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Abstract: This paper develops an optimal stopping rule by characterizing the take-profit level.
The optimization problem is modeled by geometric Brownian motion with two switchable regimes
and solved by stochastic calculation. A closed-form profitability function for the trading strategies is
given, and based on which the optimal take-profit level is numerically achievable with small cost of
computational complexity.
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1. Introduction

Derivative trading has been reshaped by quantitative techniques in recent decades [1]. This paper
aims to solve the optimization problem of setting take-profit levels to maximize the profitability.
Considerable studies on closing a deal are implemented into trading practice. Eloe et al. [2] optimized
the threshold levels of taking profit and stopping loss based on a regime-switching model. On the
other hand, modeling with regime-switching has the advantage of flexibility in changing parameters.
Since first introduced by [3], intensive research interests have been drawn to this area, for example the
research by Yao et al. [4] on pricing the European option by a regime-switching model.

In this paper, we also apply switched regimes, but not driven by another independent process
or external factors. To optimize the take-profit level, regime-switching in our model is triggered
by the price process itself; hence, our model is less subject to parameter estimation and prediction,
and performs more neutrally to unveil the variation brought by the take-profit level.

We proceed as follows. In Section 2, we formulate the optimal selling problem. Section 3 gives
the probability distribution of the transaction time. In Section 4, the profitability function is explicitly
expressed in closed-form and optimal take-profit level is achievable from this expression. Section 5
proceeds the numerical simulation to show that the results obtained by our method are consistent with
those by crude Monte Carlo simulation [5] , but ours consume less time.

2. Problem Formulation

Suppose a pair of opposite trades are opened by the the current ask price x+ and bid price x− at
time t, the price Xt is recognized as x++x−

2 and denoted as x. Thereby, the cost for a pair of orders are
x+ − x−, assumed as a constant θ < X0. Let x(1 + η) be the closing price for long trades, and x(1− η)

for short trades, xη is the profit gained in each single deal, where η ∈ (0, 1) as the take-profit rate.
The price dynamic is simulated by the process {Xt : t ∈ [0, ∞)} formulated by the following equation:
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dXt =

[
µ− (µ− σ2

2
)1{X̂0,t≥X0(1+η) or X̌0,t≤X0(1−η)}

]
Xtdt + σXtdWt (1)

where µ ∈ IR, σ > 0, X0 > 0, and X̂s1,s2 := sups1≤r≤s2
Xr, X̌s1,s2 := infs1≤r≤s2 Xr. The nature

filtration (Ft)t∈IR+ is generated by a Wiener process (Wt)t∈IR+ . For any T > 0, consider the process
{Xt : t ∈ [0, T]}; to make it under a risk-neutral setting, a new probability measure P̂ is defined by

dP̂ = exp
(∫ T

0
ϕtdWt −

∫ T

0

1
2

ϕ2
t dt
)

dP,

where the process ϕt is given by

ϕt := µ− (µ− σ2

2
)1{X̂0,t≥X0(1+η) or X̌0,t≤X0(1−η)}, t ∈ [0, T],

hence under this measure, P̂, Wt −
∫ t

0 ϕudu is a standard Brownian motion and Xt is also a martingale.
Without loss of generality and for convenience of notation, we still proceed under the original measure
P instead of P̂ for the remaining part. For any t ∈ IR+, in the event that X0(1− η) < Xs < X0(1 + η)

for all s ∈ [0, t], (Xs)s∈[0,t] follows a geometry Brownian motion as in the Black–Scholes model. The
drift factor µ is set according to the predicted trend based on the previous information. Therefore,
once the threshold level is achieved, we abandon the previously obtained value of the drift factor
µ, and make no more prediction for the uncertainty; rather, the price thereafter is simulated by a
martingale—namely, letting the drift factor vanish. According to our stopping rule, two stopping
times are defined as follows,

T1 := inf{s ≥ 0 | Xs ≥ X0(1 + η) or Xs ≤ X0(1− η)}, (2)

T2 := inf{s ≥ 0 | X̂0,T1+s ≥ X0(1 + η) and X̌0,T1+s ≤ X0(1− η)}. (3)

To measure the efficiency of profit-taking, we define the profitability function:

φ(η) := E
[

2ηX0 − θ

T1 + T2

]
(4)

for any take-profit rate η ∈ (0, 1). With definition (2) of T1, SDE (1) is rewritten equivalently:
dXt = µXt1{t<T1}dt + σXtdWt. Next, we define two geometric Brownian motions (Yt)t∈IR+ and
(Zt)t∈IR+ by dYt = µYtdt + σYtdWt and dZt = σZtdWt. For any positive sequence {ti}i∈IN that ti < ti+1
for any i ∈ IN, in the event ti < T1 for all i, {Yti}i∈IN has the same joint distribution as {Xti}i∈IN. On the
other hand, {Zti}i∈IN has the same joint distribution as {Xti}i∈IN in the event that ti > s ≥ T1 for all i.
Therefore, in the following computation, we may substitute Xt by Yt and Zt in each case, respectively.

For convenience, we define Wλ
t := Wt + λt, λ := µ

σ −
σ
2 , St := sup0≤r≤t Wr, and It := inf0≤r≤t Wr.

3. Computation of Transaction Time

3.1. Independence between T1 and T2

In this subsection, we show by Lemma 1 the independence between T1 and T2 for
further computation.

Lemma 1. For any t1, t2 > 0, P(T1 ∈ dt1, T2 ∈ dt2) = P(T1 ∈ dt1)P(T2 ∈ dt2), where T1, T2 are defined
by (2) and (3).

Proof. By definition (2) of T1, T1 6= 0 since X0 > 0, then XT1 = X0(1 + η) or XT1 = X0(1− η), hence
we have
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P(T1 ∈ dt1, T2 ∈ dt2) = E[1{T1∈dt1}E[1{T2∈dt2} | T1 ∈ dt1, XT1 = X0(1 + η)]]P(XT1 = X0(1 + η))

+ E[1{T1∈dt1}E[1{T2∈dt2} | T1 ∈ dt1, XT1 = X0(1− η)]]P(XT1 = X0(1− η)).
(5)

To simplify (5), by definition (3), we note that

E[1{T2∈dt2} | T1, XT1 = X0(1− η)]

=P( inf{s ≥ 0 | ẐT1,T1+s ≥ X0(1 + η)} ∈ dt2 | T1, ZT1 = X0(1− η)),
(6)

Applying the strong Markov property of (Zt)t∈IR+ for all t ≥ T1 given T1, we have

P( inf{s ≥ 0 | ẐT1,T1+s ≥ X0(1 + η)} ∈ dt2 | T1, ZT1 = X0(1− η))

=P
(

log(1 + η)− log(1− η)

σ
∈ dSt2

)
,

(7)

where for the property of Wiener process, we apply Theorem 1.12 of [6]. Combining (6) and (7), we
see that

E[1{T2∈dt2} | T1, XT1 = X0(1− η)] = P
(

log(1 + η)− log(1− η)

σ
∈ dSt2

)
. (8)

By the symmetric property of Wiener process (see Chapter 2 of [7]),

E[1{T2∈dt2} | T1 ∈ dt1, XT1 = X0(1− η)] = E[1{T2∈dt2} | T1 ∈ dt1, XT1 = X0(1 + η)]. (9)

By (5), (8), and (9), we obtain

P(T1 ∈ dt1, T2 ∈ dt2) = P(T1 ∈ dt1)P
(

log(1 + η)− log(1− η)

σ
∈ dSt2

)
. (10)

On the other hand, repeating the approach above, we see that

P(T2 ∈ dt2) = P
(

log(1 + η)− log(1− η)

σ
∈ dSt2

)
, (11)

hence we conclude Lemma 1 by (10) and (11). �

3.2. Distribution of T1

Define a function G(y, a, b, t) for any a > y > b > 0 and t ∈ IR+ by

G(y, a, b, t) =
∞

∑
n=1

[κ(t, y− 2b + 2(n− 1)(a− b)) + κ(t, y− 2a− 2(n− 1)(a− b))

−κ(t,−y + 2n(a− b))− κ(t,−y− 2n(a− b))],

(12)

where the normal density function κ is defined by κ(t, x) := e−
x2
2t√

2πt
for any t > 0, x ∈ IR. Then, the

distribution of T1 is given by Proposition 2 as follows.

Proposition 2. For any t > 0,

P(T1 < t) =
∫ log(1+η)

σ

log(1−η)
σ

eλy− 1
2 λ2tG

(
y,

log(1 + η)

σ
,

log(1− η)

σ
, t
)

dy

+1−Φ
(

log(1 + η)

σ
√

t
−
√

tλ
)
+ Φ

(
log(1− η)

σ
√

t
−
√

tλ
)

,
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where Φ(·) denotes the distribution function of a standard normal variable.

Proof. By the definition (2) of T1, for any t > 0, we have P(T1 < t) = P(Ŷ0,t ≥ X0(1 + η) or Y̌0,t ≤
X0(1− η)). Applying the standard technique of Girsanov theorem, cf. Theorem 8.6.4 of B. Oksendal [8],
we obtain that P(T1 < t) = E[1{St≥ 1

σ log(1+η) or It≤ 1
σ log(1−η)}e

λWt− 1
2 λ2t], for which we then apply the

Lemma 3 proved by some similar arguments as in Chapter 2.8 of [9]; the details of the proof are stated
in the Appendix. �

Lemma 3. For any a > c > b > 0, t > 0 and x ∈ (a, b), we have

P(St ≥ a or It ≤ b ; Wt ≤ c |W0 = x)

=
∞

∑
n=1

[
Φ
(

c + x− 2n(a− b)− 2a√
t

)
+ Φ

(
c + x + 2n(a− b)− 2b√

t

)
−Φ

(
c− x + 2n(a− b)√

t

)
−Φ

(
c− x− 2n(a− b)√

t

)
−Φ

(
b + x− 2n(a− b)− 2a√

t

)
−Φ

(
b + x + 2n(a− b)− 2b√

t

)
+Φ

(
b− x + 2n(a− b)√

t

)
+ Φ

(
b− x− 2n(a− b)√

t

)]
.

4. Optimization of Take-Profit Levels

In this section, we express the profitability function in a closed-form and consider the
maximization problem over η ∈ (0, 1). By (4) and (11), and Proposition 2, we have

φ(η) = (2ηX0 − θ)
∫
(R+)2

P(dT1)P(dT2)

T1 + T2
= (2ηX0 − θ)

∫
(R+)2

1
t + s

ϕ1(t)ϕ2(s)dtds, (13)

where the probability density functions are given by

ϕ1(t) :=
∫ log(1+η)

σ

log(1−η)
σ

eλy− 1
2 λ2t ∂G

∂t

(
y,

log(1 + η)

σ
,

log(1− η)

σ
, t
)

dy

− 1
2

λ2
∫ log(1+η)

σ

log(1−η)
σ

eλy− 1
2 λ2tG

(
y,

log(1 + η)

σ
,

log(1− η)

σ
, t
)

dy

− 1√
2π

e−
(log(1−η)−σλt)2

2σ2t

(
log(1− η)

2σ
√

t3
+

λ

2
√

t

)
+

1√
2π

e−
(log(1+η)−σλt)2

2σ2t

(
log(1 + η)

2σ
√

t3
+

λ

2
√

t

)

for t > 0, where the function G is defined by (12), and ϕ2(t) =
log(1+η)−log(1−η)

σ
√

2πt3 e−
(log(1+η)−log(1−η))2

2σ2t

for t > 0. Then, we consider the maximization problem of setting suitable η. First, to enlarge
φ(η), we ensure it to be positive; therefore, η should satisfy the condition that η > θ

2X0
. Note that

η ∈ (0, 1) and θ < X0 as we assumed before, η should be within ( θ
2X0

, 1). Next, we check the

convergence of the integration in (13). Actually, under the condition that η ∈ ( θ
2X0

, 1), we see that

0 < φ(η) < (2X0−θ)σ2

(log(2X0+θ)−log(2X0−θ))2 , which also provides a uniform upper bound for the profitability

function. The optimal take-profit rate η∗ = max

η ∈
(

θ
2X0

, 1
) ∣∣∣ φ(η) = max

θ
2X0
≤r≤1

φ(r)

, is ready to be

solved numerically.

5. Numerical Simulation

In Table 1 below, we compare the testing errors and running time for both approaches. Note that
the average testing errors are measured by comparison with the result obtained by programming with
much more samples and smaller time discretization steps, which consume several times the running
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time. From the average running time listed, we conclude that our approach is much more efficient
than that of crude Monte Carlo simulation. The reason is also mathematically obvious , as it is well
known that E[T2] = ∞ while E

[
1
T2

]
is finite, it is quite time-consuming to sample the stopping time T2

(so is T1). From the data of difference pairs of (µ, σ) obtained by both approaches, we find that the
optimal take-profit level is more sensitive to the changes of σ than that of µ. Besides, larger volatility
σ yields large optimal take-profit level, which reinforces the widely-held financial wisdom that the
larger the volatility, the larger the take-profit level we can set.

Table 1. For 25 pairs of parameters (µ, σ), we report the value of η obtained by Monte Carlo simulations
and our approach of maximization of the closed-form.

X0 = 10, θ = 0.001 σ = 0.10 σ = 0.15 σ = 0.20 σ = 0.25 σ = 0.30

Monte Carlo

¯ = 0.05 0.029 0.042 0.046 0.058 0.064
¯ = 0.10 0.031 0.047 0.049 0.056 0.072
¯ = 0.15 0.035 0.049 0.053 0.064 0.077
¯ = 0.20 0.038 0.050 0.058 0.080 0.095
¯ = 0.25 0.039 0.058 0.063 0.084 0.103

Average Testing Errors 0.028
Average Running Time 54.60 min

Our method

¯ = 0.05 0.028 0.040 0.049 0.056 0.068
¯ = 0.10 0.032 0.045 0.051 0.061 0.075
¯ = 0.15 0.035 0.051 0.054 0.066 0.080
¯ = 0.20 0.040 0.052 0.059 0.077 0.091
¯ = 0.25 0.041 0.061 0.065 0.083 0.096

Average Testing Errors 0.011
Average Running Time 30.11 min

6. Conclusion and Future Work

This paper gives an optimal stopping rule by characterizing the take-profit level. Compared to
others’ effects on this, ours has less computational complexity and is applicable to improving the
trading strategy for the issue of closing position. Our work can be extended to other more difficult
models with regime switching, such as that with Markov chains; however, it could be challenging to
get a closed form, since our work benefits from the advantages of Brownian motion.
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and China Postdoctoral Science Foundation (2015M580374, 2016T90398).
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Appendix A.

In this section, we proceed to prove Lemma 3 by applying the technique in Chapter 2.8 of [9].
For any a > c > b > 0, x ∈ (a, b), t > 0, we have

Px(St ≥ a or It ≤ b ; Wt ≤ c)

=
∞

∑
n=1

[
Φ
(

c + x− 2n(a− b)− 2a√
t

)
+ Φ

(
c + x + 2n(a− b)− 2b√

t

)
−Φ

(
c− x + 2n(a− b)√

t

)
−Φ

(
c− x− 2n(a− b)√

t

)
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−Φ
(

b + x− 2n(a− b)− 2a√
t

)
−Φ

(
b + x + 2n(a− b)− 2b√

t

)
+Φ

(
b− x + 2n(a− b)√

t

)
+ Φ

(
b− x− 2n(a− b)√

t

)]
.

Proof. First, several sequences of stopping time are defined as follows:

σ0 = 0, τ0 = inf{t ≥ 0 | It ≤ b};

π0 = 0, ρ0 = inf{t ≥ 0 | St ≥ a};

σn = inf{t ≥ πn−1 |Wt = a};

τn = inf{t ≥ σn−1 |Wt = b};

πn = inf{t ≥ ρn−1 |Wt = b};

ρn = inf{t ≥ πn−1 |Wt = a}.

With the reflection property of Brownian motion (refer to [9]), for y ∈ (b, a),

Px(Wt ≥ y
∣∣∣ Fτn) = Px(Wt ≤ 2b− y

∣∣∣ Fτn) on {τn ≤ t};

Px(Wt ≥ y
∣∣∣ Fτn) = Px(Wt ≤ 2b− y

∣∣∣ Fπn) on {πn ≤ t};

Px(Wt ≤ y
∣∣∣ Fτn) = Px(Wt ≥ 2a− y

∣∣∣ Fσn) on {σn ≤ t};

Px(Wt ≤ y
∣∣∣ Fτn) = Px(Wt ≥ 2a− y

∣∣∣ Fρn) on {ρn ≤ t}.

Note that 2b− y < b and 2a− y > a; thereby, for any n ≥ 1,

Px(Wt ≥ y, τn ≤ t) = Px(Wt ≤ 2b− y, τn ≤ t) = Px(Wt ≤ 2b− y, σn ≤ t);

Px(Wt ≤ y, σn ≤ t) = Px(Wt ≥ 2a− y, σn ≤ t) = Px(Wt ≥ 2a− y, τn−1 ≤ t);

Px(Wt ≤ y, ρn ≤ t) = Px(Wt ≥ 2a− y, ρn ≤ t) = Px(Wt ≥ 2a− y, πn ≤ t);

Px(Wt ≥ y, πn ≤ t) = Px(Wt ≤ 2b− y, πn ≤ t) = Px(Wt ≤ 2b− y, ρn−1 ≤ t).

The above formulas are alternately and recursively applied to gain the following expressions.
Therefore we have,

Px(Wt ≥ y, τn ≤ t) = Px(Wt ≤ 2b− y, σn ≤ t)

= Px(Wt ≥ 2a− (2b− y), τn−1 ≤ t)

= Px(Wt ≤ 2b− y− 2(a− b), σn−1 ≤ t)

= Px(Wt ≥ y + 2n(a− b), τn−n ≤ t)

= Px(Wt ≤ 2b− y− 2n(a− b), σ0 ≤ t),

and

Px(Wt ≤ y, σn ≤ t) = Px(Wt ≥ 2a− y, τn−1 ≤ t)

= Px(Wt ≤ y− 2(a− b), σn−1 ≤ t)

= Px(Wt ≤ y− 2n(a− b), σ0 ≤ t).
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Similarly, another two formulas are:

Px(Wt ≤ y, ρn ≤ t) = Px(Wt ≥ 2a− y + 2n(a− b)).

Px(Wt ≥ y, πn ≤ t) = Px(Wt ≥ y + 2n(a− b)).

Taking the derivative regarding y in the above four formulas, another four expressions are gained.

Px(Wt ∈ dy, τn ≤ t) = κ(t, x + y− 2b + 2n(a− b))dy,

Px(Wt ∈ dy, σn ≤ t) = κ(t, x− y + 2n(a− b))dy,

Px(Wt ∈ dy, ρn ≤ t) = κ(t, x + y− 2a− 2n(a− b))dy,

Px(Wt ∈ dy, πn ≤ t) = κ(t, x− y− 2n(a− b))dy,

where κ(t, x) = e−
x2
2t√

2πt
as defined before, for any t > 0, x ∈ R. Note that τn−1 ∨ ρn−1 = σn ∧ πn and

σn ∨ πn = πn ∧ ρn for any n ≥ 1, then for any integer k ≥ 1,

Px(Wt ∈ dy, τk ∧ ρk ≤ t) = Px(Wt ∈ dy, τk ≤ t) + Px(Wt ∈ dy, ρk ≤ t)

−Px(Wt ∈ dy, σk ∧ πk ≤ t)

= Px(Wt ∈ dy, τk ≤ t) + Px(Wt ∈ dy, ρk ≤ t)

−[Px(Wt ∈ dy, τk−1 ≤ t) + Px(Wt ∈ dy, ρk−1 ≤ t)

−Px(Wt ∈ dy, τk−1 ∧ ρk−1 ≤ t)].

Repeatedly apply this recursive expression for k times, and have:

Px(Wt ∈ dy, τk ∧ ρk ≤ t) =
k

∑
n=1

[Px(Wt ∈ dy, σn ≤ t) + Px(Wt ∈ dy, πn ≤ t)

−Px(Wt ∈ dy, τn−1 ≤ t)− Px(Wt ∈ dy, ρn−1 ≤ t)]

+Px(Wt ∈ dy, τ0 ∧ ρ0 ≤ t).

Consider the convergence of the above summation when k goes to infinity. Since the summation
equals Px(Wt ∈ dy, τk ∧ ρk ≤ t)− Px(Wt ∈ dy, τ0 ∧ ρ0 ≤ t), the above summation should decrease on
k, and constrained within [−1, 1], the limit exists and is bounded. Note that St ≥ a or It ≤ b is the
same event as τ0 ∧ ρ ≤ t, then pass k to infinity and gain that

Px(Wt ∈ dy, St ≥ a or It ≤ b) =
∞

∑
n=1

[Px(Wt ∈ dy, τn−1 ≤ t) + Px(Wt ∈ dy, ρn−1 ≤ t)

−Px(Wt ∈ dy, σn ≤ t)− Px(Wt ∈ dy, πn ≤ t)]

=
∞

∑
n=1

[κ(t, x + y− 2b + 2(n− 1)(a− b))

+κ(t, x + y− 2a− 2(n− 1)(a− b))

−κ(t, x− y + 2n(a− b))− κ(t, x− y− 2n(a− b))]dy.

Finally, take integration regarding y from b to c, and hence complete the proof. �
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