators

Suppose the sample (x1, x2, ...xn) is generated from the log–normal distribution. The likelihood
function of the Weibull distribution is:

L = (
1
λ
)knkn(

n

∏
i=1

xi)
k−1e−λ−k ∑n

i=1 xk
i (6)

and the formula for the log-likelihood function is:

l = log L = −kn log λ + n log k + (k− 1)
n

∑
i=1

log xi − λ−k
n

∑
i=1

xk
i (7)

The MLEs can be obtained by solving the following equations:

∂l
∂λ

= − kn
λ

+ kλ−k−1
n

∑
i=1

xk
i = 0 (8)

∂l
∂k

= −n log λ +
n
k
+

n

∑
i=1

log xi − λ−k
n

∑
i=1

xk
i log xi + λ−k(log λ)

n

∑
i=1

xk
i = 0 (9)

The Newton-Raphson method is used to solve these two equations, and solutions k̂ and λ̂

were obtained.

2.2. Analytic Bias-Corrected Maximum Likelihood Estimators

Suppose l(σ) is the log-likelihood function of the Weibull distribution based on a sample size n.
The joint cumulants of the derivatives of the log-likelihood function are:

hij = E[
∂2l

∂σi∂σj
], i, j = 1, 2, ..., q (10)

hijm = E[
∂3l

∂σi∂σj∂σm
], i, j, m = 1, 2, ..., q (11)

hij,m = E[
∂2l

∂σi∂σj

∂l
∂σm

], i, j, m = 1, 2, ..., q (12)

h(m)
ij =

∂hij

∂σm
, i, j, l = 1, 2, ..., q (13)

In this part, the function l(σ) is regular with respect to all derivatives up to the third order.
We assume that Equations (10)–(13) are O(n). Cox and Snell [13] showed that for sample data that

are independent, but not always identically distributed, the bias of the s-th element of the MLE of σ is:

Bias(σ̂s) =
q

∑
i=1

q

∑
j=1

q

∑
l=1

hsihsj[(1/2)hijm + hij,m] + O(n−2), i, j, m = 1, 2, ..., q (14)

where hij is the (i, j)-th element of the inverse of Fisher’s information matrix, H = {−hij}. Cordeiro and
Klein [14] observed that the bias expression still holds even if the observations are non-independent,
proved that all of the h terms are O(n) and recommended another form for the expression:

Bias(σ̂s) =
q

∑
i=1

hsi
q

∑
j=1

q

∑
l=1

hsj[hm
ij − (1/2)hijm]hjm + O(n−2), i, j, m = 1, 2, ..., q (15)
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In Equation (15), we define:

a(m)
ij = h(m)

ij −
1
2

hijm, i, j, m = 1, 2, ..., q (16)

and (15) can be written as:
Bias(σ̂) = H−1 Avec(H−1) + O(n−2) (17)

where vec(H−1) is a transformation of the matrix H−1 into a vector form, and the matrix A is:

A(m) = {a(m)
ij }; i, j, m = 1, 2, ..., q (18)

A = [A(1) | A(2) | ... | A(q)] (19)

Then, the bias-corrected MLEs are:

Bias

(
λ̃analytic−corrected

k̃analytic−corrected

)
= σ̂− Ĥ−1 Âvec(Ĥ−1) (20)

where Ĥ = (H)|σ̂ and Â = (A)|σ̂. The bias of σ̃ can be proven to be O(n−2). The values of the elements
of σ̂ can be obtained based on the maximum likelihood equations.

This method was applied to the generalized Pareto distribution by Giles et al. [15] successfully,
and Min Wang [16] used it for the weighted Lindley distribution with Wentao Wang.

Specific calculation procedures of the bias-corrected MLEs of the parameters of the Weibull
distribution are listed in Appendix A.

2.3. Bootstrap Bias-Corrected Estimators

In this section, the bootstrap bias-corrected estimators of the Weibull distribution are considered,
which were suggested by Mackinnon and Smith [17].

The solutions k̂ and λ̂ are the particular values of estimators based on MLEs, and we regard k̂ and
λ̂ as the particular parameters of the log–normal distribution, from which the NB replicative samples
are generated. Thus, the corresponding estimates (k̂1, k̂2, ..., k̂n) and (λ̂1, λ̂2, ..., λ̂n) are obtained.

The bootstrap bias-corrected parameters are ǩ = 2k̂− (1/NB)∑NB
j=1 k̂ j, λ̌ = 2λ̂− (1/NB)∑NB

j=1 λ̂j

(the parameters k̂ j and λ̂j are the MLEs of k and λ from the j-th sample of the NB replication samples).
This method is fairly effective and is worth applying to various situations, which causes that

many experts have investigated it. Ferrari and Cribari-Neto [18] explored the relationship between
bias correction of maximum likelihood estimators through the bootstrap method, and the bootstrap
method was presented by Ho and Fernandes da Silva [19] to make improvements in the MLE of Mean
Time to Failure (MTTF) and p-quantiles. Focarelli [20] used the bootstrap bias-correction procedure to
estimate long-run relationships from dynamic panels, with an application to money demand in the
euro area.

3. Percentile Estimators

The estimators based on percentiles are also investigated. This approach was first studied by
Kao [21,22] and then was explored by Mann, Schafer and Singpurwalla [23]. This method is suitable
for the Weibull distribution.

Let us consider the situation where both the parameters λ and k are unknown. From the
cumulative distribution function (1), we can obtain:

λ[− log(1− F(xi; k, λ))](1/k) = xi (21)
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Suppose that (x1, x2, ...xn) is a random sample of data, and the (x(1), x(2), ...x(n)) is the ordered
observation. Let pi be the estimate of F(x(i); k, λ), then we can obtain estimates of λ and k by minimizing
the equation:

n

∑
i=1

[xi − [− log(1− F(x(i); k, λ))](1/k)]2 (22)

Generally, some pi’s are used to be the estimates of the F(xi; k, λ), and the pi = (i/(n + 1)) is
most frequently used, because (i/(n + 1)) is the expected value of F(x(i); k, λ). In this article, we also
use this pi.

Equation (22) is a non-linear function. To obtain estimates of the two parameters, we can solve (22)
by using some non-linear regression techniques. These estimators are called percentile estimators,
which were also applied and introduced by Gupta and Kundu [24].

4. Least Squares Estimators

In this section, we introduce the expressions of another estimation. This method was first applied
by Swain, Venkatraman and Wilson [25] to estimate the parameters of the beta distribution, and it
can be utilized in other cases, as well. Suppose that (x1, x2, ..., xn) is a random sample of size n from a
distribution whose distribution function is F(x) and that (x(1), x(2), ..., x(n)) denotes the ordered set of
sample observations. Jonson, Kotz and Balakrishnan [26] proposed expressions for the expectations
and variances,

E(F(x(i))) =
i

n + 1
, i = 1, 2, ..., n (23)

The least squares estimators can be obtained by minimizing:

n

∑
i=1

[F(x(i))−
i

n + 1
]2 (24)

We call this estimator as least squares estimator.
Therefore, in the case of the Weibull distribution, the least squares estimators of k and λ

are denoted by kLse and λLse, respectively. These values are obtained by minimizing:

n

∑
i=1

[1− e−(
x(i)

λ )k − i
n + 1

]2 (25)

5. Simulation Study

5.1. Procedures

In this part, the Monte Carlo experiment is described, and the simulation results are analyzed.
The R 3.2.2 software [27] routines for log–normal random variates are used to generate the sample
from the Weibull distribution. Then, the MLE, percentile estimation and least squares estimation can
be realized by the non-linear minimization function. In the R software, the non-linear minimization
function can solve a minimization problem using a Newton-type algorithm. After substituting the
MLEs into the corrected formula mentioned previously, we can obtain the analytic bias-corrected
estimators. The bootstrap bias-corrected estimators will be acquired after conducting the replicative
MLE experiments.

5.2. Analysis of the Results

5.2.1. Comparison of Maximum Likelihood Estimators and Bias-Corrected Maximum Likelihood
Estimators

Comparing the theoretical performances of the different estimators mentioned above is not
convincing. Therefore, we performed extensive simulations to compare the performances of the
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different methods, mainly with respect to their real absolute percentage biases and percentage mean
squared errors (MSEs) for different sample sizes. The percentage MSE is defined as 100× (MSE(k̂)/k2),
and the absolute percentage bias is defined as 100× |(mean(k̂)− k)/k|.

In each section of this experiment, 20,000 Monte Carlo replications are performed,
and 10,000 bootstrap samples are used for every replication.

We also investigate general Weibull distributions with some common parameter values.
The exponential distribution with particular parameter value (k = 1) is also investigated here. We select
parameters values for the Weibull distribution (k = 1) that are consistent with the data generating
process being an exponential distribution.

Absolute percentage biases and MSEs of those estimators for the exponential distribution are
presented in Table 1, and those for the Weibull distribution are presented in Table 2.

These tables show that the percentage biases of the analytic bias-corrected MLEs are much smaller
than those of the MLEs. Meanwhile, both the analytic bias correction and bootstrap bias correction
perform well. However, the Cox-Snell bias correction is more effective than the bootstrap reduction,
especially with the modest sample size.

The absolute values of the percentage biases tend to decline as the sample size increases, and the
percentage MSEs of the Cox-Snell estimators are smaller than those of the bootstrap estimators,
except in a few cases. The MSEs and biases of the analytic bias-correction estimators are smaller than
those of the other estimators.

Table 1. Percentage bias and mean squared errors (MSEs) for the exponential distribution.

n k̂ kPer ǩ kLse k̃

k = 1, λ = 4.2

10 3.38797 (1.72263) 4.24687 (1.63461) 1.62722 (1.68783) 2.03847 (2.23278) 1.54944 (2.178493)
20 3.29136 (1.65143) 4.13135 (1.57272) 1.58273 (1.52827) 1.74331 (2.177534) 1.48638 (1.40788)
50 2.79397 (1.14223) 3.64087 (1.09408) 1.09148 (1.04746) 1.21462 (1.68899) 0.97849 (0.98887)
90 2.25832 (0.43723) 2.73324 (0.49677) 1.03022 (0.41751) 1.09139 (0.95252) 0.96362 (0.40429)

k = 1, λ = 6

10 3.62346 (2.43225) 4.52579 (2.32371) 1.93752 (2.37691) 2.12836 (2.84987) 1.83741 (2.23637)
20 3.48225 (2.34162) 4.44257 (2.26101) 1.84247 (2.23775) 1.93243 (2.76782) 1.73236 (2.19606)
50 2.48276 (1.83342) 3.33175 (1.71529) 0.99447 (1.75702) 1.01764 (2.37791) 0.96848 (1.67906)
90 2.24721 (0.88253) 2.92384 (0.89496) 0.83833 (0.89241) 0.99847 (1.04731) 0.81751 (0.81043)

n λ̂ λPer λ̌ λLse λ̃

k = 1, λ = 4.2

10 0.32264 (0.24035) 0.28236 (0.59336) 0.623731 (0.24071) 0.18357 (0.30108) 0.17435 (0.23218)
20 0.31451 (0.22341) 0.27293 (0.23809) 0.24386 (0.23353) 0.17673 (0.29049) 0.16212 (0.22234)
50 0.27232 (0.18334) 0.22251 (0.18124) 0.19474 (0.18364) 0.12734 (0.24157) 0.11615 (0.17787)
90 0.22582 (0.13205) 0.21523 (0.13221) 0.16342 (0.13201) 0.09862 (0.15193) 0.06783 (0.12996)

k = 1, λ = 6

10 0.23464 (0.22826) 0.36204 (0.23118) 0.19424 (0.22719) 0.35411 (0.23386) 0.13571 (0.22105)
20 0.21527 (0.21376) 0.34482 (0.21096) 0.18895 (0.21855) 0.33206 (0.22596) 0.12556 (0.21224)
50 0.20738 (0.19892) 0.28401 (0.20515) 0.17804 (0.19497) 0.26589 (0.20787) 0.12404 (0.19272)
90 0.19278 (0.09642) 0.26276 (0.09994) 0.15497 (0.09036) 0.24259 (0.10425) 0.11285 (0.08902)

In these tables λ̂, λPer , λ̌, λLse, λ̃ denote MLEs, percentile, bootstrap, least squares and analytic bias corrected
estimators of λ .
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Table 2. Percentage bias and MSEs for the Weibull distribution.

n k̂ kPer ǩ kLse k̃

k = 3, λ = 5

10 2.87878 (2.02135) 3.76377 (1.94205) 1.17121 (1.97737) 1.58273 (2.52286) 1.09343 (0.48693)
20 2.71862 (1.91433) 3.61252 (1.82626) 1.02736 (1.88171) 1.23402 (2.47634) 0.96782 (1.77987)
50 2.23878 (1.42331) 3.10377 (1.34989) 0.51983 (1.37363) 0.74025 (1.98798) 0.48693 (1.28777)
90 1.78422 (0.77231) 2.23241 (0.76976) 0.50221 (0.77014) 0.51992 (1.22424) 0.46362 (0.74991)
120 1.33244 (0.68769) 1.76234 (0.55237) 0.49025 (0.52129) 0.52106 (0.76348) 0.38221 (0.50104)

k = 4.5, λ = 2.5

10 4.46931 (2.83411) 3.27236 (2.49953) 2.72193 (2.38278) 1.98214 (3.40137) 0.56310 (2.22179)
20 4.21625 (2.61951) 2.92736 (2.27636) 2.51293 (2.15254) 1.68174 (3.19227) 0.54212 (2.00913)
50 3.34629 (1.58012) 2.16325 (1.37882) 1.13245 (1.37627) 0.80234 (2.2101) 0.49672 (1.37421)
90 2.22365 (0.78163) 1.49237 (0.70841) 0.82329 (0.70527) 0.62342 (1.22716) 0.48297 (0.70044)
120 1.83167 (0.57310) 1.26119 (0.56236) 0.58293 (0.56093) 0.45231 (0.76328) 0.41032 (0.55047)

k = 16, λ = 83.8

10 3.36463 (2.51351) 4.25296 (2.43116) 1.67224 (2.46618) 1.88162 (2.99377) 1.57213 (2.36262)
20 3.11751 (2.41325) 4.12374 (2.31519) 1.52373 (2.37256) 1.61233 (2.87527) 1.42262 (2.26869)
50 2.12766 (1.93223) 3.01256 (1.85091) 0.64873 (1.87429) 0.77045 (2.47618) 0.68583 (1.79669)
90 1.97311 (0.92734) 2.63147 (0.94868) 0.58232 (0.92813) 0.68873 (1.17312) 0.57014 (0.90033)

120 1.23241 (0.69887) 1.26123 (0.58363) 0.56344 (0.57314) 0.62323 (0.73139) 0.45236 (0.50315)

n λ̂ λPer λ̌ λLse λ̃

k = 3, λ = 5

10 0.28614 (0.26124) 0.241226 (0.61216) 0.211832 (0.26081) 0.146316 (0.32004) 0.135225 (0.25109)
20 0.27369 (0.25233) 0.23311 (0.25917) 0.20496 (0.25164) 0.13753 (0.31193) 0.12613 (0.24765)
50 0.23112 (0.20114) 0.18432 (0.20213) 0.15589 (0.20175) 0.08864 (0.26232) 0.07725 (0.19897)
90 0.17768 (0.15408) 0.175003 (0.15431) 0.12795 (0.15201) 0.07716 (0.17203) 0.02694 (0.15097)
120 0.11291 (0.11124) 0.13766 (0.11214) 0.67633 (0.11072) 0.02675 (0.11482) 0.01418 (0.10621)

k = 4.5, λ = 2.5

10 0.19743 (0.13385) 0.310213 (0.14019) 0.15342 (0.13291 0.321029 (0.14933) 0.08721 (0.13004)
20 0.17243 (0.12724) 0.29126 (0.12948) 0.14191 (0.12574) 0.30927 (0.13852) 0.08512 (0.12121)
50 0.15672 (0.10983) 0.22125 (0.11032 0.11814 (0.10875) 0.20923 (0.11763) 0.07431 (0.10814)
90 0.12609 (0.06171) 0.20823 (0.06182) 0.08726 (0.06121) 0.17301 (0.07124) 0.04814 (0.06908)
120 0.10203 (0.05097) 0.18037 (0.05102) 0.73716 (0.05092) 0.09272 (0.05782) 0.03223 (0.05073)

k = 16, λ = 83.8

10 0.16632 (0.25277) 0.29013 (0.26126) 0.12231 (0.25163) 0.28137 (0.26897) 0.06746 (0.25005)
20 0.14243 (0.24724) 0.27839 (0.24997) 0.11978 (0.24578) 0.26015 (0.25942) 0.05542 (0.24213)
50 0.13362 (0.22975) 0.21037 (0.23141) 0.10077 (0.22934) 0.19845 (0.23861) 0.05031 (0.22711)
90 0.12717 (0.12457) 0.19715 (0.12986) 0.08934 (0.12397) 0.17518 (0.13232) 0.04814 (0.12182)

120 0.10336 (0.08319) 0.18513 (0.09043) 0.07861 (0.08126) 0.11388 (0.12123) 0.03272 (0.07964)

n k̂ kPer ǩ kLse k̃

k = 5.8, λ = 4

10 4.66337 (2.99373) 3.32984 (2.79688) 2.60702 (3.72264) 1.59874 (3.42664) 0.88434 (2.81625)
20 4.37652 (2.86477) 3.11147 (2.43241) 2.47002 (3.28695) 1.45287 (3.05669) 0.67798 (2.53676)
50 3.29761 (1.71237) 2.42056 (1.51879) 1.68072 (2.37586) 1.06739 (2.13422) 0.58241 (1.51003)
90 2.02482 (0.66934) 1.69243 (0.65832) 0.75016 (0.69897) 0.51206 (1.21028) 0.49431 (0.50207)
120 1.55471 (0.52901) 1.24899 (0.53106) 0.71538 (0.52411) 0.41097 (0.61093) 0.39275 (0.511364)

k = 3, λ = 2.6

10 0.28441 (2.03217) 0.19927 (2.00121) 0.19221 (1.96287) 0.14282 (2.56542) 0.13155 (0.95892)
20 0.27233 (1.92128) 0.18876 (1.90851) 0.18024 (1.89326) 0.12393 (2.47998) 0.11042 (1.88297)
50 0.22341 (1.40236) 0.17543 (1.38972) 1.15976 (1.37653) 0.09472 (1.87524) 0.07424 (1.36891)
90 0.16493 (0.85237) 0.16998 (0.75364) 0.11978 (0.74984) 0.06921 (1.10475) 0.02602 (0.74004)
120 0.11419 (0.51264) 0.14235 (0.50928) 0.07321 (0.50886) 0.02634 (0.75213) 0.02123 (0.50832)

n λ̂ λPer λ̌ λLse λ̃

k = 5.8, λ = 4

10 0.23323 (0.99762) 0.25986 (1.03875) 0.10375 (1.08632) 0.25671 (1.12056) 0.07796 (0.97432)
20 0.22505 (0.96251) 0.24158 (0.98347) 0.09865 (0.99879) 0.24763 (1.03522) 0.06987 (0.94318)
50 0.15613 (0.65838) 0.20069 (0.66927) 0.08976 (0.67832) 0.20973 (0.74224) 0.05759 (0.65021)
90 0.11203 (0.34578) 0.15563 (0.34865) 0.07783 (0.34196) 0.15107 (0.38976) 0.04326 (0.33275)
120 0.09463 (0.02524) 0.13374 (0.02637) 0.06372 (0.02496) 0.13214 (0.03109) 0.02543 (0.02387)

k = 3, λ = 2.6

10 0.59711 (0.39213) 0.48897 (0.40027) 0.38799 (0.37994) 0.466206 (0.42374) 0.27911 (0.38133)
20 0.56192 (0.28192) 0.45256 (0.38627) 0.34521 (0.35879) 0.44575 (0.39266) 0.21364 (0.35025)
50 0.32624 (0.25173) 0.39201 (0.25086) 0.23336 (0.24965) 0.35214 (0.27894) 0.13342 (0.24837)
90 0.11398 (0.13021) 0.32325 (0.13264) 0.10924 (0.12987) 0.22343 (0.15036) 0.05121 (0.12866)
120 0.79112 (0.0987) 0.14923 (0.07023) 0.08011 (0.06973) 0.09234 (0.08997) 0.01206 (0.06835)

5.2.2. Analysis for All Estimators

The absolute values of the percentage biases of all five estimators are shown in the Figures 1–3.
Some of the points are clear based on the experimental results. For all methods, as the sample size
increases, the biases decrease.
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Figure 1. % Bias of the parameters. (a) % Bias of k (k = 4.5, λ = 2.5); (b) % bias of k (k = 3, λ = 5);
(c) % bias of λ (k = 4.5, λ = 2.5); (d) % bias of λ (k = 3, λ = 5). In these figures, pere, lse, mle, bmle
and mle denote the related curves of percentile estimators, least squares estimators, MLEs, bootstrap
corrected MLEs and analytic bias-corrected estimators.
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Figure 2. % Bias of the parameters. (a) % bias of k (k = 5.8, λ = 4); (b) % bias of λ (k = 5.8, λ = 4);
(c) % bias of k (k = 3, λ = 2.6); (d) % bias of λ (k = 3, λ = 2.6).
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Figure 3. % Bias of the parameters. (a) % bias of k (k = 16, λ = 83.8); (b) % bias of λ (k = 16, λ = 83.8).

For the most part, the biases of the percentile estimators are larger than those of other estimators,
except in specific cases, as shown in Figures 1a and 2a. The bootstrap bias-corrected MLEs and analytic
bias-corrected MLEs are generally both superior to MLEs. Furthermore, the analytic bias-corrected
MLEs are superior to the other estimators.

The performance of the least squares estimators is uncertain. Sometimes, the least squares
estimators perform better than the MLEs, whereas at other times, the latter’s performance stands out.
Clearly, the biases of the least squares estimators become extremely similar to those of the bias-corrected
MLEs as the sample size increases.

However, the MSEs of the least squares estimators are often larger than those of the other
estimators. Meanwhile, the MSEs of the MLEs, analytic bias-corrected MLEs, bootstrap bias-corrected
MLEs and percentile estimators are close, as evidenced by the results shown in Figures 4–6.
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Figure 4. % MSEs of the parameters. (a) % MSE of k (k = 4.5, λ = 2.5); (b) % MSE of k (k = 3, λ = 5);
(c) % MSE of λ (k = 4.5, λ = 2.5); (d) % MSE of λ (k = 3, λ = 5).
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Figure 5. % MSEs of the parameters. (a) % MSE of k (k = 5.8, λ = 4); (b) % MSE of λ (k = 5.8, λ = 4);
(c) % MSE of k (k = 3, λ = 2.6); (d) % MSE of λ (k = 3, λ = 5).
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Figure 6. % MSEs of the parameters. (a) % MSE of k (k = 16, λ = 83.8); (b) % MSE of k (k = 16, λ = 83.8).

These results indicate that the analytic bias-corrected MLEs can effectively reduce the biases of
MLEs. Moreover, to obtain the least biased estimators of the parameters of the Weibull distribution,
the analytic bias-corrected MLEs are much more appropriate than the other common estimators
mentioned above.

6. Real Illustrative Example

In this section, the practical performance of the Cox–Snell bias correction is explored, and we
apply this estimation to real data (i.e., the data provided by Aarest [7]). Aarest tested the times to
failure of 50 devices.

We fit the Weibull distribution to these data using MLEs, percentile estimators and least squares
estimators. Then, we obtain the bias-corrected parameters by solving the analytic expressions
mentioned previously.

Table 3 reports the failure time of 50 devices.
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Table 3. Calculated failure time of 50 devices.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13

0.100 7.00 36.00 67.00 84.00 0.200 11.00 40.00 67.00 84.00 1.00 12.00 45.00

No. 14 15 16 17 18 19 20 21 22 23 24 25 26

67.00 84.00 1.00 18.00 46.00 67.00 85.00 1.00 18.00 47.00 72.00 85.00 1.00

No. 27 28 29 30 31 32 33 34 35 36 37 38 39

18.00 50.00 75.00 85.00 1.00 18.00 55.00 79.00 85.00 2.00 18.00 60.00 82.00

No. 40 41 42 43 44 45 46 47 48 49 50

85.00 3.00 21.00 63.00 82.00 86.00 6.00 32.00 63.00 83.00 86.00

Table 4 reports the maximum likelihood estimates, bootstrap maximum likelihood estimates,
analytic bias-corrected maximum likelihood estimates, percentile estimates and least squares estimates
after fitting the Weibull distribution to these data.

Table 4. Five estimates of Parameters.

k̂ kPer ǩ kLse k̃

16.52175 16.63145 16.22125 16.60235 16.15814

λ̂ λPer λ̌ λLse λk

83.64601 83.48114 83.655114 83.58114 83.669204

Based on the MLE of the data shown in Table 3, Figure 7 presents the fitted probability density
function curve of Weibull distribution.
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Figure 7. Fitted Weibull’s probability density function (failure time data).

For these data, the analytic bias correction decreases the height of the Weibull distribution
density, and the shape of the density becomes slightly "fatterr" and "shorter". Thus, the distribution is
more uniform.

7. Conclusions

Usually, the two parameters of a Weibull distribution are estimated using maximum likelihood
estimation, which is realized under non-linear and first-order conditions. Nevertheless, after comparing
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all of the methods, it is clear that in terms of the minimization, analytic bias-corrected MLEs exhibited the
best performance in almost all cases. Therefore, the analytic bias-corrected MLEs of the two-parameter
Weibull distribution are proposed to more effectively reduce the biases of the MLEs.

We conduct a Monte Carlo experiment, which is described in the simulation study section.
According to the MSEs and absolute percentage biases of the estimates, we explore the effectiveness of
these estimations. Clearly, the biases of the analytic bias-corrected MLEs are smaller than those of the
other estimators. Consequently, we can conclude that the analytic bias-corrected MLEs are superior to
the others tested here.

All in all, the analytic bias-corrected MLEs discussed in this paper are worth popularizing for
utilization on actual data. They should be highly recommended, especially for small sample sizes.

Author Contributions: Man Chen provided main thoughts, organized language, built programming models and
did later modifications. Zheng Zhang did investigations, provided practical data, proposed related ideas and
polished the language. Cen Cui recorded data and took part in doing programming models and analyzing data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Specific Calculation

Here are the specific calculation procedures of the bias-corrected MLEs of the parameters of the
Weibull distribution.

From the previous part, we can know that the likelihood function of the two-parameter Weibull
distribution is:

L = (
1
λ
)knkn(

n

∏
i=1

xi)
k−1e−λ−k ∑n

i=1 xk
i (A1)

and the log-likelihood function is:

l = log L = −kn log λ + n log k + (k− 1)
n

∑
i=1

log xi − λ−k
n

∑
i=1

xk
i (A2)

We obtain these higher-order derivatives:

∂l
∂λ

= − kn
λ

+ kλ−k−1
n

∑
i=1

xk
i (A3)

∂l
∂k

= −n log λ +
n
k
+

n

∑
i=1

log xi − λ−k
n

∑
i=1

xk
i log xi + λ−k(log λ)

n

∑
i=1

xk
i (A4)

∂2l
∂λ2 =

kn
λ2 − k(k + 1)λ−k−2

n

∑
i=1

xk
i (A5)

∂2l
∂k2 =

−n
k2 + 2λ−k(log λ)

n

∑
i=1

xk
i log xi − λ−k

n

∑
i=1

xk
i (log xi)

2 − λ−k(log λ)2
n

∑
i=1

xk
i (A6)

∂2l
∂λ∂k

=
∂2l

∂k∂λ
=
−n
λ

+ kλ−k−1
n

∑
i=1

xk
i log xi + (λ−k−1 − kλ−k−1 log λ)

n

∑
i=1

xk
i (A7)

∂3l
∂λ3 =

−2kn
λ3 + k(k + 1)(k + 2)λ−k−3

n

∑
i=1

xk
i (A8)
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∂3l
∂k3 =

2n
k3 − 3λ−k(log λ)2

n

∑
i=1

xk
i log xi + 3λ−k(log λ)

n

∑
i=1

xk
i (log xi)

2

−λ−k
n

∑
i=1

xk
i (log xi)

3 + λ−k(log λ)3
n

∑
i=1

xk
i

(A9)

∂3l
∂λ2∂k

=
∂3l

∂λ∂k∂λ

=
n
λ2 + (−(2k + 1)λ−k−2 + k(k + 1)λ−k−2(log λ))

n

∑
i=1

xk
i

−k(k + 1)λ−k−2
n

∑
i=1

xk
i log λ

(A10)

∂3l
∂k2∂λ

=
∂3l

∂k∂λ∂k

=2(λ−k−1 − kλ−k−1(log λ))
n

∑
i=1

xk
i log xi + kλ−k−1

n

∑
i=1

xk
i (log xi)

2

+(−2λ−k−1 log λ + kλ−k−1(log λ)2)
n

∑
i=1

xk
i

(A11)

and then, we can obtain the following formulas:

h11 = E(
∂2l
∂λ2 ) (A12)

h12 = k21 = E(
∂2l

∂λ∂k
) (A13)

h22 = E(
∂2l
∂k2 ) (A14)

The following equations are also easy to get:

E(
n

∑
i=1

xk
i ) = n

∫ ∞

0
xk(

1
λ
)kkxk−1e−(

x
λ )

k
dx = nλk (A15)

E(
n

∑
i=1

xk
i log xi) = n

∫ ∞
0 xklogx( 1

λ )
kkxk−1e−(

x
λ )

k
dx =

nλk(k log(λ)−γ+1)
k (A16)

E(
n

∑
i=1

xk
i (log xi)

2) =n
∫ ∞

0
xk(logx)2(

1
λ
)kkxk−1e−(

x
λ )

k
dx

=
nλk (6k log(λ)(k log(λ)− 2γ + 2) + 6γ(γ− 2) + π2)

6k2

(A17)

and the following equation is required for the next calculation part:

E(
n

∑
i=1

xk
i (log xi)

3) = n
∫ ∞

0
xk(log x)3(

1
λ
)kkxk−1e−(

x
λ )

k
dx

=
nλk(k log(λ)(2k log(λ)(k log(λ)− 3γ + 3) + 6γ(γ− 2) + π2)− 4ζ(3)− γ(2γ(γ− 3) + π2) + π2)

2k3

(A18)
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Where γ is a constant called eulergamma and its value is about 0.57721; and ζ(3) is another
constant, and its value is about 1.20206; then, these results can be obtained:

h11 =
−k2n

λ2 ,

h12 = h21 =
(1− γ)n

λ
,

h22 =
−
(
6γ2 − 12γ + π2 + 6

)
n

6k2

Then, based on Equation (16), a series of results is obtained:

h1
11 =

∂h11

∂λ
=

2h2n
λ3 (A19)

h1
12 = h1

21 =
∂h12

∂λ
=

(γ− 1)n
λ2 (A20)

h1
22 =

∂h22

∂λ
= 0 (A21)

h2
11 =

∂h11

∂k
= −2kn

λ2 (A22)

h2
12 = h2

21 =
∂h12

∂h
= 0 (A23)

h2
22 =

∂h22

∂k
=

(6− 12γ + 6γ2 + π2)n
3k3 (A24)

h111 =
k2(k + 3)n

λ3 (A25)

h122 = h212 = h221 =

(
12− 24γ + 6γ2 + π2) n

6kλ
(A26)

h222 =
n
(
4ζ(3) + 2γ3 − 6γ2 + γπ2 − π2 + 4

)
2k3 (A27)

then:

a(1)11 = h1
11 −

1
2

h111 = − (k− 1)k2n
2λ3 (A28)

a(1)12 = h1
12 −

1
2

h121 =
(−γk + 3k + γ− 1)n

2λ2 (A29)

a(1)21 = h1
21 −

1
2

h211 =
(−γk + 3k + γ− 1)n

2λ2 (A30)

a(1)22 = h1
22 −

1
2

h221 = − (12− 24γ + 6γ2 + π2)n
12kλ

(A31)

a(2)11 = h2
11 −

1
2

h112 = − (γk + k + γ− 1)n
2λ2 (A32)

a(2)12 = h2
12 −

1
2

h122 = − (12− 24γ + 6γ2 + π2)n
12kλ

(A33)

a(2)21 = h2
21 −

1
2

h212 = − (12− 24γ + 6γ2 + π2)n
12kλ

(A34)

a(2)22 = h2
22 −

1
2

h222 = −n(12ζ(3) + 3γ(8 + π2) + 6γ3 − 30γ2 − 5π2)

6k3 (A35)

From the formula Hij = {−hij}, we can know that the information matrix is:
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H =

 k2n
λ2

−(1−γ)n
λ

−(1−γ)n
λ

(6γ2−12γ+π2+6)n
6k2

 (A36)

and:

A = [A(1) | A(2)]

A =

(
a(1)11 a(1)12 a(2)11 a(2)12

a(1)21 a(1)22 a(2)21 a(2)22

)

Using the bias-corrected expressions in the matrix form, we can obtain:

Bias

(
λ̂

k̂

)
= σ̂− Ĥ−1 Âvec(Ĥ−1) (A37)

The bias-corrected estimates are:(
λ̃

k̃

)
=

(
λ̂

k̂

)
− Bias

(
λ̂

k̂

)
(A38)

where Ĥ = H|
λ=λ̂,k=k̂,Â = A|

λ=λ̂,k=k̂
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12. Akdaǧ, S.A.; Dinler, A. A new method to estimate Weibull parameters for wind energy applications.

Energy Convers. Manag. 2009, 50, 1761–1766.
13. Cox, D.R.; Snell, E.J. A general definition of residuals. J. R. Stat. Soc. 1968, 30, 248–275.
14. Cordeiro, G.M.; Klein, R. Bias correction in ARMA models. Stat. Probab. Lett. 1994, 19, 169–176.
15. Giles, D.E. Bias-corrected maximum likelihood estimation of the parameters of the generalized Pareto

distribution. Commun. Stat. Theory Methods 2012, 45, 2465–2483.
16. Wang, M.; Wang, W. Bias-corrected Maximum Likelihood Estimation of the Parameters of the Weighted

Lindley Distribution. Commun. Stat. Simul. Comput. 2017, 46, 530–545
17. Mackinnon, J.G.; Smith, A.A. Approximate bias corrections in econometrics. J. Econom. 1998, 85, 205–230.
18. Ferrari, S.; Cribari-Neto, F. On bootstrap and analytical bias corrections. Econ. Lett. 1998, 58, 7–15.



Math. Comput. Appl. 2017, 22, 19 18 of 18

19. Ho, L.L.; da Silva, A.F. Bias Correction for Mean Time to Failure and p-Quantiles in a Weibull Distribution
by Bootstrap Procedure. Commun. Stat. Simul. Comput. 2005, 34, 617–629.

20. Focarelli, D. Bootstrap bias-corrected estimators to investigate the long-run properties of money demand in
the euro area. Econ. Model. 2002, 22, 305–325.

21. Kao, J.H.K. Computer Methods for Estimating Weibull Parameters in Reliability Studies. IRE Trans. Reliab.
Qual. Control 1958, 13, 15–22.

22. Kao, J.H.K. A Graphical Estimation of Mixed Weibull Parameters in Life-Testing of Electron Tubes.
Technometrics 1959, 1, 389–407.

23. Mann, N.R.; Schafer, R.E.; Singpurwalla, N.D. Methods for statistical analysis of reliability and life data. J. R.
Stat. Soc. 1974, 139, 1974.

24. Gupta, R.D.; Kundu, D. Generalized exponential distribution: Different method of estimations. J. Stat.
Comput. Simul. 2001, 69, 315–337.

25. Swain, J.; Venkatraman, S.; Wilson, J.R. Least-squares estimation of distribution function in Johnson’s
translation system. J. Stat. Comput. Simul. 1988, 29, 271–297.

26. Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions; John Wiley & Sons: New York,
NY, USA, 1994.

27. Murdoch, D. R-3.2.2 for Windows. Available online: https://cran.r-project.org/bin/windows/base/old/3.2.2/
(accessed on 27 August 2015)

c© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Maximum Likelihood Estimators and Different Bias-Corrected Maximum Likelihood Estimators
	Maximum Likelihood Estimators
	Analytic Bias-Corrected Maximum Likelihood Estimators 
	Bootstrap Bias-Corrected Estimators

	Percentile Estimators
	Least Squares Estimators
	Simulation Study
	Procedures
	Analysis of the Results
	Comparison of Maximum Likelihood Estimators and Bias-Corrected Maximum Likelihood Estimators
	 Analysis for All Estimators


	Real Illustrative Example
	Conclusions
	Specific Calculation

