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Abstract: Image mosaicing sits at the core of many optical mapping applications with mobile robotic
platforms. As these platforms have been evolving rapidly and increasing their capabilities, the amount
of data they are able to collect is increasing drastically. For this reason, the necessity for efficient
methods to handle and process such big data has been rising from different scientific fields, where
the optical data provides valuable information. One of the challenging steps of image mosaicing is
finding the best image-to-map (or mosaic) motion (represented as a planar transformation) for each
image while considering the constraints imposed by inter-image motions. This problem is referred
to as Global Alignment (GA) or Global Registration, which usually requires a non-linear minimization.
In this paper, following the aforementioned motivations, we propose a two-step global alignment
method to obtain globally coherent mosaics with less computational cost and time. It firstly tries to
estimate the scale and rotation parameters and then the translation parameters. Although it requires
a non-linear minimization, Jacobians are simple to compute and do not contain the positions of
correspondences. This allows for saving computational cost and time. It can be also used as a fast way
to obtain an initial estimate for further usage in the Symmetric Transfer Error Minimization (STEMin)
approach. We presented experimental and comparative results on different datasets obtained by
robotic platforms for mapping purposes.
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1. Introduction

Rapid progress in technology makes it possible to obtain and store a vast amount of optical data
even from areas beyond human reach. The data has been used for several different purposes in the
computer vision field. Image mosaicing is one of the common computer vision tools being mainly used
for optical mapping and panorama creation. Image mosaicing can be defined as a process of creating a
single high-resolution image from overlapping relatively low-resolution images [1], and it has been
successfully used for different applications, such as video stabilization [2], mapping both aerial [3] and
underwater [4], panorama creation [5–7], and super-resolution [8], among others. Image mosaicing
is composed of two main steps, namely registration and blending. The registration step is further
divided into two steps: pairwise and global registration (or GA). Pairwise registration (or image
matching) consists of finding a relative motion (or transformation) between the coordinate frames of
two overlapping images, while Global Alignment (GA) aims at finding the motion between image and
map (or mosaic) coordinate frame. Intensity blending is applied after aligning images geometrically
on mosaic frame in order to reduce the photometric inconsistences between images.
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The overall image registration framework starts by detecting some salient points in the images
referred to as features. Then, features are described with a vector obtained via different image gradient
information. Similar descriptors are matched between images by using a distance metric (generally
Euclidean distance). Due to noise, some of the descriptors might not be matched correctly. They
are called Outliers, and they need to be eliminated. To do so, usually robust estimation algorithms
(such as Random Sample Consensus (RANSAC) [9]) are employed. Once the outliers are removed,
consistent registration parameters (transformation or motion) between images can be estimated [10]
and referred to as relative transformation. Once the pairwise image registration (both time-consecutive
and non-time-consecutive) is completed, a list of overlapping image pairs and relative registration
parameters between them become available. The next step in the Feature-based Image Mosaicing (FIM)
framework is GA to obtain mosaics. GA is the problem of finding the image-to-mosaic registration
parameters that comply best with constraints imposed by all overlapping image pairs. Global projection
of images (global or absolute transformation) can be calculated by successively multiplying relative
transformations between time-consecutive images if one of the image frames is selected as a global
frame. Usually, the first image frame is chosen as a global frame if there is no other relevant
information available. Since relative transformations encapsulate some errors due to the positions of
correspondences and the estimation methods, accumulation of errors yields a bigger error and results in
the form of misalignment and distortions on image size. GA methods are needed to overcome this error
accumulation. As GA is one of important steps in the image mosaicing pipeline, there have been several
methods proposed. One of the classifications can be done according to in which domain the error is
minimized, mosaic or image. The minimization on the mosaic frame has as a drawback the tendency
to reduce the size of the mosaiced images, as reducing the size also decreases the error. However,
this way of minimization can be done linearly up to affine motion model. While the errors defined
on image frame do not suffer this scaling problem, the minimization usually requires a non-linear
minimization. Sawhney et al. [11] proposed minimizing the distances between correspondences on
the mosaic frame with an additional error term on the diagonals of images in order to overcome
scaling problem. However, having constraints on the image size can cause some disturbance on
image alignment. Capel [8] formulated the GA problem similarly to Bundle Adjustment (BA) [12]
approaches in 3D. Point positions on the mosaic frame and absolute transformations are considered
as unknowns. This method requires feature tracking and high-overlapping image pairs in order
to have certain amount of tracked features on each image. There are also GA methods [13,14] that
apply image-to-mosaic registration, known as “online mosaicing”. In such cases, if there appears a
failure while mapping one image onto the mosaic, future image-to-mosaic registration is likely to fail.
Generally, errors (Euclidean distance between where the relative planar transformation maps a point
and the correspondence of the point was originally detected. An illustration can be seen in Figure 1)
defined on image frame have been preferred and widely used. However, non-linear minimization can
be still regarded as a bottleneck for large-scale mapping applications due to the computational cost
and prerequisite of good initial estimate. In this paper, we propose a two-step GA method aimed to be
fast and less computationally demanding. The first step is to estimate scale and rotation parameters,
while the second step is for estimating translational parameters. We also show that our proposal can
be used in order to find an accurate initial estimate for gold-standard GA methods.
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Figure 1. STE illustration [10]. The error is defined as a sum of distances measured in both image
frames. This error term is independent of the selected global frame m.

2. Nomenclature

• n is the total number of images.
• cij is the total number of correspondences between images i and j.
• s, θ, tx, and ty represents the scale, rotation (in radians) and translation parameters (in pixels) of a

similarity type planar transformation

H =

s · cos θ −s · sin θ tx

s · sin θ s · cos θ ty

0 0 1


• iHj is the transformation relating image points represented in the coordinate frame image j to the

coordinate frame of image i and it consists of parameters (isj, iθj, itx
j , ity

j ).
• The transformation from image i to the global frame m is represented with mHi. mHi is composed

of parameters (si, θi, tx
i , ty

i ) similarly above. For simplicity, m is dropped in the representation
of parameters.

• The first image frame is selected as a mosaic frame. Therefore, mH1 is identity and m equals to 1.
Parameters for the first image are not considered as unknown.

3. Two-Step Global Alignment for Feature-Based Image Mosaicing (FIM)

Our GA approach is motivated by the constraints imposed by relative transformations between
overlapping images as absolute transformations should meet the constraints introduced by them.
We use similarity type planar transformations as they generally contain enough Degrees of Freedom
(DOFs) for optical mapping with robotic platforms [15]. A pipeline of the proposed GA method is
illustrated in Figure 2.

Scale and Rotation Estimation Translation EstimationPairwise 
Image 

Registration

Image 
Blending

Symmetric Transfer Error Minimization (STEMin)Pairwise 
Image 

Registration

Image 
Blending

Proposed GA Method

Figure 2. Pipeline for FIM with Two-Step GA method on top and FIM with STEMin on bottom.
We propose a method composed of two steps instead of STEMin as a GA in the FIM pipeline.
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3.1. Scale and Rotation Estimation

First, we try to obtain the optimum scale and rotation parameters for each image by
minimizing the error given in Equation (1) over scale and rotation without taking into account the
translation parameters:

min
mH1,mH2,mH3,...,mHn

∑
i,j
‖ iHj − mH−1

i ·
mHj ‖2 (1)

where i and j are the indices of the images that were successfully matched overlapping image pairs.
Without taking into translation parts, Equation (1) can be rewritten as follows:

E1(s2,...,n, θ2,...,n) = ∑
i,j
‖ isj −

sj
si
‖2 + ‖ iθj − (θj − θi) ‖2 (2)

It should be noted that the E1 is written as sum of errors in scale and rotation. As there is no
dependency between parameters, minimization can be applied separately:

E11(s2, . . . , sn) = ∑
i,j
‖ isj −

sj
si
‖2

= ∑
i,j

rT
1ij · r1ij

E12(θ2, . . . , θn) = ∑
i,j
‖ iθj − (θj − θi) ‖2

= ∑
i,j

rT
2ij · r2ij

(3)

where r1ij =
[

isj −
sj
si

]
and E12 can be minimized linearly as similarly done in [16]. Operating

on Euler angles may suffer from singularities; therefore, we apply non-linear minimization
using trigonometric functions coming from the equation iRj − R−1

i · Rj, where R represents the
two-dimensional rotation matrix. For non-linear minimization, the residual vector is written of
as follows:

r2ij =

[
cos(iθj)− cos(θi − θj)

sin(iθj) + sin(θi − θj)

]
Jacobians of the cost functions E11 and E12 are rather simple and can be calculated in block form

using the following structural elements:

∂r1ij

∂si
=
[

sj
si2

]
,

∂r1ij

∂sj
=
[
− 1

si

]
,

∂r2ij

∂θi
=

[
sin(θi − θj)

cos(θi − θj)

]
, and

∂r2ij

∂θj
=

[
−sin(θi − θj)

−cos(θi − θj)

]
.

As it can be noted, the following relation between Jacobians hold:

∂r2ij

∂θi
= −

∂r2ij

∂θj

This allows for fast computation for the Jacobian blocks.
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3.2. Translation Estimation

After estimating the scale and rotation parameters by minimizing the error term E1 = E11 + E12,
we minimize STE given in Equation (4) over only translation parameters by using the obtained scale
and angle parameters:

E2(tx
2,...,n, ty

2,...,n) = ∑
i,j

c
∑

k=1

(
‖ i pk − mH−1

i ·
mHj · j pk ‖2 + ‖ j pk − mH−1

j ·
mHi · i pk ‖2

)
min

tx
2,ty

2,...,txn ,tyn
∑
i,j

∑
k

tT
ij(k) · tij(k)

(4)

where

tij(k) =



ixk −

aij · jxk − bij · jyk +

(
(tx

j −tx
i )·cosθi+(ty

j−ty
i )·sinθi

si

)
iyk −

bij · jxk + aij · jyk +

(
(ty

j−ty
i )·cosθi+(tx

j −tx
i )·sinθi

si

)
jxk −

aji · ixk − bji · iyk +

(
(tx

i −tx
j )·cosθj+(ty

i −ty
j )·sinθj

sj

)
jyk −

bji · ixk + aji · iyk +

(
(ty

i −ty
j )·cosθj+(tx

i −tx
j )·sinθj

sj

)



.

j pk = (jxk, jyk, 1) and i pk = (ixk, iyk, 1) are the corresponding feature points in overlapping images
i and j. Coefficients a and b are as follows: aij = (sj/si) · cos(θj − θi), bij = (sj/si) · sin(θj − θi),
aji = (si/sj) · cos(θi − θj), and bji = (si/sj) · sin(θi − θj). As the error term E2 is minimized over
translation parameters, its Jacobian matrices are also easy to compute:

∂tij(k)
∂(tx

i )
=

[
cosθi

si

sinθi
si

− cosθj
sj

− sinθj
sj

]T
,

∂tij(k)

∂(ty
i )

=

[
sinθi

si

cosθi
si

− sinθj
sj

− cosθj
sj

]T
,

∂tij(k)
∂(tx

j )
=

[
− cosθi

si
− sinθi

si

cosθj
sj

sinθj
sj

]T

,and
∂tij(k)

∂(ty
j )

=

[
− sinθi

si
− cosθi

si

sinθj
sj

cosθj
sj

]T
.

The following relation between Jacobians can be seen easily.

∂tij(k)
∂(tx

j )
= −

∂tij(k)
∂(tx

i )
and

∂tij(k)

∂(ty
j )

= −
∂tij(k)

∂(ty
i )

.

This relation further reduces the computational cost of Jacobian computation. It can also be noted
that Jacobian matrices are free of any feature point positions. This allows Jacobian matrices to be
computed fast.

4. Experimental Results

We have tested our proposal on several datasets obtained by different underwater robotic
platforms. Main characteristics of the datasets are summarized in Table 1. Datasets I, III, and VI
were obtained using a Flea digital camera (Point Grey, Vancouver, BC, Canada) carried by a Phantom
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XTL Remotely Operated Vehicle (ROV) (Deep Ocean Engineering, Inc., San José, CA, USA) during
a survey of a patch of reef located in the Florida Reef Tract [18]. Dataset IV was gathered by the
ICTINEUAUV [17] underwater robot during sea experiments on the Mediterranean coast of Spain.
The Dataset VII was acquired by the Girona500AUV [19] during its operational tests in the pool of
the Underwater Robotics Center at the University of Girona. The floor of the pool was covered
by a big poster in order to simulate realistic environment. The robot was equipped with different
navigation sensors that provide pose information as rotation and translation in 3D. By combining
pose with camera calibration information, planar transformations for each image can be computed.
These transformations are 8-DOF full projective type and obtained results are presented as Sensor
8-DOFs in Table 2. Furthermore, we registered individual images with respect to the image of the
poster and obtained results are presented as Sensor 4-DOFs. Although originally the dataset has
286 images, some of them were discarded due to not having sensor readings and not having sufficient
correspondences for successful registration as they were acquired close to the borders. Datasets I, II, V,
and VI have some (namely, 6, 15, 5, and 42) time-consecutive images that do not have overlapping
areas. This causes accumulation of the motion between time-consecutive images that fails to provide
an initial estimate of the trajectory. Range for scale and rotation parameters between overlapping image
pairs are also presented along with the characteristics. These values are extracted from the planar
transformations, which were computed through image registration process. Angles are computed
with atan2 function providing values in [−π/2,π/2]. Scale Invariant Feature Transform (SIFT) [20]
is employed for feature detection and description while RANSAC is used for outlier rejection and
transformation estimation. If there are at least 20 remaining correspondences after outlier rejection,
image pairs are counted as successfully matched and included as overlapping image pairs. All the
tests were performed using a desktop computer with an Intel Xeon E5-1650

TM
3.5 Ghz processor (Intel

Corporation, Santa Clara, CA, USA) with a 64-bit operating system and running MATLAB
TM

on the
CPU. Error minimization is carried out using a Levenberg–Marquadt algorithm through lsqnonlin
function. We have provided analytic expressions for computing the Jacobian matrix. For comparison,
we minimized the STE (Equation (4)) over all parameters for each transformation. STE is also chosen for
comparing the results obtained as it is independent of the chosen global frame. Results are summarized
in Table 2. The second column shows the tested methods: the proposed method and the standard
minimization of STE denoted as STEMin. The third, fourth and fifth columns correspond to the
average STE, the standard deviation, and maximum error calculated using all the correspondences
over all overlapping image pairs. The last column shows the total time spent for error minimization.
For the proposed method, the time column provides the sum of the time spent by both E1 and E2

minimizations. Initial estimates for absolute transformations are provided as identity mappings. They
are included as a comparison baseline. We also present the basic statistical measures on absolute
differences between scale and rotation parameters estimated by the proposed method and STEMin.
Results are summarized in Table 3. From the results, it can be seen that our proposal was able to
obtain similar trajectory accuracy with less computational efforts. This is favorable especially on large
datasets and/or mapping applications where computational limits may exist. It should be noted
that our proposal also makes use of non-linear minimization, which generally requires a good initial
estimate for better and quick convergence. Since our proposal performs relatively fast and requires less
computational resources, its result can be also used as an initial estimate for minimizing STE, especially
when there is no good initial estimate. From the table, it can be seen that running our proposal and
using its result as an initial value for STEMin (combined strategy) provides the same level of accuracy
with running minimization directly. It should be also noted that using our proposal accelerates the
convergence and this yields reduction of the total computational time. If an initial estimate can be
obtained by using some other sensor data (e.g., Global Positioning System (GPS), Doppler Velocity
Log (DVL),Ultra Short Base Line (USBL)) and/or through relative transformations, this might improve
the final convergence.
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Table 1. Properties of datasets used in experiments.

Dataset Image Size Color Total Number of Scale Angle in Degree Overlapping Area 1 (in Percent)
Images Overlapping Pairs Correspondences min. max. min. max. min. mean max.

Dataset I 512× 384 RGB 486 3225 360, 262 0.73 1.33 −45.07 52.51 15.91 64.28 97.65
Dataset II 1440× 806 RGB 493 3686 259, 443 0.62 1.74 −40.33 51.54 13.93 62.03 96.64
Dataset III 512× 384 RGB 1136 3798 550, 845 0.76 1.39 −37.55 49.16 18.12 72.98 96.10
Dataset IV 384× 288 Grayscale 430 5412 930, 898 0.78 1.26 −31.70 72.31 22.57 64.18 99.04
Dataset V 1024× 1024 RGB 245 3311 2, 218, 502 0.74 1.44 −0.77 0.78 1.06 38.82 97.35
Dataset VI 1344× 752 RGB 3031 14, 132 2, 322, 233 0.61 1.54 −70.45 66.93 5.02 56.06 96.97
Dataset VII 384× 287 RGB 268 3688 1, 425, 402 0.85 1.19 −179.84 179.85 6.13 40.98 96.42

1 The numbers reported in this column are computed over overlapping image pairs given in the fifth column of the table.

Table 2. Summary of results. STEMin represents direct minimization of STE. Strategy Combined denotes
STEMin using the results of the proposed method as an initial estimate.

Dataset Strategy Avg. Error Std. Deviation Max. Error Final Mosaic Size Time 2

in Pixels in Pixels in Pixels in Pixels in Seconds

Dataset I
Proposed method 7.69 3.32 41.22 3743× 2419 13.48
STEMin 6.08 2.70 36.68 3549× 2284 104.16
Combined 6.08 2.70 36.68 3549× 2284 73.00

Dataset II
Proposed method 24.72 12.10 181.47 6035× 7134 10.69
STEMin 20.39 9.93 155.50 5949× 7239 93.45
Combined 20.39 9.93 155.50 5949× 7239 47.89

Dataset III
Proposed method 6.50 2.64 54.57 3611× 2352 17.93
STEMin 5.54 2.37 40.50 3623× 2346 141.31
Combined 5.54 2.37 40.50 3623× 2346 110.77

Dataset IV
Proposed method 6.18 2.76 58.88 3187× 2602 41.96
STEMin 5.80 2.54 61.20 3295× 2674 292.86
Combined 5.80 2.54 61.20 3295× 2674 222.86

Dataset V
Proposed method 5.55 2.86 44.14 5546× 8475 75.30
STEMin 5.23 2.72 51.20 5535× 8442 808.90
Combined 5.23 2.72 51.20 5535× 8442 352.54

Dataset VI
Proposed method 33.82 15.86 266.94 18, 934× 11, 710 158.80
STEMin 24.78 11.38 223.32 20, 467× 11, 343 4590.39
Combined 24.78 11.38 223.32 20, 467× 11, 343 835.39

Dataset VII

Proposed method 2.81 1.06 16.96 2203× 1727 80.09
STEMin 2.35 0.90 17.13 2201× 1728 2885.82
Combined 2.35 0.90 17.13 2201× 1728 604.72
Sensor 4-DOFs 2.85 1.18 23.96 2196× 1721 N.A.
Sensor 8-DOFs 1.56 0.82 21.00 1992× 1589 N.A.

2 The current form of our implementation is not optimized. The reported execution times are included to
provide an estimate of the time saving between methods. Further improvements can be achieved using some
dedicated tools such as Ceres-Solver [21].

Table 3. Differences between scale and rotation parameters estimated by the proposed method and STEMin.

Dataset Scale Angle (in Degree)

Mean Std. Deviation Maximum Mean Std. Deviation Maximum

Dataset I 0.0604 0.0559 0.2047 1.7991 1.2261 7.5344
Dataset II 0.0260 0.0205 0.1134 3.0023 2.4866 11.5737
Dataset III 0.0148 0.0117 0.0609 1.5241 0.9683 5.8098
Dataset IV 0.0390 0.0348 0.1733 1.8220 1.6750 8.1793
Dataset V 0.0035 0.0028 0.0147 0.0974 0.0745 0.4068
Dataset VI 0.0802 0.0619 0.4038 11.4706 3.6440 23.2907
Dataset VII 0.0067 0.0056 0.0263 0.5214 0.2992 1.2662

Although symmetric transfer error helps to infer accuracy about the trajectory, it does not
always represent the visual quality of the final mosaic. We use invariant color histograms [22] as a
visual comparison of final mosaics as done in [23]. To compare histograms of two images a and b,
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we use the same metric in [22] and the computation of differences between their histograms is given
in Equation (5):

d(ha, hb) =
∑c (h

a
c − hb

c)
2

∑c (h
b
c)

2
, (5)

where hc denotes the histogram value for color channel c and computed as follows:

hc = ∑
s,sc=c

| fx(s)gy(s)− fy(s)gx(s)|, (6)

where f and g denote derivatives in two color channels [22].
For each dataset, we rendered mosaics using last-on-top strategy. Invariant histograms of rendered

mosaics were computed and differences between them were calculated using the Equation (5). Mosaics
obtained with STEMin are used as comparison baseline (i.e., histogram b in Equation (5)). Results are
presented in Table 4. Dataset IV was excluded for this comparison as it was composed of grayscale
images. Final mosaics for Dataset IV and Dataset VI are given in Figures 3 and 4.

(a) (b)

Figure 3. Final mosaics of Dataset IV. (a) the mosaic (3187× 2602 pixels) obtained with proposed
method; (b) the mosaic (3295× 2674 pixels) with STEMin. Mosaics were blended using a combination
of gradient domain imaging and graph cut algorithms [24].

(a)

(b)

Figure 4. Final mosaics of Dataset IV. (a) the mosaic (18, 934× 11, 710 pixels) obtained with proposed
method; (b) the mosaic (20, 467 × 11, 343 pixels) with STEMin. Mosaics were blended using a
combination of gradient domain imaging and graph cut algorithms [24].
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Table 4. Summary of the invariant histogram comparisons.

Dataset d(ha, hb)

Dataset I 0.0223
Dataset II 0.0052
Dataset III 0.0038
Dataset V 0.0025
Dataset VI 0.0910
Dataset VII 0.0027
Sensor 4-DOFs 0.0034
Sensor 8-DOFs 0.0610

5. Conclusions

Large-area optical mapping through image mosaicing has been in demand from different science
communities. One of the most challenging steps in the Feature-Based Image Mosaicing pipeline is GA,
which requires non-linear minimization. In this paper, we present a two-step GA method aimed to be
fast and less computationally demanding. The first step is for estimating scale and rotation parameters,
while the second step is to obtain optimum translation parameters. We present experimental and
comparative results over different challenging datasets obtained with robotic platforms aimed for
optical mapping. Our proposal can be used as a standalone GA method and can also be used as a
better initial estimate provider to STE minimization for quicker convergence. Our proposal is suitable
for typical surveys with robotic platforms. Experiments on seven challenging different underwater
datasets have been reported and have showed the efficiency of the proposed approach.
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