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Abstract: Splines and quasi-interpolation operators are important both in approximation theory and
applications. In this paper, we construct a family of quasi-interpolation operators for the bivariate
quintic spline spaces S3

5p∆
p2q
mnq. Moreover, the properties of the proposed quasi-interpolation operators

are studied, as well as its applications for solving the two-dimensional Burgers’ equation and image
reconstruction. Some numerical examples show that these methods, which are easy to implement,
provide accurate results.
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1. Introduction

Spline functions are very important in both approximation theory and applications in science and
engineering. Essentially, a spline is a piecewise polynomial function with certain smoothness. The
special importance of spline functions is due to the mechanical meaning of the univariate spline, which
was discussed in the famous paper written by Schoenberg [1]. Univariate splines were introduced and
analyzed in the seminal paper by Schoenberg [1] in 1946. Multivariate splines are the generalizations
of univariate splines. In 1976, de Boor [2] generalized univariate B-splines to multivariate splines.
However, the generalizations of these kinds of definitions are inconvenient to the basic theoretical
research. The study of multivariate B-splines was not active until the generalized functional expressions
came up. The generalized functional expressions (including simplex splines, Box splines and conical
splines, etc. ) were given by de Boor, and Dahmen and Micchelli [3,4]. In 1975, Wang [5] established
the so-called “smoothing cofactor–conformality method” to study the general theory on multivariate
splines for any partition by using the methods of function theory and algebraic geometry. Splines
have been widely applied to fields such as function approximation and numerical analysis, computer
geometry, computer aided geometric design, image processing, and so on [6–12]. In fact, spline
functions have become a fundamental tool in these fields. Bivariate and trivariate splines are easy
to store, evaluate and manipulate on a computer, so they are well-suited to address the resolution of
many problems of practical interest.

Burgers’ equation plays a significant role in the study of partial differential equations from fluid
mechanics. It occurs in various areas of applied mathematics, such as modeling of dynamics, heat
conduction, and acoustic waves [13–15]. Numerical techniques for the Burgers’ equation usually fall
into the following classes: finite differences, finite elements, and spectral methods [16]. Recently, the
Adomian Decomposition Method (ADM) gained much attention for solving Burgers’ equation [17–19].
A discrete ADM method is also proposed in [16]. In addition, a B-spline quasi-interpolation method is
proposed in [12] for solving a 1D Burgers’ equation. There are many methods for image reconstruction,
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such as those based on convolution back-projection, the harmony search algorithm, and compressed
sensing [20–22]. In this paper, we construct bivariate quasi-interpolation operators to solve the 2D
Burgers’ equation and reconstruct images.

The paper is organized as follows. In Section 2, we study the bivariate quintic spline spaces
S3

5p∆
p2q
mnq by using the smoothing cofactor–conformality method. A family of quasi-interpolation

operators are also presented in Section 2. In Section 3, we give some examples for solving the
2D Burgers’ equation and image reconstruction. Moreover, comparisons with other techniques are
also provided.

2. The Bivariate Spline Space S3
5p∆

p2q
mnq

2.1. The Spaces S3
5p∆

p2q
mnq

Let D be a domain in R2 and Pk be the collection of all bivariate polynomials with real coefficients
and total degree ď k,

Pk :“ tppx, yq “
k
ÿ

i“0

k´i
ÿ

j“0

cijxiyj|cij P Ru. (1)

Using a finite number of irreducible algebraic curves to carry out the partition ∆, we divide the domain
D into a finite number of sub-domains D1, D2, ¨ ¨ ¨ , DN . Each sub-domain is called a cell. The line
segments that form the boundary of each cell are called the “edges”, and intersection points of the
edges are called the “vertices”. The space of multivariate spline functions is defined by

Sµ
k p∆q :“ ts P CµpDq|s|Di P Pk, i “ 1, ¨ ¨ ¨ , Nu. (2)

A spline s is a piecewise polynomial function of degree k possessing continuous partial derivatives up
to the order µ in D.

Suppose D “ r0, ms ˆ r0, ns for given positive integers m and n, endowed with the decomposition
induced by the four-directional mesh ∆p2qmn with grid lines:

x´ i “ 0, y´ i “ 0, x´ y´ i “ 0, x` y´ i “ 0, i P Z.

We have the following result [10,23].

Theorem 1. For the bivariate spline space Sµ
k p∆

p2q
mnq, it holds

dim Sµ
k p∆

p2q
mnq “

ˆ

k` 2
2

˙

` p3m` 3n´ 4q
ˆ

k´ µ` 1
2

˙

`mn
ˆ

k´ 2µ

2

˙

` pm´ 1qpn´ 1q ¨ dµ
k p4q, (3)

where

dµ
k p4q :“ 1

2

´

k´ µ´
”

µ`1
3

ı¯

`
¨

´

3k´ 5µ` 3
”

µ`1
3

ı

` 1
¯

.

Since each interior grid point in D is the intersection of exactly four lines from the grid partition
∆p2qmn, the degree k and the smoothness µ must satisfy the relationship [10]

µ ă
3k´ 1

4
.

It is easy to see that the spaces S1
2p∆

p2q
mnq, S2

4p∆
p2q
mnq, S3

5p∆
p2q
mnq, ¨ ¨ ¨ have a locally supported basis [10].

For S1
2p∆

p2q
mnq and S2

4p∆
p2q
mnq, we refer to [10,24–28] for more details. We discuss the spline spaces S3

5p∆
p2q
mnq

in the following sections.
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2.2. Basis of S3
5p∆

p2q
mnq

By (3), we get the dimension of S3
5p∆

p2q
mnq as follows:

dimS3
5p∆

p2q
mnq “

ˆ

5` 2
2

˙

` p3m` 3n´ 4q
ˆ

5´ 3` 1
2

˙

` 0` pm´ 1qpn´ 1q ¨ 4

“ 2mn` 7m` 7n` 11.
(4)

By using the smoothing cofactor–conformality method [5,10], we obtain two bivariate
splines A and B whose supports are shown in Figure 1a,b. The centers of the supports are
p´1{2 ¨ h,´1{2 ¨ hq and p0, 0q, respectively. Here, the considered domain D is r0, mhs ˆ r0, nhs. The local
supports of Apx, yq and Bpx, yq are minimal, and for Apx, yq, there are four symmetry axes:

x` 1{2 ¨ h “ 0, y` 1{2 ¨ h “ 0, x´ y “ 0, x` y` h “ 0,

while, for Bpx, yq, there also exist four symmetry axes:

x “ 0, y “ 0, x´ y “ 0, x` y “ 0.

The restriction pi of A to the cell Dipi “ 1, ¨ ¨ ¨ , 7q in Figure 1a are as follows:

p1px, yq “
1

20h5 px´
3
2

hq4px´ 5y` hq,

p2px, yq “ p1px, yq `
1

16h5 p´x´ y` 2hqpx´ y´ hq4,

p3px, yq “
1

80h5 p´x´ y` 2hq5,

p5px, yq “ p2px, yq `
1

40h5 p3x´ 2y´
11
2

hqpx` y´ hq4,

p4px, yq “ p5px, yq `
1

16h5 px` y´ 2hqpx´ y´ hq4,

p6px, yq “ p5px, yq `
1

20h5 p´3x´ 5y´ hqpx´
1
2

hq4,

p7px, yq “ p6px, yq `
1

80h5 px` y` 10hqpx` yq4.

The restriction qi of B to the cell Dipi “ 1, ¨ ¨ ¨ , 10q, in Figure 1b are as follows:

q1px, yq “
1

40h5 p´x`
5
2

hq5,

q2px, yq “ q1px, yq `
1

320h5 p4x` 6y´ 13hqpx´ y´ 2hq4,

q3px, yq “
1

320h5 p´4x` 6y` 7hqpx` y´ 3hq4,

q4px, yq “ q3px, yq `
1

40h5 px` 5y´ 9hqpx´
3
2

hq4,

q5px, yq “ q4px, yq ´
1

160h5 px` y` 3hqpx` y´ 2hq4,

q6px, yq “ q2px, yq `
1

320h5 p4x´ 6y´ 13hqpx` y´ 2hq4,
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q7px, yq “ q6px, yq `
1

80h5 p2x´ 13hqpx´
3
2

hq4,

q8px, yq “ q5px, yq ´
1

40h5 p5x` y´ 13hqpy´
1
2

hq4,

q9px, yq “ q8px, yq `
1

320h5 p´6x` 4y` 11hqpx` y´ hq4,

q10px, yq “ q9px, yq `
1

4h4 px´
1
2

hq4.

The expressions of the restrictions of A and B to the other cells are obtained by symmetry.

(a) (b)

Figure 1. The supports of two B-splines in S3
5p∆

p2q
mnq. (a) Apx, yq; (b) Bpx, yq.

Denote by Ai,j, Bi,j the translates of A and B, i.e., for all i,j P Z

Ai,jpx, yq :“ Apx´ ih´
1
2

h, y´ jh´
1
2
¨ hq,

Bi,jpx, yq :“ Bpx´ ih´
1
2

h, y´ jh´
1
2

hq.
(5)

It is clear that the index sets for which the functions Ai,j and Bi,j do not vanish identically on D are

E “ tpi, jq “ pα, βq : ´1 ď α ď m` 1,´1 ď β ď n` 1u,

F “ tpi, jq “ pα, βq : ´2 ď α ď m` 1,´2 ď β ď n` 1

pi, jq ‰ p´2,´2q, pm` 1,´2q, p´2, n` 1q, pm` 1, n` 1qu.

Since the number of these splines is 2mn` 7m` 7n` 21, which is larger than the dimension of S3
5p∆

p2q
mnq,

these splines are linearly dependent. For constructing a basis of S3
5p∆

p2q
mnq, we need to delete ten splines

from the ones. We have the following result.

Theorem 2. Let

G1
s,t :“ tAs,t : ps, tq P Eztpm´ 1, nq, pm, nq, pm` 1, nq, pm´ 1, n` 1q, pm, n` 1quu,

G2
s,t :“ tBs,t : ps, tq P Fztpm´ 1, n´ 1q, pm, n´ 1q, pm` 1, n´ 1q, pm, nq, pm` 1, nquu.

Then, G1
s,t
Ť

G2
s,t is a basis of S3

5p∆
p2q
mnq.
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Since the cardinality of G1
s,t
Ť

G2
s,t is the same as the dimension of S3

5p∆
p2q
mnq, it is sufficient to

prove that G1
s,t
Ť

G2
s,t is a linearly independent set on D. This can be done by following the proof of

Theorem 3.1 in [29].
By checking the sums of the appropriate Bézier coefficients, we have the following identities:

ÿ

pi,jqPE

p´1qi`j Ai,jpx, yq “ 0,
ÿ

pi,jqPF

p´1qi`jBi,jpx, yq “ 0,

ÿ

pi,jqPE

Ai,jpx, yq “ 1,
ÿ

pi,jqPF

Bi,jpx, yq “ 1.

2.3. Quasi-Interpolation Operators for S3
5p∆

p2q
mnq

From the basis functions in the previous section, we can construct various kinds of
quasi-interpolation operators.

Theorem 3. Let
Lp f q :“

ÿ

i,jPE

f pih´
1
2

h, jh´
1
2

hqAi,j,

Vp f q :“
ÿ

i,jPF

gpih, jhqBi,j.

Then, for p P P1
Ť

txyu, it holds
Lppq “ p, Vppq “ p, px, yq P D.

In applications, a linear combination Ci,j of splines Ai,j and Bi,j is used [30,31]. It is given by

Ci,j “
1

12
pAi,j ` Ai,j`1 ` Ai`1,j ` Ai`1,j`1q `

2
3

Bi,j.

The support of Ci,j is the union of the involved splines Ak,l and Bk,l . The center of the support is
pi` 1{2 ¨ h, j` 1{2 ¨ hq and the number of Ci,j does not vanish identically on D is mn` 4m` 4n` 16,

which is less than the dimension of S3
5p∆

p2q
mnq, so all Ci,j can only span a proper subspace of S3

5p∆
p2q
mnq.

The shape of one Ci,j is shown in Figure 2b. The shapes of the splines A and B are displayed in Figure 3.
The splines tCi,ju form a partition of unity.

(a) (b)

Figure 2. The support and shape of Ci,jpx, yq in S3
5p∆

p2q
mnq. (a) Ci,jpx, yq; (b) C´1,´1px, yq.
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(a) (b)

Figure 3. The shapes of two B-splines in S3
5p∆

p2q
mnq. (a) Apx, yq; (b) Bpx, yq.

It is worthwhile to note that, only using Ci,j, we can construct higher precision quasi-interpolation
operators by the following theorems.

Let Ω denote an open set containing D and fi,j “ f pih, jhq. Define the variation diminishing

operator W : CpΩq Ñ S3
5p∆

p2q
mnq:

Wp f q “
m`1
ÿ

i“´2

n`1
ÿ

j“´2

fi,jCi,j. (6)

Note that W is a linear operator, and by simple checking, we have the following results.

Theorem 4. For all px, yq P D, f P P1
Ť

spantxyu, we have

Wp f q ” f .

In order to preserve identities for all polynomials in P2 and P3, we define other kinds of linear
operators W1 : CpΩq Ñ S3

5p∆
p2q
mnq:

W1p f q “
m`1
ÿ

i“´2

n`1
ÿ

j“´2

λi,jp f qCi,j, (7)

where

λi,jp f q “ w1 ¨ fi´ 1
2 ,j` 1

2
`w2 ¨ fi,j` 1

2
`w3 ¨ fi` 1

2 ,j` 1
2
`w4 ¨ fi´ 1

2 ,j `w5 ¨ fi,j `w6 ¨ fi` 1
2 ,j `w7 ¨ fi´ 1

2 ,j´ 1
2

`w8 ¨ fi,j´ 1
2
`w9 ¨ fi` 1

2 ,j´ 1
2
.

Note that each linear functional λi,j depends on nine function values of f at the grid points and the
corresponding midpoints in the support of Ci,j. We have the following results:

Theorem 5. For all px, yq P D, f P P3
Ť

spantx3y, xy3u,

w1 “ w3 “ w7 “ w9 “ ´
5

12
´

1
2

w8, w2 “ w4 “ w6 “ w8, w5 “
8
3
´ 2w8,

we have
W1p f q ” f .
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There is a unique value of w8 for which the corresponding operator is exact on P4ztx4, y4u.

Theorem 6. For all px, yq P D, f P P4zspantx4, y4u,

w1 “ w3 “ w7 “ w9 “
133
180

, w2 “ w4 “ w6 “ w8 “ ´
104
45

, w5 “
328
45

,

we have
W1p f q ” f .

Note that Theorem 6 has a better result than Theorem 5 but at the cost of using all nine function
values. The conclusion of Theorem 5 can be used with flexibility, i.e., having the opportunity of
choosing approximate wi for given problems. The commonly used coefficients wi of Theorem 5 are
as follows:

w1 “ w3 “ w7 “ w9 “ ´
5

12
, w2 “ w4 “ w6 “ w8 “ 0, w5 “

8
3

.

We have the following result:

Theorem 7. For all px, yq P D, f P P3
Ť

spantx3y, xy3u, we have

W1p f q ” f ,

where

λi,jp f q “
8
3

fi,j ´
5
12

”

fi´ 1
2 ,j´ 1

2
` fi` 1

2 ,j´ 1
2
` fi´ 1

2 ,j` 1
2
` fi` 1

2 ,j` 1
2

ı

.

To prove Theorems 5–7, we need to testify the conclusions at each sub-region Dij “ rxi, xi`1s ˆ

ryj, yj`1s (see Figure 4a). For I in Dij, we have a properly posed set of nodes for multivariate spline
interpolation (21 points, see Figure 4b) [10]. Next, by computing the values of pW1 f qpx, yq in (7) at these
21 points (noted by P), we get the fact that pW1 f qppq “ f ppq,@p P P. The same fact can be obtained
similarly for I I, I I I, IV in Dij, respectively. Hence, these theorems hold by the arbitrariness of Dij.

(a) (b)

Figure 4. Sub-region of D. (a) Dij; (b) properly posed set of nodes for interpolation.

In the next section, we give two applications of the quasi-interpolation operator W1 in Theorem 7.
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3. Applications of Quasi-Interpolation Operator W 1

3.1. Solving 2D Burgers’ Equations

Here, we consider the system of 2D Burgers’ equations [32]. One can refer to [32,33] for
more details:

ut ` uux ` vuy “
1
R
puxx ` uyyq,

vt ` uvx ` vvy “
1
R
pvxx ` vyyq,

(8)

with initial conditions

upx, y, 0q “ f px, yq, px, yq P D,

vpx, y, 0q “ gpx, yq, px, yq P D,
(9)

and boundary conditions:

upx, y, tq “ f1px, y, tq, px, yq P BD, t ą 0,

vpx, y, tq “ g1px, y, tq, px, yq P BD, t ą 0,
(10)

where D “ tpx, yq | a ď x ď b, a ď y ď bu and BD denotes its boundary. Functions u and v
are the velocity components to be determined, f , g, f1 and g1 are known functions, and R is the
Reynolds number.

Discretizing Burgers’ Equation (8) in the time domain with step τ and using the derivatives of
pW1uqpx, yq, pW1vqpx, yq defined in Theorem 7 to approximate the corresponding derivatives of upx, y, tq
and vpx, y, tq yields

un`1
i,j “ un

i,j ` τp
1
R
pppW1uqxxq

n
i,j ` ppW

1uqyyq
n
i,jq ´ un

ijppW
1uqxqni,j ´ vn

i,jppW
1uqyqni,jq,

vn`1
i,j “ vn

i,j ` τp
1
R
pppW1vqxxq

n
i,j ` ppW

1vqyyq
n
i,jq ´ un

ijppW
1vqxqni,j ´ vn

i,jppW
1vqyqni,jq,

(11)

where un
i,j, vn

i,j are the approximation of the value of upx, y, tq, vpx, y, tq at the uniform mesh grid
pihx, jhy, tτq. This scheme provides a numerical solution for Burgers’ equation, which is called
multivariate spline quasi-interpolation (MSQI) scheme.

By iterating this scheme, we obtain the numerical solution for Burgers’ equations. We give the
following examples.

Example 1. A Hopf–Cole transformation [34] allows for determining the exact solution

upx, y, tq “
3
4
´

1
4p1` epRp´t´4x`4yqq{32q

,

upx, y, tq “
3
4
`

1
4p1` epRp´t´4x`4yqq{32q

,
(12)

of Burgers’ equation with initial conditions and boundary conditions provided by the exact solution. In this
example, we use the same Reynolds number R “ 80, time step size τ “ 10´4 and computational domain
D “ tpx, yq : 0 ď x ď 1, 0 ď y ď 1u. For the uniform mesh grid, we use a looser one with hx “ hy “ 0.1 for a
lower computation.

Figure 5a,b show the approximation solutions of upx, y, tq and vpx, y, tq at steady state, respectively.
In the meantime, the numerical solution for different times and different mesh grid points are given in
Tables 1 and 2.
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Figure 5. A numerical illustration of approximation solutions upx, y, tq (a) and vpx, y, tq (b) by
multivariate spline quasi-interpolation (MSQI) with R “ 80, τ “ 10´4, hx “ hy “ 0.1 at t “ 0.5.

Table 1. Comparison of the numerical results by MSQI scheme with exact solutions upx, y, tq with
R “ 80, τ “ 10´4 at different times t.

Mesh Grid t “ 0.05 t “ 0.2 t “ 0.5
unum uexact unum uexact unum uexact

(0.1, 0.1) 0.61749 0.61720 0.59474 0.59439 0.55564 0.55568
(0.9, 0.2) 0.50021 0.50020 0.50015 0.50014 0.50006 0.50007
(0.8, 0.3) 0.50150 0.50148 0.50108 0.50102 0.50049 0.50048
(0.9, 0.5) 0.50403 0.50398 0.50289 0.50275 0.50155 0.50130
(0.8, 0.6) 0.52640 0.52667 0.51859 0.51896 0.50990 0.50933
(0.2, 0.8) 0.74931 0.74930 0.74900 0.74898 0.74783 0.74786
(0.9, 0.9) 0.61720 0.61720 0.59456 0.59439 0.55369 0.55568

Table 2. Comparison of the numerical results by MSQI with exact solutions vpx, y, tq with R “ 80, τ “

10´4 at different times t.

Mesh Grid t “ 0.05 t “ 0.2 t “ 0.5
vnum vexact vnum vexact vnum vexact

(0.1, 0.1) 0.88251 0.88280 0.90526 0.90561 0.94436 0.94432
(0.9, 0.2) 0.99979 0.99980 0.99985 0.99986 0.99994 0.99993
(0.8, 0.3) 0.99850 0.99852 0.99892 0.99898 0.99951 0.99952
(0.9, 0.5) 0.99597 0.99602 0.99711 0.99725 0.99845 0.99869
(0.8, 0.6) 0.97360 0.97333 0.98141 0.98104 0.99010 0.99067
(0.2, 0.8) 0.75069 0.75070 0.75100 0.75102 0.75217 0.75214
(0.9, 0.9) 0.88250 0.88280 0.90544 0.90561 0.94632 0.94432

Tables 3 and 4 show the absolute errors of the MSQI method in comparison with Bahadir [32].
The results of the discrete ADM method [16] are also listed in these two tables for comparison. A good
approximation with the exact solution of the equations is achieved by using only a looser mesh grid.
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Table 3. Comparison of absolute errors for upx, y, tqwith R “ 80, τ “ 10´4 at different times t.

Mesh Grid t “ 0.01 t “ 0.5
MSQI Bahadir [32] Zhu [16] MSQI Bahadir [32] Zhu [16]

(0.1, 0.1) 1.63803ˆ10´5 7.24132ˆ10´5 5.91368ˆ10´5 6.11973ˆ10´4 5.13431ˆ10´4 2.77664ˆ10´4

(0.5, 0.1) 1.85815ˆ10´5 2.42869ˆ10´5 4.84030ˆ10´6 1.73489ˆ10´4 8.85712ˆ10´4 4.52081ˆ10´4

(0.9, 0.1) 1.64831ˆ10´7 8.39751ˆ10´6 3.41000ˆ10´8 3.07314ˆ10´6 6.53372ˆ10´5 3.37430ˆ10´6

(0.3, 0.3) 1.65880ˆ10´5 8.25331ˆ10´5 5.91368ˆ10´5 6.69829ˆ10´4 7.31601ˆ10´4 2.77664ˆ10´4

(0.7, 0.3) 1.94033ˆ10´5 3.43163ˆ10´5 4.84030ˆ10´6 2.16464ˆ10´4 6.27245ˆ10´4 4.52081ˆ10´4

(0.1, 0.5) 1.61309ˆ10´7 5.62014ˆ10´5 1.64290ˆ10´6 3.32546ˆ10´4 4.01942ˆ10´4 2.86553ˆ10´4

Table 4. Comparison of absolute errors for vpx, y, tqwith R “ 80, τ “ 10´4 at different times t.

Mesh Grid t “ 0.01 t “ 0.5
MSQI Bahadir [32] Zhu [16] MSQI Bahadir [32] Zhu [16]

(0.1, 0.1) 1.63803ˆ10´5 8.35601ˆ10´5 5.91368ˆ10´5 6.11973ˆ10´4 6.17325ˆ10´4 2.77664ˆ10´4

(0.5, 0.1) 1.85815ˆ10´5 5.13642ˆ10´5 4.84030ˆ10´6 1.73489ˆ10´4 4.67046ˆ10´4 4.52081ˆ10´4

(0.9, 0.1) 1.64832ˆ10´7 7.03298ˆ10´6 3.41000ˆ10´8 3.07314ˆ10´6 1.70434ˆ10´5 3.37400ˆ10´6

(0.3, 0.3) 1.65880ˆ10´5 6.15201ˆ10´5 5.91368ˆ10´5 6.69829ˆ10´4 6.25402ˆ10´4 2.77664ˆ10´4

(0.7, 0.3) 1.94033ˆ10´5 5.41000ˆ10´5 4.84030ˆ10´6 2.16464ˆ10´4 4.66046ˆ10´4 4.52081ˆ10´4

(0.1, 0.5) 1.61310ˆ10´7 7.35192ˆ10´5 1.64290ˆ10´6 3.32546ˆ10´4 8.72422ˆ10´4 2.86553ˆ10´4

Example 2. In the second problem, we consider the 2D Burgers’ equations with the following initial
conditions [33]

upx, y, 0q “ x` y,

vpx, y, 0q “ x´ y,

and the computational domain has been taken as D “ tpx, yq : 0 ď x ď 0.5, 0 ď y ď 0.5u. The exact solutions
are as follows:

upx, y, tq “
x` y´ 2xt

1´ 2t2 ,

vpx, y, tq “
x´ y´ 2yt

1´ 2t2 .

Numerical results using the MSQI method are listed in Tables 5 and 6. In these two tables, we also
provide numerical errors and comparison with those given in [16]. All the results in Tables 5 and 6 are
calculated with uniform mesh grid hx “ hy “ 0.05, time step size τ “ 10´4 and arbitrary Reynolds
number R at different times t. In Figure 6a,b, we have plotted the profiles of the approximation
solutions by the MSQI method at t “ 0.1.

Table 5. Comparison of numerical solutions with the exact solutions for u and v at t “ 0.1, N “ 10, and
errors are absolute errors.

Mesh Grid unum erroru
erroru [16] vnum errorv

errorv [16]
N “ 20 N “ 20

(0.1, 0.1) 0.18367 3.29366ˆ10´6 3.30750ˆ10´6 -0.02041 7.46922ˆ10´7 1.05384ˆ10´6

(0.3, 0.1) 0.34693 5.45525ˆ10´6 5.56160ˆ10´6 0.18367 3.14176ˆ10´6 3.30770ˆ10´6

(0.2, 0.2) 0.36734 6.41938ˆ10´6 6.61520ˆ10´6 ´0.04081 1.80110ˆ10´6 2.10766ˆ10´6

(0.4, 0.2) 0.53060 8.79085ˆ10´6 8.86940ˆ10´6 0.16326 2.16219ˆ10´6 2.25400ˆ10´6

(0.3, 0.3) 0.55101 9.85992ˆ10´6 9.92330ˆ10´6 ´0.06122 3.08212ˆ10´6 3.16150ˆ10´6

(0.2, 0.4) 0.57142 1.00279ˆ10´5 1.09769ˆ10´5 ´0.28571 7.37580ˆ10´6 8.57700ˆ10´6

(0.5, 0.5) 0.91835 1.65391ˆ10´5 1.65386ˆ10´5 ´0.10204 5.26189ˆ10´6 5.26920ˆ10´6
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Table 6. Comparison of numerical solutions with the exact solutions for u and v at t “ 0.4, N “ 10, and
errors are absolute errors.

Mesh Grid unum erroru
erroru [16] vnum errorv

errorv [16]
N “ 20 N “ 20

(0.1, 0.1) 0.17645 1.56636ˆ10´5 1.01945ˆ10´4 ´0.11762 2.30003ˆ10´5 3.54833ˆ10´4

(0.3, 0.1) 0.23529 4.91795ˆ10´6 5.58724ˆ10´4 0.17646 1.53797ˆ10´5 1.01946ˆ10´4

(0.2, 0.2) 0.35291 3.32840ˆ10´5 2.03891ˆ10´4 ´0.23524 5.73342ˆ10´5 7.09666ˆ10´4

(0.4, 0.2) 0.41174 2.52872ˆ10´5 6.60670ˆ10´4 0.05884 1.73085ˆ10´5 4.56779ˆ10´4

(0.3, 0.3) 0.52936 5.66418ˆ10´5 3.05837ˆ10´4 ´0.35284 1.04665ˆ10´4 1.06450ˆ10´3

(0.2, 0.4) 0.64701 5.11863ˆ10´5 4.89963ˆ10´4 ´0.76460 1.07043ˆ10´4 1.67222ˆ10´3

(0.5, 0.5) 0.88225 1.03951ˆ10´4 5.09728ˆ10´4 ´0.58804 1.92169ˆ10´4 1.77417ˆ10´3

0
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1
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Figure 6. A numerical illustration of approximation solutions upx, y, tq (a) and vpx, y, tq (b) by MSQI
with τ “ 10´4, hx “ hy “ 0.1 at t “ 0.1.

From these tables, we can see that the MSQI scheme achieves an excellent approximation
with the exact solutions of the equations. Though some of the results are not better
than the ones in [16], the MSQI method has a simpler construction, easy implementation,
smaller calculation and was less time-consuming.

3.2. Image Reconstruction

The digital-image-processing technique is applied more and more extensively at present, which
can be seen in real-time image transmission, digital image restoration, extracting facial features, image
synthesis, image compression and encryption, and so on [35,36].

In this section, we use the multivariate spline quasi-interpolation operator W1 defined by
Theorem 7 to deal with problems of image reconstruction. For the testing image, we use the 2D
gray image Lena [37] with pixels of 256ˆ 256, which can be seen in Figure 7a.

Figure 7b is the 32,768 (256 ˆ 128) sampling of pixels from Lena that are used in the
quasi-interpolation operator W1. The reconstruction image of Lena is shown in Figure 7c. We also give
the reconstruction image of Lena by using the quasi-interpolation operator Wmn [10,23] in S1

2p∆
p2q
mnq in

Figure 8c. For the operator Wmn, we can see [10,23] for more details. Drawings of partial enlargement
of the reconstruction images with W1 and Wmn are illustrated in Figure 8a,b respectively.
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(a) (b) (c)

Figure 7. Results of the 2D gray image Lena. (a) original; (b) sampling pixels; (c) by W1 f in S3
5p∆

p2q
mnq.

(a) (b) (c)

Figure 8. Reconstructed image by Wmn (a) and partial enlarged image of reconstructions by W1 (b) and
Wmn (c).

We also have used Barbara and Peppers 2D gray images to test the performance of the operator W1.
The number of sampling pixels is also 32,768. The results are demonstrated in Figures 9 and 10.

(a) (b) (c)

Figure 9. Results of 2D gray image Barbara. (a) original; (b) sampling pixels; (c) by W1 in S3
5p∆

p2q
mnq.
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(a) (b) (c)

Figure 10. Results of 2D gray image Peppers. (a) original; (b) sampling pixels; (c) by W1 in S3
5p∆

p2q
mnq.

4. Conclusions

From the reconstruction images, we can see that the operator W1 has a better performance with
smaller image distortion. If we give a partition r0, mhs ˆ r0, nhspm ‰ nq for the testing images, we can
use less pixels for reconstruction. At this time, image distortion of the reconstruction images may
become bigger in contrast with the original ones. Note that the operator W1 can also serve as one
technique for problems with zooming in and out of images. Other quasi-interpolation operators can
also be used for these problems.
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