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Abstract: A particle filter is a powerful tool for object tracking based on sequential Monte Carlo
methods under a Bayesian estimation framework. A major challenge for a particle filter in object
tracking is how to allocate particles to a high-probability density area. A particle filter does not take
into account the historical prior information on the generation of the proposal distribution and, thus,
it cannot approximate posterior density well. Therefore, a new fuzzy grey prediction-based particle
filter (called FuzzyGP-PF) for object tracking is proposed in this paper. First, a new prediction model
which was based on fuzzy mathematics theory and grey system theory was established, coined the
Fuzzy-Grey-Prediction (FGP) model. Then, the history state sequence is utilized as prior information
to predict and sample a part of particles for generating the proposal distribution in the particle
filter. Simulations are conducted in the context of two typical maneuvering motion scenarios and the
results indicate that the proposed FuzzyGP-PF algorithm can exhibit better overall performance in
object tracking.
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1. Introduction

Object tracking has become a very important research topic for many years since it can be
used in many applications [1,2]. We can find a variety of approaches for object tracking in related
literature [3-5]. For object tracking problems with linear or Gaussian system models, the Kalman
filter (KF) can be applied to obtain optimal solutions [6]. For problems with nonlinear system
models, many nonlinear filtering methods have been proposed, such as the extended Kalman filter
(EKF) [7,8] and unscented Kalman filter (UKF) [9,10], which are usually implemented to provide
Gaussian approximation to the posterior probability density function in the state space. In recent years,
the particle filter [11] has attracted a lot of researchers’ attention. A particle filter is a powerful tool for
object tracking based on sequential Monte Carlo methods under a Bayesian estimation framework [12].
The core of particle filter is to represent the probability density of object state by a set of random
samples with their associated weights and how to allocate particles to a high-probability density area.
Due to this sample-based method, particle filters are able to represent a variety of complex probability
densities distribution with nonlinear and non-Gaussian dynamic systems. Thus, particle filters have
been applied with great success to a variety of object tracking problems [13,14].

However, a standard particle filter (SPF) is not always satisfactory which may confront the particle
degeneracy [15]. That is to say, all but a few particles have negligible weights after a few iterations.
Consequently, a large amount of computational efforts is devoted to updating particles whose
contribution to the approximation to posterior probability density function is almost zero. For many
years, much attention has been paid to solve this problem of particle degeneration. Some novel
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strategies were proposed to solve this problem, and many improved variants of SPF were presented.
An important strategy to overcome this problem is to design better proposal distributions. One such
approach is the auxiliary particle filter (APF) [16] which improves some deficiencies of the SPF
algorithm when dealing with tailed observation densities. However, requiring a large number of
particles is its drawback. In addition to the APF, there are other methods, such as auxiliary extended
and auxiliary unscented Kalman particle filters [17], genetic particle filter (GPF) [18], risk-sensitive
particle filters (RSPF) [19], and so on. Many new methods have been recently proposed in the last
few years. Ding et al. proposed a new selective sampling importance resampling (SSIR) particle filter
framework [20]. This framework integrates an auto-regressive filter to improve the process of sample
generation. Shabat et al. proposed an accelerating particle filter using randomized multi-scale and fast
multi-pole type methods [21]. The accelerating particle filter samples a small subset from the source
particles using matrix decomposition methods.

In recent years, a new approach has been proposed [22,23]. This approach incorporates grey
prediction [24] into particles filter (called GP-PF) based on grey system theory, in order to solve the
sample degeneracy problem. The basic idea of the GP-PF is that new particles are sampled by both the
state transition prior and the grey prediction method. Since the grey prediction algorithm is able to
predict the system state based on historical measurements other than establishing an a priori dynamic
model, the GP-PF can significantly alleviate the sample degeneracy problem, which is common in
SPF, especially when it is used for object target tracking. The main advantages of GP-PF lie in two
aspects: one is that it can obtain the better proposal distributions and the other is that it does not
require building any a priori model of the object. However, because of the inherent drawbacks of grey
prediction, the weakness of GP-PF is that it cannot obtain good tracking accuracy, though GP-PF can
reduce the loss rate of object tracking to the maximum extent.

In order to further improve the tracking accuracy, this paper incorporates fuzzy theory
into standard grey prediction used in a particle filter for object tracking. The proposed
Fuzzy-Grey-Prediction based particle filter (called FuzzyGP-PF) has both the inherent advantages of
fuzzy theory and grey prediction and, thus, can improve the object tracking performances.

The rest of this paper is organized as follows: in Section 2, we introduce the most common grey
prediction model GM(1,1) (Grey Model for first-order equation with one variable) firstly, then we
proposed the Fuzzy-Grey-Prediction model (FGP). In Section 3, we introduce the particle filter briefly
firstly and then we proposed the object tracking algorithm based on the FGP. Section 4 shows the
experiments and results in detail. Finally, the paper is concluded in Section 5.

2. Fuzzy Grey Prediction

2.1. Grey Prediction Model

The most common Grey-Prediction model is GM(1,1). The concept of the grey prediction is briefly
described as follows [25]:
Let x(©) bea non-negative reference data sequence in real space:

X0 = {01),x0(2),.., 5O (n)} M

and take the accumulated generating operation (AGO) on x(?). Then the first order AGO sequence x(!)
can be described by:

L) {x(l)(l),x(l)(z),...,x(l)(”>} )

where:

xD (k) = {f xO (i), k = 1,2,...,n} @)
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Then sequence z(!) can be obtained by applying the Adjacent-Mean operation to x(1):

20 = {z(1>(2),z(1)(3),...,z(l)(n)} 4)
where:
2Dk =xWk)y 24+ xV(k-1)/2, k=2,3,..,n (5)
The equation:
xO (k) 4+ azV (k) = b (6)

is called a grey differential equation of GM(1,1), where the parameters a and b are called the
development coefficient and the grey input, respectively. The equation:

dx(®)
dt

+axD =p (7)

is called the whitening equation corresponding to the grey differential equation of Equation (6).
In order to find out the solution of the above differential equation, the parameters a and b must he
decided. They can be solved by means of the Least-Square method as follows:

u=1[ab)" = (BTB) 'BTY, ®)
where:
—2(2) 1
. —z:(3) L
am) 1

Y, = {x<0> 2),x©(3),. ..,x<0>(n)} .

Once a and b in whitening Equation (7) are decided, the value of reference data sequence x at time
instant k + 1 can be obtained as follows:
First, the AGO grey data sequence can be obtained:

W (k4+1) = [x<0>(1) - Z] e*“k+§, k=0,1,... )
Then, the forecasting value of x can be calculated by an IAGO (inverse accumulated
generating operation):

20U +1) =20k +1) -2V (k) = (1-¢) [x<0>(1) - b] e (10)

2.2. Fuzzy-Grey-Prediction Model

Grey systems theory is developed to study problems of “small samples and poor information”.
These problems studied by grey systems theory cannot be handled successfully by using either
probability statistics. Grey systems theory has no special requirements and restrictions on data
sequence. Thus, its application is very broad. In the research of system, because of the existence of
internal and external disturbances, when the grey prediction model is used directly, the stability and
precision of the prediction cannot meet the demand. Buffer operator theory is an important aspect
of grey system theory and one of the main features of the theory. In this paper, a new fuzzy buffer
operator is constructed based on grey system theory “the new information priority” principle and
the theory of fuzzy mathematics. It can weaken some randomness to show regularity successfully by
excluding the impact of external interference.
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A new fuzzy grey prediction model (called FGP) is established, and the new model is applied to
the particle filter applications. The basic idea of fuzzy grey prediction is modeling to the fuzzy buffer
sequence using GM(1,1), and the original data sequence is converted into the fuzzy buffer sequence by
using the proposed fuzzy buffer operator.

We set an original data series is a time series data X = {x1, xp, ..., xn}, and we can specify
a fuzzy coefficient for each moment of the data to distinguish the historical data impact on model
results. The fuzzy coefficient can be decided by a fuzzy membership function. For maneuvering target
tracking, this paper chooses the typical membership function of real number field R: rising half-Cauchy
distribution membership function:

0 (x <¢)

V(x) = { 1 -
T+a(x—c)’ (x>c,a>0,b>0)

We can compute all of the fuzzy coefficients S = {sy, 55, ..., sn} when the parameter a, b, c are
decided, while the choice of parameter 4, b, c may be problem-dependent, it needs a concrete analysis
of specific situations. Then, the converted fuzzy buffer sequence can be obtained by a proposed fuzzy
buffer operator as follows:

x{:xi*si+xn*(1—sn) (i=1,2,...,n) (12)

Obviously, according to Equation (12), the last value of the sequence is not changed, while the
other data in the sequence is weakened or strengthened, which depends on the value of the fuzzy
coefficients. Therefore, the proposed fuzzy buffer operator is simple, but very practical.

Then, modeling to the fuzzy buffer sequence using GM(1,1), the two parameters of FGP a and
b can be computed, and substituting the obtained parameters a and b into GM(1,1) to predict the
required result, which completes a solution process of FGP.

3. Fuzzy-Grey-Prediction Based Particle Filter

3.1. Particle Filter

In this section the proposed Fuzzy-Grey-Prediction-based particle filter algorithm (called
FuzzyGP-PF) is presented. For the sake of completeness, we briefly review the particle filter.

Due to intractable integrals, a particle filter is commonly used to approximate it by a set of random
particles (or samples) drawn from a probability distribution. The posterior probability density function

of the target state given the observations is represented by a set of weighted particles {x! }f\il with
. . . N
their associated weights {w}}._,

of particles, i.e.:

where f is the time index, 7 is the particle index and N is the number

N . .
p(xilzie) = ) wid(xe — xi) (13)
i=1
In the processing of particle filters, the approximation can be achieved by performing the following
four recursive steps, namely sampling, calculating particle weighting, state estimation, and resampling:
~ Step 1: Sampling: generating new particles xi ~ mt(x|xi_y,z14) for i = 1,2,...N, where
xp ~ m(xg|xt_y, z1y) is the proposal distribution. The most popular choice of the proposal distribution
is transition prior 71(x¢|xi_;,z14) = p(x¢|x¢_1) due to its simplicity.
Step 2: Calculating weight: the weight wi to the particle x| is determined by its observation
likelihood, i.e.: 4 o
i i p(zt’x’t)p(xﬂx;il)

wt = w -1 q - (14)
: (x| xf g z1e)
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Step 3: State estimation: the mean state of the new particle set, which specifies the position
of object being tracked, can be calculated using a minimum mean square error (MMSE) estimator
as follows:

N . .
£ =E(x;|z14) = )_ wix; (15)
i=1

Step 4: Resampling: resampling is an auxiliary step, which is used to alleviate the particle
degeneracy problem inevitably encountered over time [9]. Drawing new particles { ¥ }fil from the

above set of particles {x’t}f\il based on the particle weights according to a resampling algorithm. It is
implemented by multiplying particles with high weights multiple times and diminishing particles
with relatively low weights.

3.2. Proposed Tracking Algorithm

The key idea of the proposed tracking algorithm is that the history state sequence is utilized as
prior information to predicting and sampling a part of particles for generating proposal distribution in
particle filter. That is to say sampling particles can be achieved by following two ways: one is a few of
the particles sampled from the proposal distribution produced by predicting the state of the object
using FGP, and the other is sampled by the SPF, as in the operation of the state transition prior.

The outline of the tracking algorithm FuzzyGP-PF as follows, where N is the total number of
particles, and Ngpey is the number of particles generated by fuzzy grey prediction; L is the length of the
data series used for fuzzy grey prediction algorithm.

The proposed tracking algorithm

fori=1,2,... N, initialization
Initialize particles xi;
end for
fort=1,2,...
if t < L, normal Sampling
fori=1,2,...N
Generate samples x! according to motion model of target tracking;
end for
else
fori = 1,2,... Ngrey
Generate samples x; by making a prediction for state of target using fuzzy grey prediction;
end for
fori = Ngrey +1, Ngrey +2,...,N
Normal sampling, generate samples x! according to motion model of target tracking;
end for
end if
fori=1,2,...N, calculating the weight of particles, wlt = w’t;lp(zt‘xi) ; end for

) . N .
fori=1,2,... N, normalize the weight: w. = w'/ }_ w!; end for
g t o
1=

N
State estimation: £ = 121 w}x}
1=
. . ; N
Resample to obtain a new particle set {x},1/N},_,

end for

4. Simulation Experiments and Results

To validate the proposed algorithm, two typical scenarios of maneuvering target tracking are
examined: one case corresponds to small maneuvers with an acceleration model and the other
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corresponds to large maneuvers with constant turn model. We compare the performance of the
FuzzyGP-PF with the SPF and the GP-PF [22] in terms of tracking accuracy, computational complexity,
and tracking lost probability. We have implemented these algorithms in Matlab R2010b (MathWorks,
Natick, MA, USA), and simulation results are obtained from 100 independent runs.

4.1. Scenario 1: Small Maneuvers with Acceleration Model

4.1.1. Motion Model

For the case, motion model of target tracking is defined as:
Xx = Axg_1 + Bug + Bwy (16)

where x; = [pxg sx pyx syx|’ is the object state vector at time kT (k is the time index); the variables
(px, pyx) and (sxx, syi) represent the object position and speed in the x and y coordinate, respectively;
A is the state transition matrix, and B is the noise matrix; vy = [axy, ayk]’ is acceleration input vector [26].
Different vy in Equation (16) construct different maneuvering models; wy is the vector of input white
noise with zero mean and covariance matrix Q. Matrix A and B are defined as follows:

1 T 0 0
01 00
= 17
A 0 01T 17)
0 0 0 1
T2/2 0
T 0
B = 18
0 T%/2 (18)
0 T
The measurement equation is:
zr = Hxp 4 uy (19)
where the measurement matrix H is defined as:
Ho 10 00 (20)
0010
It is obvious that z; = [zpx, zpy] consists of position measurements in the x and y direction.

The measurement noise 1y is a zero-mean Gaussian noise vector with covariance matrix R.
Once the motion model is determined, a few of the particles sampled from the proposal
distribution produced by predicting the state of object using FGP which can be achieved as follows:

xfc = [pr”y SX py‘zmy syr]’ + Bw,i, k=1,2,.., Ngrey (21)
where px{" and py;  can be obtained by predicting using FGP, sx; = (pxf ’ — px§ 7)/T,
Sy = (py‘zrey — pyfﬂ)/T, and w;; ~ N(0,Q).
Additionally, the other particles can be sampled by the state transition prior from particles of time
index k — 1: . ' .
X = Axj_q + Bwj, k= Ngrey +1,..., N (22)

For a more clear view of the differences of the tracking performance by different methods, the
following experiment configurations are the same as [15]. The object moves from position (0 m, 0 m)
with initial speed (10 m/s, 10 m/s). Table 1 lists the detailed description of the object motion.
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Table 1. Description of object motion.

Time Index (0.5 s) Object Motion
0-125 Constant velocity
126-140 Constant acceleration (8 m/sZ, 0 m/s?)
141-190 Constant velocity
191-215 Constant acceleration (—8 m/s2, 0 m/s?)
216220 Constant acceleration (0 m/s2, 8 m/s?)
221-300 Constant velocity

4.1.2. Tracking Performance Comparison

The common parameters in this case are given as follows: the particle number for grey prediction
is Ngrey = N/10, L =10 (L is used for sampling step in fuzzy grey prediction algorithm); 2 =0.01,b = 0.1,
c=0(a, b, c is used for the fuzzy membership function); sampling interval T =0.5s; Q = [42,0;0, 4],
R =[20?,0; 0,20%] (Q and R is covariance matrix used for the noise vector).

Table 2 shows the tracking results by the SPF, the GP-PF, and the proposed FuzzyGP-PF when the
particle number N is 500. The position RMSE (root mean squared error) for FuzzyGP-PF is smaller
than SPF and GP-PF, while the consumption of time of the three methods is approximately equal.
The third column of the table shows that the tracking lost probability of SPF is 45%, and the other
two methods have no tracking lost. For the same experiment configurations, in fact, the tracking lost
probability of SPF is 100% when N < 200 and have no tracking lost when N > 800.

Table 2. Tracking performance comparison (Number of particles is 500).

Algorithms Position RMSE (m) Consumption Time (s)  Tracking Lost Probability (%)

SPF 12.8325 8.2194 45%
GP-PF 9.7711 8.3964 0%
FuzzyGP-PF 7.1294 8.5065 0%

Figure 1 shows the tracking results by the SPF, the GP-PF, and the proposed FuzzyGP-PF.
For a more clear view of the differences of the tracking performance by different methods, Figure 2
shows the mean error per frame of estimated position corresponding to the three methods. It is
clear that when the target is during the maneuvering, the SPF cannot maintain good tracking
accuracy. This happens because the target state changes dramatically, the most particles can no
longer represent the true motion of the target well and, thus, the weights of these particles become
negligible. Under such circumstance, the SPF cannot work well. Besides that, we can see that the speed
of target changing abruptly leads to the increase of the mean position error of GP-PF and FuzzyGP-PF,
but the FuzzyGP-PF work better than GP-PF, obviously.

In order to analyze the tracking performance with different particle numbers by the three filters,
Figure 3 shows the position RMSE in 100 dependent runs when the particle number changes from
100 to 1000. It is shown in Figure 3 that our method is better than the others. Notably, the SPF has no
data because of tracking lost when particles is smaller than 300.
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Figure 1. Estimated trajectory by the SPF, GP-PF, and FuzzyGP-PF.
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Figure 3. Position RMSE by SPF, GP-PF, and FuzzyGP-PF with different particle numbers.
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In order to analyze the robustness of the proposed FuzzyGP-PF to Q and R variation, Figure 4
plots the position RMSE in 100 dependent runs when the Qg and Ry changes from one time to 4096 (4°)
times where Qg =[1, 0; 0, 1], Ro =[1, 0; 0, 1]. As can be seen in Figure 4, the tracking accuracy of the
three methods is approximately the same when Q and R are small. However, the tracking accuracy is
much better than GP-PF with the increase of the Q and R. That is to say that the proposed FuzzyGP-PF
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algorithm can enhance the robustness of tracking when the noise of the tracking circumstances is larger.
Just as in Figure 3, the SPF has no data because of tracking lost when the Q and R are 4096.

50

7
—e— SPF I/T
40l | === GP-PF 7
FuzzyGP-PF ;

30+

20

Position RMSE (m)

48

Different Q and R (Multiples)

Figure 4. Position RMSE by SPF, GP-PF, and FuzzyGP-PF with different Q and R.

Table 3 gives the tracking performance of the FuzzyGP-PF with different numbers of particles used
in the fuzzy grey prediction sampling, when a total of 1000 particles are used. It shows that an optimal
particle number for fuzzy grey prediction can be obtained by running simulations. In actuality, a small
Ngrey is enough for most cases.

Table 3. Tracking performance of FuzzyGP-PF with different Ngrey (total particle number: 1000).

Ngrey/N 5% 10% 20% 50% 70% 90%

Position RMSE (m) 5.8172 5.6039 5.9719 71727 7.4432 7.6792
Consumption Time (s) 15.1039 14.9525 15.2948 14.3329 15.4187 15.5165

4.2. Scenario 2: Large Maneuvers with Constant Turn Model

4.2.1. Motion Model

In this case, we consider a relatively complicated scenario where the motion pattern of the
target changes more largely and the maneuvering speed is very slow. The target is modeled by the
coordinated turn (CT) model:

X = F(0, T)xp_1 + Bwy (23)
indT 1—cosfT
1 su;9 0 — cgs
0T —sinfT
where F(0,T) = 8 _ClciscgseT (1) ssigelT is the state transition matrix, 8 is the turn rate,

0 sinflT' 0  cosOT
and the other parameters are the same as Scenario 1.

The target starts a constant velocity motion from position (100 m, 100 m) with initial speed
vy =2.8m/s, vy =2.8m/s,and 6 = 0°/s. Table 4 lists the detailed description of the target motion.
The significant difference between the two scenarios lies in the target motion speed.
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Table 4. Description of object motion.

Time Index (0.5 s) Object Motion
0-20 Constant velocity
21-100 Constant turn (6°/s)
101-200 Constant velocity
201-240 Constant turn (9°/s)
241-300 Constant velocity
301400 Constant turn (—7°/s)
401-440 Constant velocity

4.2.2. Tracking Performance Comparison

The common parameters in this case are given as follows: the particle number for grey prediction
is Ngrey = N/10, L =10 (L is used for sampling step in fuzzy grey prediction algorithm); a =0.01, b = 0.1,
c=0(a, b, cis used for the fuzzy membership function); sampling interval T =0.5s; Q =[4, 0; 0, 4],
R =[42,0;0,4%] (Q and R is covariance matrix used for noise vector). The first six parameters are the
same as Scenario 1, the Q and R are changed since the tracking lost probability of SPF is 100% when
Q =[4%,0;0,4?] and R =[202, 0; 0, 20?].

Table 5 shows the tracking results by the SPF, the GP-PF, and the proposed FuzzyGP-PF when
the particle number N is 500. Conclusions drawn from Table 5 are similar from the Table 2, the major
difference between them is that the tracking lost probability of SPF is decreased when Q and R are
significantly reduced.

Table 5. Tracking performance comparison (number of particles is 500).

Algorithms Position RMSE (m) Consumption Time (s)  Tracking Lost Probability (%)

SPF 1.2020 12.1559 3%
GP-PF 1.1814 12.3246 0%
FuzzyGP-PF 1.1425 12.4627 0%

Figure 5 shows the tracking results by the SPF, the GP-PF, and the proposed FuzzyGP-PF.
For a more clear view of the differences of the tracking performance by different methods, Figure 6
shows the mean error per frame of the estimated position corresponding to the three methods. We can
see that the FuzzyGP-PF works better than SPF and GP-PF most of the time.

In order to analyze the tracking performance in Scenario 2 with different particle number by
the three filters, Figure 7 shows the position RMSE in 100 dependent runs when the particle number
changes from 100 to 1000. It is shown in Figure 7 that our method is better than the others. Notably,
the SPF has no data because of tracking lost when particles is smaller than 100.

200 ; T
- “x = === True trajectory
(’/ SPF
1501 =-=+=GP-PF i
AS(' FuzzyGP-PF
ol \;]/)'L Q\\ |

N\ \‘;’*/

50t \\' p

50 100 150 200 250
x (m)

Figure 5. Estimated trajectory by the SPF, GP-PF, and FuzzyGP-PF.
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Figure 6. Mean position error per frame by SPF, GP-PF, and FuzzyGP-PF.
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Figure 7. Position RMSE by SPF, GP-PF, and FuzzyGP-PF with different particle numbers.

In order to analyze the robustness of the proposed FuzzyGP-PF to Q and R variation in Scenario 2,
Table 6 shows the position RMSE in 100 dependent runs when the Qp and Ry changes from one time to
4096 (4°) times where Qg =[1, 0; 0, 1], Ry = [1, 0; 0, 1]. From Table 6, the advantage of the proposed
FuzzyGP-PF is more obvious. It is more effective and robust than the SPF and the GP-PE. Notably,
SPF has no data because of tracking lost when the times of Qy and R are greater than 256 (4%).

Table 6. Position RMSE by SPF, GP-PF, and FuzzyGP-PF with different Q and R.

Different Q and R
(The Times of Qg and Ry)

RMSE by SPF (m) 0.4176 0.5139 1.0740 2.9582 NaN NaN NaN
RMSE by GP-PF (m) 0.4122 0.5062 1.0615 2.9002 9.5648 33.2356 92.3366
RMSE by FuzzyGP-PF (m) 0.4030 0.4965 1.0371 2.8696 9.1918 31.1210 90.6894

1 Time 4Times 42 Times 4% Times 4*Times 4° Times 4° Times

Now we make a summary of the two cases: the two cases are very typical; in the first one, the target
motion has relatively high speed and acceleration; the second one has a more complex motion pattern
and very slow speed. From the above comparisons, one can conclude that the overall performance of
the proposed FuzzyGP-PF is superior to the SPF and the GP-PF under various circumstances.

5. Conclusions

In this paper, we proposed an improved particle filter based on fuzzy grey prediction for object
tracking. By virtue of incorporating fuzzy mathematics theory into grey prediction, a new fuzzy grey
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prediction model is established. The proposed particle filter algorithm combining the fuzzy grey
prediction model can improve the structure of particles and, thus, it can express the posterior density
more effectively. To conclude, the advantages of the proposed FuzzyGP-PF algorithm comparing with
the SPF and GP-PF are mainly focused on three aspects: improving estimation accuracy significantly;
overcoming the problems of tracking lost well, even when the number of particles is very small;
and enhancing the robustness of tracking when the noise of the tracking circumstances is larger.
In addition to this, the computational complexity is comparable with the SPF and GP-PF for obtaining
the same level of accuracy. Simulation results show the above conclusion.
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