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Abstract: This paper considers an M/G/1 retrial G-queue with general retrial times, in which the
server is subject to working breakdowns and repairs. If the system is not empty during a normal
service period, the arrival of a negative customer can cause the server breakdown, and the failed
server still works at a lower service rate rather than stopping the service completely. Applying the
embedded Markov chain, we obtain the necessary and sufficient condition for the stability of the
system. Using the supplementary variable method, we deal with the generating functions of the
number of customers in the orbit. Various system performance measures are also developed. Finally,
some numerical examples and a cost optimization analysis are presented.
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1. Introduction

Queues with negative arrivals, called G-queues, were first introduced by Gelenbe [1]. A negative
customer will vanish if it arrives to the queue when the server is down or on vacation. Negative
customers cannot accumulate in a queue and do not receive services. In some cases, the arrival
of a negative customer can cause the server breakdown. Queues with server breakdowns can be
applied in manufacturing systems, production systems, telecommunication systems, inventory systems
and computer systems. Wu and Lian [2] analyzed an M/G/1 retrial G-queue with priority under
the Bernoulli vacation schedule subject to the server breakdowns and repairs. Gao and Wang [3]
investigated an M/G/1 retrial G-queue with orbital search and non-persistent customers, where
the server is subject to failure due to the negative arrivals. Using the matrix geometric method,
Rakhee et al. [4] studied a Geo/Geo/1 G-queue with an unreliable server, where the breakdown of the
server is represented due to the arrival of a negative customer. Some authors like Wang and Zhang [5],
Do [6], Yang et al. [7], Peng et al. [8], Chen et al. [9] and Bhagat and Jain [10] also discussed a retrial
G-queue with server breakdowns.

In the study of queueing models with server breakdowns, the underlying assumption has been
that a server breakdown disrupts the service completely in the system. However, in many practical
cases, the failed server still can serve a customer at a lower service rate during the breakdown period.
This type of breakdown is called a working breakdown, as introduced by Kalidass and Kasturi [11],
and the M/M/1 queue they analyzed can be applied to studying the behavior of the communication
system or the machine replacement problem. Liu and Song [12] extended the M/M/1 queue to the
MX/M/1 queue, where customers arrive in batches. Kim and Lee [13] discussed an M/G/1 queue
with disasters and working breakdowns, where the system size distribution and the sojourn time
distribution are obtained. Recently, Liou [14] considered the profit optimization of an M/M/1 machine
repair problem with warm standbys, multiple vacations and working breakdowns. Jiang and Liu
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[15] investigated a GI/M/1 queue with disasters and working breakdowns in a multi-phase service
environment. Using the matrix geometric method, Ma et al. [16] computed the steady-state distribution
of an M/M/1 queue with multiple vacations and working breakdowns. For more queueing models
with working breakdowns, readers can also refer to Li et al. [17], Liou [18], Chen et al. [19] and
Yen et al. [20]. Note that the concept of working breakdown is different from the concept of working
vacation introduced by Servi and Finn [21]. A working vacation is taken only when the system becomes
empty, while a working breakdown can occur at any time point at which the server is busy with the
service of a customer in the system. Some authors like Yi et al. [22], Yang and Wu [23], Zhang and
Liu [24] and Murugan and Santhi [25] have studied a queueing system with server breakdowns and
working vacations.

Retrial queues can be applied in telecommunication networks, switching systems and computer
networks, and there has been an increasing interest in the analysis of retrial systems in recent years.
Retrial queues are described by the feature that the arriving customers who find the server busy join
the retrial orbit to try again for their requests. A review of retrial queue literature can be found in
Artalejo and Corral [26] and Artalejo [27]. Retrial queueing systems with working vacations were first
studied by Do [28], and the M/M/1 model is motivated by the performance analysis of a media access
control function in wireless networks. For more retrial queues with working vacations, readers can
refer to Jailaxmi et al. [29] and Rajadurai et al. [30,31]. The concept of working breakdown introduced
by Kalidass and Kasturi [11] does make sense in real life. For example, when a computer is infected
with a virus, it may still be able to perform at a slower rate. Up to now, only a few authors have
discussed a single server queue with working breakdowns. To the authors’ best knowledge, there is no
research work investigating a retrial queue with working breakdowns. This motivates us to deal with
an M/G/1 retrial G-queue with working breakdowns in this paper, where a breakdown may occur
due to the arrival of a negative customer.

A practical application example of the proposed model is referred to in the manufacturing system.
Assume that a manufacturing factory has a machine shared by all units (called positive customers)
of the factory, and the machine is operated by an operator. If the machine is busy, a new positive
arrival will sign up on a waiting line, which corresponds to the retrial queue. Otherwise, the unit is
served immediately. After the completion of a service, if there is no unit (the system is empty), the
operator will turn the machine off. Otherwise, the operator will contact the next unit on the list unless
another external unit arrives before the contact is made. The contact time is assumed to be generally
distributed (corresponding to the general retrial time). Due to the machine problem, a machine may
suddenly break down when it is running (corresponding to the negative customer arrival). The broken
down machine is immediately replaced by another standby machine, which may work at a lower
rate, and a repair procedure also starts. The operator will sign up the unit being in service (if any) on
the waiting line, i.e., join the retrial orbit, and the service is restarted by the standby machine after
some random time. As soon as the broken down machine is repaired, it is put back into service, if
there are units in the system. To guarantee the service quality, the repaired machine will restart service
no matter how long the standby machine has served. If the system is empty, on the other hand, the
operator will turn off the repaired machine, which cannot break down. On the arrival of a unit, the
operator turns on the machine immediately, and the service begins.

This paper is organized as follows. Section 2 gives a brief description of the model. Using the
embedded Markov chain, the stable condition is obtained in Section 3. In Section 4, we deal with
the steady state joint distribution of the server state and the number of customers in the retrial orbit.
In Section 5, some numerical examples are presented to show the effect of the parameters on the
system performance measures, and a cost minimization problem is also considered. Finally, Section 6
concludes the paper.
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2. System Model

In this paper, we consider an M/G/1 retrial queue with two types of arrivals, where positive
customers and negative customers arrive according to two independent Poisson processes with rates
λ1 and λ2, respectively. On the arrival of a positive customer, if the server is found to be idle, the
arriving positive customer occupies the server and begins its service immediately. If the server is busy,
on the other hand, the arriving positive customer will join the retrial orbit. We assume that only the
positive customer at the head of the orbit queue is allowed to retry access to the server at a service
completion instant. The retrial time R is assumed to be generally distributed with distribution function
R(x) = 1− exp{−

∫ x
0 α(t)dt}. On the arrival of a negative customer, if the system is not empty, the

server will break down, no matter whether the server is busy or free. The positive customer being in
service, if any, will join the orbit and try to restart its service after some random time. We also assume
that the negative customers cannot accumulate in a queue and do not receive services. When the server
breaks down, the service rate decreases, and a repair procedure starts immediately; the repair time
V follows an exponential distribution with a parameter θ. The repaired server is assumed to be as
good as a new server. At the end of the repair, if the server is busy, the service will be restarted. If the
server is free, on the other hand, the server stays idle. Furthermore, the arriving negative customer
has nothing to do with the server when the system is empty or the server is under repair. In a regular
busy period, the normal service time Sb follows an arbitrary distribution with distribution function
Gb(x) = 1− exp{−

∫ x
0 µ(t)dt}. During a working breakdown period, the lower service time Sv follows

an arbitrary distribution with distribution function Gv(x) = 1− exp{−
∫ x

0 η(t)dt}.
We assume that all of the random variables defined above are independent. Throughout the rest

of the paper, we denote λ = λ1 + λ2. For a distribution function F(x), we define F(x) = 1− F(x) to
be the tail of F(x). We also denote F̃(s) =

∫ ∞
0 e−sxdF(x), F∗(s) =

∫ ∞
0 e−sxF(x)dx. Clearly, we have

F∗(s) = 1−F̃(s)
s .

Let N(t) represent the number of positive customers in the retrial orbit at time t and I(t) denote
the server state, defined as follows:

I(t) =


0, the server is in a working breakdown period at time t and the server is free,

1, the server is in a working breakdown period at time t and the server is busy,

2, the server is during a normal service period at time t and the server is free,

3, the server is during a normal service period at time t and the server is busy.

At time t ≥ 0, we define the random variable ξ(t) as follows: if I(t) = 0 or I(t) = 2 and N(t) > 0,
ξ(t) represents the elapsed retrial time; if I(t) = 1, ξ(t) denotes the elapsed lower service time; if
I(t) = 3, ξ(t) stands for the elapsed normal service time. Therefore, the system can be described by a
Markov process X(t) = {I(t), N(t), ξ(t)} with state space:

Ω = {(0, 0)} ∪ {(1, 0, x), x ≥ 0} ∪ {(2, 0)} ∪ {(3, 0, x), x ≥ 0} ∪ {(i, n, x), i = 0, 1, 2, 3, n ≥ 1, x ≥ 0}.

Let {tn; n = 1, 2, · · · } be the sequence of epochs at which a service completion or a breakdown
occurs and Yn = {I(t+n ), N(t+n )}. Then, the sequence of random variables {Yn; n ≥ 1} forms an
embedded Markov chain with state space {(i, k), i = 0, 2, k ≥ 0}.

3. Stable Condition

To develop the transition matrix of {Yn; n ≥ 1}, we introduce a few definitions:

Definition 1. ak =
∫ ∞

0
(λ1x)k

k! e−λ1xe−λ2xdGb(x), k ≥ 0,
which represents the probability that k positive customers arrive during Sb and no negative customer

arrives; we can have:
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A(z)
4
=

∞

∑
k=0

akzk =
∫ ∞

0
e−(λ−λ1z)xdGb(x) = G̃b(λ− λ1z), A(1) = G̃b(λ2),

A′(1) = λ1

∫ ∞

0
xe−λ2xdGb(x), A′′(1) = λ2

1

∫ ∞

0
x2e−λ2xdGb(x).

Definition 2. bk =
∫ ∞

0
(λ1x)k

k! e−λ1xλ2e−λ2xGb(x)dx, k ≥ 0,
which explains the probability that k positive customers arrive before the negative customer arrives and no

services complete; we can get:

B(z)
4
=

∞

∑
k=0

bkzk =
∫ ∞

0
λ2e−(λ−λ1z)xGb(x)dx =

λ2

λ− λ1z

(
1− A(z)

)
, B(1) = 1− A(1),

B′(1) =
λ1

λ2

(
1− A(1)

)
− A′(1), B′′(1) = 2

(λ1

λ2

)2(
1− A(1)

)
− 2

λ1

λ2
A′(1)− A′′(1).

Definition 3. ck =
∫ ∞

0
(λ1x)k

k! e−λ1xe−θxdGv(x), k ≥ 0,
which represents the probability that V ≥ Sv and k positive customers arrive during Sv; we can obtain:

C(z)
4
=

∞

∑
k=0

ckzk =
∫ ∞

0
e−
(

θ+λ1(1−z)
)

xdGv(x) = G̃v

(
θ + λ1(1− z)

)
, C(1) = G̃v(θ),

C′(1) = λ1

∫ ∞

0
xe−θxdGv(x), C′′(1) = λ2

1

∫ ∞

0
x2e−θxdGv(x).

Definition 4. dk =
∫ ∞

0
(λ1x)k

k! e−λ1xθe−θxGv(x)dx, k ≥ 0,
which explains the probability that V < Sv and k positive customers arrive during V; we can derive:

D(z)
4
=

∞

∑
k=0

dkzk = θG∗v
(

θ + λ1(1− z)
)
=

θ

θ + λ1(1− z)

[
1− C(z)

]
, D(1) = 1− C(1),

D′(1) =
λ1

θ

(
1− C(1)

)
− C′(1), D′′(1) = 2

(λ1

θ

)2(
1− C(1)

)
− 2

λ1

θ
C′(1)− C′′(1).

Definition 5. uk = ∑k
j=0 djak−j, k ≥ 0,

which represents the probability that V < Sv and k positive customers arrive during V plus Sb; we
can have:

U(z)
4
=

∞

∑
k=0

ukzk = D(z)A(z), U(1) = D(1)A(1),

U′(1) = D′(1)A(1) + D(1)A′(1), U′′(1) = D′′(1)A(1) + 2D′(1)A′(1) + D(1)A′′(1).

Definition 6. vk = ∑k
j=0 djbk−j, k ≥ 0,

which explains the probability that V < Sv and the new started service does not complete before the negative
customer arrives, and k positive customers arrive during the whole period; we can get:
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V(z)
4
=

∞

∑
k=0

vkzk = D(z)B(z), V(1) = D(1)B(1),

V′(1) = D′(1)B(1) + D(1)B′(1), V′′(1) = D′′(1)B(1) + 2D′(1)B′(1) + D(1)B′′(1).

Using the lexicographical sequence for the states, the transition probability matrix of {Yn; n ≥ 1}
can be written as the block-Jacobi matrix:

P =


W0 W1 W2 W3 · · ·
A0 A1 A2 A3 · · ·

A0 A1 A2 · · ·
A0 A1 · · ·

. . . . . .

 ,

where:

W0 =

 λ1

λ1 + θ
c0

λ1

λ1 + θ
u0 +

θ

λ1 + θ
0 a0

 , Wk =

 λ1

λ1 + θ
(ck + vk−1)

λ1

λ1 + θ
uk

bk−1 ak

 , k ≥ 1,

A0 =

(
R̃(λ1)c0 R̃(λ1)u0

0 R̃(λ)a0

)
, A1 =

(
R̃(λ1)(c1 + v0) + λ1R∗(λ1)c0 R̃(λ1)u1 + λ1R∗(λ1)u0

R̃(λ)b0 + λ2R∗(λ) R̃(λ)a1 + λ1R∗(λ)a0

)
,

Ak =

(
R̃(λ1)(ck + vk−1) + λ1R∗(λ1)(ck−1 + vk−2) R̃(λ1)uk + λ1R∗(λ1)uk−1

R̃(λ)bk−1 + λ1R∗(λ)bk−2 R̃(λ)ak + λ1R∗(λ)ak−1

)
, k ≥ 2.

We can easily check that:

∞

∑
k=0

Wke = e,
∞

∑
k=0

Ake = e,

where e = (1, 1)T .

If we define ρ =
[
1−

(
R̃(λ) + λ1R∗(λ)

)
A(1)

](
λ1R∗(λ1) + C′(1) + U′(1) + V′(1) + V(1)

)
+(

λR∗(λ) − 1
)

U(1) +
(

R̃(λ) + λ1R∗(λ)
)[(

A′(1) + B′(1) + B(1)
)

U(1) + A(1)
]
, we can have the

following theorem.

Theorem 1. The embedded Markov chain {Yn; n ≥ 1} is ergodic if and only if ρ < 1.

Proof 1. It is not difficult to see that {Yn; n ≥ 1} is an irreducible and aperiodic Markov chain, so we
just need to prove that {Yn; n ≥ 1} is positive recurrent if and only if ρ < 1. We have:

A =
∞

∑
k=0

Ak =

(
C(1) + V(1) U(1)(

R̃(λ) + λ1R∗(λ)
)

B(1) + λ2R∗(λ)
(

R̃(λ) + λ1R∗(λ)
)

A(1)

)
,

and the invariant probability vector of matrix A is π = (π1, π2), where:

π1 =
1−

(
R̃(λ) + λ1R∗(λ)

)
A(1)

1−
(

R̃(λ) + λ1R∗(λ)
)

A(1) + U(1)
, π2 =

U(1)

1−
(

R̃(λ) + λ1R∗(λ)
)

A(1) + U(1)
.

The vector β is defined by:
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β =
∞

∑
k=0

kAke.

Additionally, β is explicitly given by:

β =
(

λ1R∗(λ1) + C′(1) + U′(1) + V′(1) + V(1), (R̃(λ) + λ1R∗(λ))(A′(1) + B′(1) + B(1)) + λR∗(λ)
)T

.

It is clear from Chapter 2 of Neuts [32] that the embedded Markov chain {Yn; n ≥ 1} is positive
recurrent if and only if πβ < 1⇐⇒ ρ < 1.

Since the arrival process is Poisson, using the PASTA (Poisson Arrivals See Time Averages)
property, it can be shown from Burke’s theorem [33] that the steady state probabilities of the Markov
process X(t) exist if and only if the stable condition ρ < 1 holds.

After some computations, we can obtain that:

ρ < 1⇐⇒
(

1− C(1)
)(

A′(1) + B′(1) + B(1) +
λ1

θ

)
<

R̃(λ1) +
(

1− C(1)
)

A(1)R̃(λ) +
[λ1

θ

(
1− C(1)

)
− R̃(λ1)

]
A(1)

(
R̃(λ) + λ1R∗(λ)

)
. (1)

In the following, we discuss two special cases of the model, which are in agreement with the
existing results in the literature.

Case 1: Suppose that λ2 = 0, i.e., λ = λ1, and our model reduces to the M/G/1 retrial queue
with general retrial times. In this case, B(z) = 0, B(1) = 0, B′(1) = 0, A(1) = 1 and R̃(λ) + λ1R∗(λ) = 1.
Equation (1) can be written as A′(1) < R̃(λ1), i.e., λ1E[Sb] < R̃(λ1), which is in accordance with the
stable condition obtained by Gómez-Corral [34].

Case 2: Suppose that there is no retrial time in the system, i.e., the retrial time is zero, and our
system becomes the M/G/1 queue with working breakdowns. In this case, R̃(λ1) = 1, R̃(λ) = 1 and
R∗(λ) = 0. Equation (1) can be written as:(

1− C(1)
)[( λ

λ2
+

λ1

θ

)(
1− A(1)

)
− A(1)

]
< 1− A(1). (2)

Moreover, if we assume that the normal service time and the lower service time are governed by
the exponential distribution with parameters µ and η, respectively, our model reduces to the M/M/1
queue with working breakdowns. We can get A(1) = G̃b(λ2) = µ

λ2+µ , C(1) = G̃v(θ) = η
θ+η , and

Equation (2) becomes λ1(λ2 + θ) < λ2η + θµ, which is in agreement with the stable condition obtained
by Kalidass and Kasturi [11].

4. Steady State Analysis

Under the stable condition, we define the limiting probabilities and the limiting probability densities:

P0,0 = lim
t→∞

P(I(t) = 0, N(t) = 0),

P2,0 = lim
t→∞

P(I(t) = 2, N(t) = 0),

P0,n(x)dx = lim
t→∞

P(I(t) = 0, N(t) = n, x ≤ ξ(t) < x + dx), n ≥ 1,

P1,n(x)dx = lim
t→∞

P(I(t) = 1, N(t) = n, x ≤ ξ(t) < x + dx), n ≥ 0,

P2,n(x)dx = lim
t→∞

P(I(t) = 2, N(t) = n, x ≤ ξ(t) < x + dx), n ≥ 1,

P3,n(x)dx = lim
t→∞

P(I(t) = 3, N(t) = n, x ≤ ξ(t) < x + dx), n ≥ 0.
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By the method of the supplementary variable technique, we obtain the following equations that
govern the dynamics of the system:

(λ1 + θ)P0,0 =
∫ ∞

0
P1,0(x)η(x)dx, (3)

λ1P2,0 = θP0,0 +
∫ ∞

0
P3,0(x)µ(x)dx, (4)

d
dx

P0,n(x) = −(λ1 + θ + α(x))P0,n(x), n ≥ 1, (5)

d
dx

P1,n(x) = −(λ1 + θ + η(x))P1,n(x) + (1− δn,0)λ1P1,n−1(x), n ≥ 0, (6)

d
dx

P2,n(x) = −(λ + α(x))P2,n(x), n ≥ 1, (7)

d
dx

P3,n(x) = −(λ + µ(x))P3,n(x) + (1− δn,0)λ1P3,n−1(x), n ≥ 0, (8)

where δn,0 is Kronecker’s symbol. The boundary conditions are:

P0,n(0) =
∫ ∞

0
P1,n(x)η(x)dx + λ2

∫ ∞

0
P2,n(x)dx + λ2

∫ ∞

0
P3,n−1(x)dx, n ≥ 1, (9)

P1,n(0) = δn,0λ1P0,0 + (1− δn,0)λ1

∫ ∞

0
P0,n(x)dx +

∫ ∞

0
P0,n+1(x)α(x)dx, n ≥ 0, (10)

P2,n(0) = θ
∫ ∞

0
P0,n(x)dx +

∫ ∞

0
P3,n(x)µ(x)dx, n ≥ 1, (11)

P3,n(0) = δn,0λ1P2,0 + θ
∫ ∞

0 P1,n(x)dx + (1− δn,0)λ1
∫ ∞

0 P2,n(x)dx +
∫ ∞

0 P2,n+1(x)α(x)dx, n ≥ 0, (12)

and the normalization condition is:

P0,0 + P2,0 +
∞

∑
n=1

( ∫ ∞

0
P0,n(x)dx +

∫ ∞

0
P2,n(x)dx

)
+

∞

∑
n=0

( ∫ ∞

0
P1,n(x)dx +

∫ ∞

0
P3,n(x)dx

)
= 1. (13)

By introducing the generating functions Pi(x, z) = ∑∞
n=b Pi,n(x)zn, i = 0, 2, b = 1; i = 1, 3, b = 0,

from Equations (5)–(8), we have:

P0(x, z) = P0(0, z)e−(λ1+θ)xR(x), (14)

P1(x, z) = P1(0, z)e−(θ+λ1(1−z))xGv(x), (15)

P2(x, z) = P2(0, z)e−λxR(x), (16)

P3(x, z) = P3(0, z)e−(λ−λ1z)xGb(x). (17)

From Equations (3), (4) and (9)–(12), after some computations, we can obtain:

(λ1 + θ)P0,0 = P1,0(0)c0, (18)

λ1P2,0 = θP0,0 + P3,0(0)a0, (19)

P0(0, z) = C(z)P1(0, z) + λ2R∗(λ)P2(0, z) + zB(z)P3(0, z)− (λ1 + θ)P0,0, (20)

zP1(0, z) =
(

R̃(λ1 + θ) + λ1R∗(λ1 + θ)z
)

P0(0, z) + λ1P0,0z, (21)

P2(0, z) = θR∗(λ1 + θ)P0(0, z) + A(z)P3(0, z)− P3,0(0)a0, (22)

zP3(0, z) = zD(z)P1(0, z) +
(

R̃(λ) + λ1R∗(λ)z
)

P2(0, z) +
(

θP0,0 + P3,0(0)a0

)
z. (23)
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From Equations (22) and (23), we can get:

P2(0, z) =
θR∗(λ1 + θ)P0(0, z) + U(z)P1(0, z)−

(
1− A(z)

)
P3,0(0)a0 + θA(z)P0,0

z−
(

R̃(λ) + λ1R∗(λ)z
)

A(z)
z
4
=

h(z)
g(z)

z. (24)

Taking (23) into (20) and then inserting (24) and (21) into (20), after some tedious algebraic
manipulations, we can obtain:

P0(0, z) =
M(z)
N(z)

z, (25)

where:

M(z) =
[

B(z)g(z)−
(

1− A(z)
)

f (z)
]
zP3,0(0)a0

+
[
λ1φ(z)−

(
λ1 + θ − θB(z)z

)
g(z) + θA(z)z f (z)

]
P0,0,

N(z) = zg(z)− θR∗(λ1 + θ)z2 f (z)−
(

R̃(λ1 + θ) + λ1R∗(λ1 + θ)z
)

φ(z),

and:

f (z) = λ2R∗(λ) +
(

R̃(λ) + λ1R∗(λ)z
)

B(z),

φ(z) =
(

C(z) + V(z)z
)

g(z) + U(z)z f (z).

Clearly, once P0(0, z) is derived, P1(0, z), P2(0, z) and P3(0, z) can be obtained from recursive
Equations (21), (23) and (24). In the next part, we will obtain the relationship between P0,0 and P3,0(0);
we first give a lemma here.

Lemma 1. The equation g(z) = 0 has a unique root z = β in the interval (0,1).

Proof 2. For any 0 < z < 1, we have:

g′(z) = 1− λ1R∗(λ)A(z)−
(

R̃(λ) + λ1R∗(λ)z
)

A′(z),

g′′(z) = −2λ1R∗(λ)A′(z)−
(

R̃(λ) + λ1R∗(λ)z
)

A′′(z) < 0,

which means g(z) is a concave function in the interval (0,1). Thus, g(0) = −R̃(λ)A(0) < 0 and

g(1) = 1 −
(

R̃(λ) + λ1R∗(λ)
)

A(1) > 0 indicate that g(z) = 0 has a unique root z = β in the
interval (0,1).

Furthermore, we can easily get N(0) > 0 and N(β) < 0, so N(z) = 0 has a root z = γ in the
interval (0,β), which means that the numerator of P0(0, z) is equal to zero when z = γ, i.e., M(γ) = 0,
and we can have:

P3,0(0)a0 =
λ1φ(γ)−

(
λ1 + θ − θB(γ)γ

)
g(γ) + θA(γ)γ f (γ)[(

1− A(γ)
)

f (γ)− B(γ)g(γ)
]
γ

P0,0
4
= L(γ)P0,0.

Using the above equation, once P0,0 is derived, P0(0, z), P1(0, z), P2(0, z) and P3(0, z) can be
obtained by recursive Equations (21), (23)–(25). The expression of P0,0 is given in Appendix A.

In order to get generating functions and performance measures, we introduce two lemmas here.
The proofs can be obtained by some computations, and we omit it here.
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Lemma 2.

g(1) = 1−
(

R̃(λ) + λ1R∗(λ)
)

A(1), g′(1) = 1− λ1R∗(λ)A(1)−
(

R̃(λ) + λ1R∗(λ)
)

A′(1),

g′′(1) = −2λ1R∗(λ)A′(1)−
(

R̃(λ) + λ1R∗(λ)
)

A′′(1), f (1) = g(1),

f ′(1) = λ1R∗(λ)B(1) +
(

R̃(λ) + λ1R∗(λ)
)

B′(1),

f ′′(1) = 2λ1R∗(λ)B′(1) +
(

R̃(λ) + λ1R∗(λ)
)

B′′(1), φ(1) = g(1),

φ′(1) =
(

C′(1) + V(1) + V′(1)
)

g(1) +
(

C(1) + V(1)
)

g′(1) +
(

U(1) + U′(1)
)

f (1) + U(1) f ′(1),

φ′′(1) =
(

C′′(1) + 2V′(1) + V′′(1)
)

g(1) + 2
(

C′(1) + V(1) + V′(1)
)

g′(1) +
(

C(1) + V(1)
)

g′′(1)

+
(

2U′(1) + U′′(1)
)

f (1) + 2
(

U(1) + U′(1)
)

f ′(1) + U(1) f ′′(1),

M′(1) =
[

B′(1)g(1) + B(1)g′(1) + A′(1) f (1)−
(

1− A(1)
)

f ′(1)
]

P3,0(0)a0

+
[
λ1φ′(1) + θ

(
B(1) + B′(1)

)
g(1)−

(
λ1 + θ − θB(1)

)
g′(1)

]
P0,0,

+
[
θ
(

A(1) + A′(1)
)

f (1) + θA(1) f ′(1)
]

P0,0,

M′′(1) =
[

B′′(1)g(1) + 2B′(1)g′(1) + B(1)g′′(1) + A′′(1) f (1)−
(

1− A(1)
)

f ′′(1)
]

P3,0(0)a0

+ 2
[

A′(1) f ′(1) + B′(1)g(1) + B(1)g′(1) + A′(1) f (1)−
(

1− A(1)
)

f ′(1)
]

P3,0(0)a0

+
[
λ1φ′′(1) + θ

(
2B′(1) + B′′(1)

)
g(1) + 2θ

(
B(1) + B′(1)

)
g′(1)−

(
λ1 + θ − θB(1)

)
g′′(1)

]
P0,0

+
[
θ
(

2A′(1) + A′′(1)
)

f (1) + 2θ
(

A(1) + A′(1)
)

f ′(1) + θA(1) f ′′(1)
]

P0,0,

N′(1) = g(1) + g′(1)− θR∗(λ1 + θ)
(

2 f (1) + f ′(1)
)

−
(

R̃(λ1 + θ) + λ1R∗(λ1 + θ)
)

φ′(1)− λ1R∗(λ1 + θ)φ(1),

N′′(1) = 2g′(1) + g′′(1)− θR∗(λ1 + θ)
(

2 f (1) + 4 f ′(1) + f ′′(1)
)

−
(

R̃(λ1 + θ) + λ1R∗(λ1 + θ)
)

φ′′(1)− 2λ1R∗(λ1 + θ)φ′(1).

Lemma 3.

P0(0, 1) =
M′(1)
N′(1)

, P′0(0, 1) = lim
z→1

P′0(0, z) =
M′′(1)N′(1)−M′(1)N′′(1) + 2M′(1)N′(1)

2(N′(1))2 ,

P1(0, 1) =
(

R̃(λ1 + θ) + λ1R∗(λ1 + θ)
)

P0(0, 1) + λ1P0,0,

P′1(0, 1) = lim
z→1

P′1(0, z) = −R̃(λ1 + θ)P0(0, 1) +
(

R̃(λ1 + θ) + λ1R∗(λ1 + θ)
)

P′0(0, 1),

h(1) = θR∗(λ1 + θ)P0(0, 1) + U(1)P1(0, 1)−
(

1− A(1)
)

P3,0(0)a0 + θA(1)P0,0,

h′(1) = θR∗(λ1 + θ)P′0(0, 1) + U′(1)P1(0, 1) + U(1)P′1(0, 1) + A′(1)P3,0(0)a0 + θA′(1)P0,0,

P2(0, 1) =
h(1)
g(1)

, P′2(0, 1) = lim
z→1

P′2(0, z) =

(
h′(1) + h(1)

)
g(1)− h(1)g′(1)

g2(1)
,

P3(0, 1) = D(1)P1(0, 1) +
(

R̃(λ) + λ1R∗(λ)
)

P2(0, 1) + θP0,0 + P3,0(0)a0,

P′3(0, 1) = lim
z→1

P′3(0, z) = D′(1)P1(0, 1) + D(1)P′1(0, 1)− R̃(λ)P2(0, 1) +
(

R̃(λ) + λ1R∗(λ)
)

P′2(0, 1).

Remark 1. When we compute P0(0, 1) and P′0(0, 1), we need to use the L’Hospital rule.
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Now, we have discussed Pi(0, z), Pi(0, 1) and P′i (0, 1), i = 0, 1, 2, 3. Using these expressions,
we can obtain some interesting performance measures. Define the marginal generating functions
Φi(z) =

∫ ∞
0 Pi(x, z)dx, i = 0, 1, 2, 3. From Equations (14)–(17), we have the following theorem.

Theorem 2.

Φ0(z) = P0(0, z)R∗(λ1 + θ),

Φ1(z) = P1(0, z)
D(z)

θ
,

Φ2(z) = P2(0, z)R∗(λ),

Φ3(z) = P3(0, z)
B(z)
λ2

,

where P0,0 can be determined by the normalization condition:

P0,0 + P2,0 + Φ0(1) + Φ1(1) + Φ2(1) + Φ3(1) = 1.

The probability generating function of the positive number of customers in the orbit is given by:

Φ(z) = P0,0 + P2,0 + Φ0(z) + Φ1(z) + Φ2(z) + Φ3(z).

The probability generating function of the number of positive customers in the system is given by:

Φ̃(z) = P0,0 + P2,0 + Φ0(z) + zΦ1(z) + Φ2(z) + zΦ3(z).

The probability that the server is busy is:

Pb = Φ1(1) + Φ3(1) = P1(0, 1)
D(1)

θ
+ P3(0, 1)

B(1)
λ2

.

The probability that the server is free is:

Pf = P0,0 + P2,0 + Φ0(1) + Φ2(1) = P0,0 + P2,0 + P0(0, 1)R∗(λ1 + θ) + P2(0, 1)R∗(λ) = 1− Pb.

The probability that the server is in a working breakdown period is given by:

Pw = P0,0 + Φ0(1) + Φ1(1) = P0,0 + P0(0, 1)R∗(λ1 + θ) + P1(0, 1)
D(1)

θ
.

The probability that the server is in a normal service period is given by:

Pn = P2,0 + Φ2(1) + Φ3(1) = P2,0 + P2(0, 1)R∗(λ) + P3(0, 1)
B(1)
λ2

= 1− Pw.

Let E[Lj] denote the average number of positive customers in the orbit when the server’s state is
i, i = 0, 1, 2, 3.

From Theorem 2, after some calculations, we can get:

E[L0] = lim
z→1

Φ′0(z) = P′0(0, 1)R∗(λ1 + θ),

E[L1] = lim
z→1

Φ′1(z) = P′1(0, 1)
D(1)

θ
+ P1(0, 1)

D′(1)
θ

,

E[L2] = lim
z→1

Φ′2(z) = P′2(0, 1)R∗(λ),

E[L3] = lim
z→1

Φ′3(z) = P′3(0, 1)
B(1)
λ2

+ P3(0, 1)
B′(1)

λ2
.
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The mean orbit length is given by:

E[L] = lim
z→1

Φ′(z) = E[L0] + E[L1] + E[L2] + E[L3].

Additionally, the mean system length is derived as:

E[L̃] = lim
z→1

Φ̃′(z) = E[L] + Φ1(1) + Φ3(1) = E[L] + Pb.

5. Numerical Results

In this section, we present some numerical examples to illustrate the effect of the varying
parameters on the mean orbit length E[L], the probability of server’s state Pb, Pf , Pw, Pn and the
probability that the system is busy 1-P0,0-P2,0. Moreover, a cost minimization problem is also considered.
For simplicity, we assume that the normal service time, the lower service time and the retrial time are
governed by the exponential distribution with parameters µ, η and α, respectively. Under the stable
condition, all of the computations are done by developing a program in MATLAB software (MATLAB
7.13, MathWorks, Natick, MA, USA) , and the values of parameters are arbitrarily chosen as λ1 = 1.5,
λ2 = 0.5, µ = 4, η = 1, α = 3 and θ = 2, unless they are considered as variables in the respective figures.

5.1. Sensitivity Analysis

In our model, only the arrival of a negative customer can make the server break down. From
Figure 1, when λ2 = 0.01, we can find that E[L] is almost unchanged as η increases. As expected, when
λ2 is not small, E[L] decreases dramatically with increasing values of η. Since the service rate η is
less than µ, Figure 1 indicates that E[L] increases as λ2 increases, and the effect of λ2 on E[L] is more
obvious when η is smaller. In Figure 2, if we assume λ2 = 0.5, it is obvious that Pb decreases with
increasing values of η, while Pf increases as η increases. The reason is that the mean orbit length E[L]
and the mean service time 1/η both decrease with increasing values of η.

0 0.5 1 1.5 2 2.5 3 3.5 4
0.5

1

1.5

2

2.5

3

3.5

4

4.5

η

E
 [

L
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λ
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λ
2
 = 0.3

λ
2
 = 0.5

Figure 1. The effect of η on E[L] for different values of λ2.
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Figure 2. The probability of the server’s state with the change of η.

When we choose η < µ, as shown in Figures 3 and 4, E[L] and Pw both decrease with increasing
values of θ. However, when θ is large, θ has little effect on E[L] and Pw as θ increases; this is because the
expected working breakdown time is 1/θ. As expected, the probability that the server is in a normal
service period approaches one for large values of θ. In Figure 3, we can see that the arrival rate λ1 has
a noticeable effect on E[L], especially when θ is small.
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Figure 3. The effect of θ on E[L] for different values of λ1.
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Figure 4. The probability of the server’s state with the change of θ.

Figure 5 illustrates that E[L] decreases with increasing values of α; the reason is that the mean
retrial time decreases as α increases, which can decrease E[L]. Since the mean retrial time is 1/α, when
α is large, it can be observed that the effect of α on E[L] is not obvious as α increases. We can also find
that E[L] decreases as µ increases, which agrees with the intuitive expectation. Figure 6 reveals that the
probability that the system is busy 1-P0,0-P2,0 decreases with increasing values of α or µ; this is because
E[L] decreases as α or µ increases.

2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

α

E
[L

]

µ=4

µ=5

µ=6

Figure 5. The effect of α on E[L] for different values of µ.
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Figure 6. The effect of α on 1-P0,0-P2,0 for different values of µ.

5.2. Cost Analysis

In this subsection, we establish a cost function to search for the optimal service rate η, so as to
minimize the expected operating cost function per unit time.

Define the following cost elements:

CL = cost per unit time for each positive customer present in the orbit;
Cµ = cost per positive customer served by the normal service rate µ;
Cη = cost per positive customer served by the lower service rate η;
Cθ = fixed cost per unit time during the repair period.

Based on the definitions of each cost element listed above, the expected operating cost function
per unit time can be given by:

min
η

: f (η) = CLE[L] + Cµµ + Cηη + Cθθ.

Since the expected operating cost function per unit time is highly non-linear and complex, it is
not easy to get the derivative of it. We assume CL = 8, Cµ = 20, Cη = 10, Cθ = 6 and use the parabolic
method to find the optimum value of η, say η∗. According to the polynomial approximation theory,
the unique optimum of the quadratic function agreeing with f (x) at three-point pattern {x0, x1, x2}
occurs at:

x̄ =
1
2

f (x0)(x2
1 − x2

2) + f (x1)(x2
2 − x2

0) + f (x2)(x2
0 − x2

1)

f (x0)(x1 − x2) + f (x1)(x2 − x0) + f (x2)(x0 − x1)
. (26)

The parabolic method uses this approximation to improve the current three-point pattern by
replacing one of its points with an approximate optimum x̄. Then, repeating in this way isolates an
optimum for f (x) in an ever-narrowing range. The steps of the parabolic method can be found in [35].

Figure 7 shows the curve of the cost function with the change of η; we can see that there is an
optimal service rate η to make the cost minimized. Implementing the computer software MATLAB
by the parabolic method, the error is controlled by 10−4. After six iterations, Table 1 shows that the
minimum expected operating cost per unit time converges to the solution η∗ = 0.74914 with a value
f (η∗) = 120.73363.
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Figure 7. The effect of η on the expected operating cost per unit time.

Table 1. Using the parabolic method to find the optimum service rate (η) of the expected operating
cost function per unit time.

No. η0 η1 η2 f (η0) f (η1) f (η2) η̄ f (η̄) Tolerance

0 0.50000 0.80000 1.00000 121.10376 120.74691 121.02799 0.76460 120.73488 0.03540
1 0.50000 0.76460 0.80000 121.10376 120.73488 120.74691 0.75291 120.73370 0.01169
2 0.50000 0.75291 0.76460 121.10376 120.73370 120.73482 0.75023 120.73363 0.00268
3 0.50000 0.75023 0.75291 121.10376 120.73363 120.73370 0.74938 120.73363 0.00085
4 0.50000 0.74938 0.75023 121.10376 120.73363 120.73363 0.74916 120.73363 0.00021
5 0.50000 0.74916 0.74938 121.10376 120.73363 120.73363 0.74904 120.73363 0.00013
6 0.74904 0.74916 0.74938 120.73363 120.73363 120.73363 0.74914 120.73363 0.00003

6. Conclusions

This paper analyzes an M/G/1 retrial G-queue with working breakdowns. During the breakdown
period, the service still continues at a lower rate. Using the embedded Markov chain, we obtain the
condition of stability. The supplementary variable technique is employed to discuss the probability
generating function of the number of customers in the retrial orbit. Moreover, the effect of various
parameters on the system performance measures are examined numerically. Under the stable condition,
a cost minimization problem is considered. The novelty of this investigation is the introduction of
working breakdowns to an M/G/1 retrial queue. For a future study, one can extend this model to an
MX/G/1 queue.
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Appendix A

Let:

K(0) =
B′(1)g(1) + B(1)g′(1) + A′(1) f (1)−

(
1− A(1)

)
f ′(1)

N′(1)
L(γ)

+
λ1φ′(1) + θ

(
B(1) + B′(1)

)
g(1)−

(
λ1 + θ − θB(1)

)
g′(1) + θ

(
A(1) + A′(1)

)
f (1) + θA(1) f ′(1)

N′(1)
,

K(1) =
(

R̃(λ1 + θ) + λ1R∗(λ1 + θ)
)

K(0) + λ1,

K(2) =
θR∗(λ1 + θ)K(0) + U(1)K(1)−

(
1− A(1)

)
L(γ) + θA(1)

g(1)
,

K(3) = D(1)K(1) +
(

R̃(λ) + λ1R∗(λ)
)

K(2) + θ + L(γ).

P0,0 is given by:

P0,0 =
[
1 +

θ + L(γ)
λ1

+ K(0)R∗(λ1 + θ) + K(1)
D(1)

θ
+ K(2)R∗(λ) + K(3)

B(1)
λ2

]−1
.
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