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Abstract: The problem of quantifying the vulnerability of graphs has received much attention
nowadays, especially in the field of computer or communication networks. In a communication
network, the vulnerability measures the resistance of the network to disruption of operation after
the failure of certain stations or communication links. If we think of a graph as modeling a network,
the average lower 2-domination number of a graph is a measure of the graph vulnerability and
it is defined by γ2avpGq “ 1

|VpGq|
ř

vPVpGq γ2vpGq, where the lower 2-domination number, denoted
by γ2vpGq, of the graph G relative to v is the minimum cardinality of 2-domination set in G that
contains the vertex v. In this paper, the average lower 2-domination number of wheels and some
related networks namely gear graph, friendship graph, helm graph and sun flower graph are
calculated. Then, we offer an algorithm for computing the 2-domination number and the average
lower 2-domination number of any graph G.
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number; average lower 2-domination number
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1. Introduction

Graph theory has seen an explosive growth due to interaction with areas like computer science,
operation research, etc. In particular, it has become one of the most powerful mathematical
tools in the analysis and study of the architecture of a network. The most common networks
are telecommunication networks, computer networks, road and rail networks and other logistic
networks [1]. In a communication network, the measures of vulnerability are essential to guide
the designers in choosing a suitable network topology. They have an impact on solving difficult
optimization problems for networks [2,3].

The graph vulnerability relates to the study of a graph when some of its elements (vertices or
edges) are removed. The measures of graph vulnerability are usually invariants that measure how
a deletion of one or more network elements changes properties of the network [4]. In the literature,
various measures have been defined to measure the robustness of a network and a variety of graph
theoretic parameters have been used to derive formulas to calculate network vulnerability. The best
known measure of reliability of a graph is its connectivity. The connectivity is defined to be the
minimum number of vertices whose deletion results in a disconnected or trivial graph [5].

The connectivity of a graph G is denoted by kpGq and it is defined as follows:

kpGq “ min t|S| : S Ă V and wpG´ Sq ą 1u

where wpG´ Sq is the number of components of the graph G´ S.
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The toughness [6], the integrity [7], the domination number [8], the bondage number [9,10], the
edge eccentric connectivity number [11], etc., have been proposed for measuring the vulnerability
of networks. Recently, some average vulnerability parameters like the average lower independence
number [12,13], the average lower domination number [13–17], the average connectivity number [18],
the average lower connectivity number [19] and the average lower bondage number [4] have
been defined.

Let G “ pVpGq, EpGqq be a simple undirected graph of order n. We begin by recalling
some standard definitions that we need throughout this paper. For any vertex v P VpGq,
the open neighborhood of v is NGpvq “ tu P V| uv P EpGqu and closed neighborhood of v is
NGrvs “ NGpvq Y tvu. The degree of vertex v in G denoted by dGpvq, that is, the size of its open
neighborhood [8]. The minimum degree of graph G is denoted by δpGq. A set S Ď VpGq is a
dominating set if every vertex in VpGq ´ S is adjacent to at least one vertex in S. The minimum
cardinality taken over all dominating sets of G is called the domination number of G and denoted by
γpGq [8]. Another domination concept is 2-domination number. A 2-dominating set of a graph G is
a set D Ď VpGq of vertices of graph G such that every vertex of VpGq ´D has at least two neighbors
in D. The 2-domination number of a graph G, denoted by γ2pGq, is the minimum cardinality of a
2-dominating set of the graph G [8,20–22].

In 2004, Henning introduced the concept of average domination and average independence in [13].
Moreover, the average lower domination and average lower independence number are the theoretical
vulnerability parameters for a network that modeled a graph [12,15]. The average lower domination
number of a graph G, denoted by γavpGq, is defined as follows:

γavpGq “
1

|VpGq|

ÿ

vPVpGq

γvpGq (1)

where the lower domination number, denoted by γvpGq, is the minimum cardinality of a dominating
set of the graph G that contains the vertex v [13,16]. In [15], an algorithm is given for computing the
average lower domination number of any graph G.

In 2015, a new graph theoretical parameter namely the average lower 2-domination number was
defined in [23,24]. The average lower 2-domination number of a graph G, denoted by γ2avpGq, is
defined as follows:

γ2avpGq “
1

|VpGq|

ÿ

vPVpGq

γ2vpGq (2)

where the lower 2-domination number, denoted by γ2vpGq, is the minimum cardinality of a dominating
set of the graph G that contains the vertex v [23,24].

If we think of a graph as modeling a network, then the average lower 2-domination number can
be more sensitive for the vulnerability of graphs than the other known vulnerability measures of a
graph [23]. We consider two connected simple graphs G and H in Figure 1, where |VpGq| “ |VpHq| “ 10
and |EpGq| “ |EpHq| “ 17. Graphs G and H have not only equal the connectivity but also equal the
domination number, the average lower domination number and the 2-domination number such as
kpGq “ kpHq “ 1, γpGq “ γpHq “ 1, γavpGq “ γavpHq “ 19{5 and γ2pGq “ γ2pHq “ 5. The results can
be checked by readers. So, how can we distinguish between the graphs G and H?

When we compute γ2avpHq and γ2avpGq, we get γ2avpHq “ 51{10 “ 5.1 and γ2avpGq “ 50{10 “ 5.
So, the average lower 2-domination number may be used for distinguish between these two graphs G
and H. Since γ2avpGq ă γ2avpHq, we can say that the graph H is more vulnerable than the graph G. In
other words, the graph G is tougher than the graph H [23,24].
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The wheel graph has been used in different areas such as the wireless sensor networks, the
vulnerability of networks, and so on. The wheel graph has many good properties. From the standpoint
of the hub vertex, all elements, including vertices and edges, are in its one-hop neighborhood, which
indicates that the wheel structure is fully included in the neighborhood graph of the hub vertex.
Furthermore, wheel graphs are important for localizability because they are globally rigid in 2D space,
which indicates an approach to identifying localizable vertices [25]. Moreover, the wheels and various
related graphs have been studied for many reasons. The gear graphs, the friendship graph, the helm
graphs and the sun flower graphs are among such graphs. The definitions of these graphs will be
given in Section 3. In [26], Aytac and Odabas compute the residual closeness for wheels and related
graphs. In [27], Javaid and Shokat give upper bounds for the cardinality of vertices in some wheel
related graphs with a given partition dimension k.

Our aim in this paper is to study a new vulnerability parameter, called the average lower
2-domination number. In Section 2, well-known basic results are given for the average lower
domination number, the average lower 2-domination number and the 2-domination number.
In Section 3, we compute the average lower 2-domination numbers of wheels and some related
graphs. Finally, an algorithm is proposed for computing the 2-domination number and the average
lower 2-domination numbers of any given graph in Section 4.

2. Basic Results

In this section, well known basic results are given with regard to the average lower domination
number, the average lower 2-domination number and the 2-domination number.

Theorem 1. [13] Let G be any graph of order n with the domination number γpGq, then

γavpGq ď γpGq ` 1´
γpGq

n

with equality if and only if G has a unique γpGq-set.

Theorem 2. [13] If K1,n´1 is a star graph of order n, where n ě 3, then γavpK1,n´1q “ 2´ 1
n .

Theorem 3. [13] If Pn is a path graph of order n, then

γavpPnq “

#

n`2
3 ´ 2

3n , i f n ” 2pmod 3q;
n`2

3 , otherwise.

Theorem 4. [13] If Cn is a cycle graph of order n, then γavpCnq “ 2.

Theorem 5. [13] If Kn is a complete graph of order n, then γavpKnq “ 1.

Observation 1. If Wn is a wheel graph of order n` 1, then γavpWnq “
2n`1
n`1 .

Theorem 6. [28] If Kn is a complete graph of order n, then γ2pKnq “ min t2, nu.

Theorem 7. [28] If Pn is a path graph of order n, then γ2pPnq “ tn{2u` 1.
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Theorem 8. [28] If Cn is a cycle graph of order n, where n ě 3, then γ2pCnq “ tpn` 1q{2u.

Theorem 9. [28] If Wn is a wheel graph of order n` 1, where n ě 3, then

γ2pWnq “

#

2 , i f n “ 3, 4;
tpn` 1q{3u ` 1 , otherwise.

Theorem 10. [23] Let G be any connected graph of order n. If γ2pGq-set is unique, then

γ2avpGq “ γ2pGq ` 1´
γ2pGq

n

Theorem 11. [23] Let G be any connected graph of order n. If δpGq ě 2, then

γ2avpGq ď γ2pGq ` 1´
γ2pGq

n

Theorem 12. [23] Let G be any connected graph of order n ě 2. Then, 2 ď γ2avpGq ď n´ 1` 1
n .

Theorem 13. [23] If Pn is a path graph of order n, then

γ2avpPnq “

#

tn{2u` 2´ tn{2u`1
n , I f n is odd;

tn{2u` 1 , I f n is even.

Theorem 14. [23] If Cn is a cycle graph of order n, then γ2avpCnq “ tpn` 1q{2u.

Theorem 15. [23] If Kn is a complete graph of order n, then γavpKnq “ 2.

Theorem 16. [23] If K1,n´1 is a star graph of order n, where n ě 3, then γ2avpK1,n´1q “ n´ 1` 1
n .

3. The Average Lower 2-Domination Number of Wheels Related Graphs

In this section, we have calculated the average lower 2-domination number of wheels and related
graphs such as the wheel graph Wn, the gear graph Gn, the friendship graph fn, the helm graph Hn

and the sun flower graph S fn. Now, we recall the definitions of these graphs.

Definition 1. [26] The wheel graph Wn with n spokes is a graph that contains an n-cycle and
one additional central vertex vc that is adjacent to all vertices of the cycle. Wheel graph Wn has
pn` 1q-vertices and 2n-edges.

Definition 2. [12] The gear graph Gn is a wheel graph with a vertex added between each pair adjacent
graph vertices of the outer cycle. The gear graph Gn has p2n` 1q-vertices and 3n-edges.

Definition 3. [26] The friendship graph fn is collection of n triangles with a common vertex.
The friendship graph fn has p2n` 1q-vertices and 3n-edges.

Definition 4. [27] The helm graph Hn is the graph obtained from an n-wheel graph by adjoining a
pendant edge at each vertex of the cycle. The helm graph Hn has p2n` 1q-vertices and 3n-edges.

Definition 5. [27] The sun flower graph S fn the graph obtained from an n-wheel graph with central
vertex vc and n-cycle v0, v1, v2, . . . , vn´1 and additional n vertices w0, w1, w2, . . . , wn´1 where wi is
joined by edges to vi, vi`1 for i P t0, 1, . . . , n´ 1u where pi ` 1q is taken modulo n. The sun flower
graph S fn has p2n` 1q-vertices and 4n-edges.

We display the graphs W4, G4, f4, H4 and S f4 in Figure 2.
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Theorem 17. If Wn is a wheel graph of order n` 1, where n ě 5, then γ2avpWnq “ 1` rn{3s.

Proof. The γ2pWnq- set of a graph Wn, n ě 5, is a set with the vertex vc and rn{3s vertices from the set
VpWnq tvcu. So, γ2pWnq “ 1` rn{3s. Thus, γ2pWnq “ 1` rn{3s is obtained for every vertex v P VpWnq.
As a result, we get γ2avpWnq “ 1` rn{3s.

Remark 1. Let W3 and W4 be wheels graph with order 3 and 4, respectively. Then, γ2avpW3q “ 2 and
γ2avpW4q “ 11{5.

Remark 2. If W2n is a wheel graph of order 2n` 1, then γ2avpW2nq “ 1` r2n{3s.

Theorem 18. If Gn is a gear graph of order 2n` 1, then γ2avpGnq “
2n2`2n`1

2n`1 .

Proof. We partition the vertices of graph Gn into three subsets V1, V2 and V3 as follows:

V1 “
 

vc P VpGnq
ˇ

ˇ dGnpvcq “ n
(

V2 “
 

vi P VpGnq
ˇ

ˇ dGnpviq “ 3, i P t1, 2, . . . , nu
(

V3 “
 

vi P VpGnq
ˇ

ˇ dGnpviq “ 2, i P tn` 1, n` 2, . . . , 2nu
(

When the γ2avpGnq is calculated for all vertices v in the graph Gn, each vertex satisfies one of the
three cases below.

Case 1. Let vc be the vertex of V1. The center vertex vc is adjacent to n vertices in V2. Thus, all vertices
of V2 are 1-dominated. By the definition of gear graphs, the whole vertex set V2 (or V3) is taken to
γ2pGnq-set, then γ2vcpGnq “ n` 1 is obtained.

Case 2. Let vi be the vertex of V2. Clearly every vertex of the graph Gn is 2-dominated by the vertices
of V2. As a result, we have γ2vi

pGnq “ n, where i P t1, 2, . . . , nu.

Case 3. Let vi be the vertex of V3. The γ2pGnq-set including vertex vi is similar to γ2pGnq-set in the
Case 1. So, we have γ2vi

pGnq “ n` 1, where i P tn` 1, n` 2, . . . , 2nu.
By Cases 1, 2 and 3, we have:

γ2avpGnq “
1

|VpGnq|

¨

˝

ÿ

vPV1

γ2vpGnq `
ÿ

vPV2

γ2vpGnq`
ÿ

vPV3

γ2vpGnq

˛

‚ (3)

“
1

2n` 1

¨

˝n` 1`
n
ÿ

vPV2

n`
n
ÿ

vPV3

pn` 1q

˛

‚ (4)

“
2n2 ` 2n` 1

2n` 1
. (5)

Theorem 19. If fn is a friendship graph of order 2n` 1, then γ2avp fnq “ n` 1.

Proof. By the definition of the friendship graph and 2-domination number, a γ2p fnq-set must include
the vertex vc whose degree is 2n. Thus, 2n-vertices are 1-dominated by the vertex vc. Furthermore,



Math. Comput. Appl. 2016, 21, 29 6 of 9

n-disjoint graphs K2 are formed by these 2n-vertices in the graph fnz tvcu. When any vertex of each
graph K2 is taken to a γ2p fnq-set, γ2p fnq “ n` 1 is obtained. It is easy to see that γ2vp fnq “ n` 1 for
every vertex v P Vp fnq. Thus, we get γ2avp fnq “ n` 1.

Theorem 20. If Hn is a helm graph of order 2n` 1, then γ2avpHnq “
2n2`4n`1

2n`1 .

Proof. Since the γ2pHnq-set is unique in the graph Hn, we have γ2avpHnq “ n` 2´ ppn` 1q{p2n` 1qq
by the Theorem 10. As a result, γ2avpHnq “

2n2`4n`1
2n`1 is obtained.

Theorem 21. If S fn is a sun flower graph of order 2n` 1, then γ2avpS fnq “
2n2`2n`1

2n`1 .

Proof. The proof follows directly from the Theorem 18.

It is point out that the gear graph Gn is tougher than the friendship graph fn and the helm graph
Hn, where |VpGnq| “ |Vp fnq| “ |VpHnq| and |EpGnq| “ |Ep fnq| “ |EpHnq|. Similarly, the wheel graph
W2n is tougher than the sun flower graph S fn, where |VpW2nq| “ |VpS fnq| and |EpW2nq| “ |EpS fnq|.
Readers can see that these results are shown in Figures 3 and 4.

Math. Comput. Appl. 2016, 21, 29  6 of 10 

2 3

1 1 ( 1)
2 1 v V v V

n n
n n n

n ∈ ∈

 = + + + +∑ ∑ +  
 (4) 

22 2 1
2 1

n n
n
+ +

=
+

. (5) 

Theorem 19. If nf  is a friendship graph of order 2 1n + , then 2 ( ) 1av nf nγ = + . 
Proof. By the definition of the friendship graph and 2-domination number, a 2 ( )nfγ -set must include 
the vertex cv  whose degree is 2n. Thus, 2n-vertices are 1-dominated by the vertex cv . 
Furthermore, n-disjoint graphs 2K  are formed by these 2n-vertices in the graph \{ }n cf v . When any 
vertex of each graph 2K  is taken to a 2 ( )nfγ -set, 2 ( ) 1nf nγ = +  is obtained. It is easy to see that 

2 ( ) 1v nf nγ = +  for every vertex ( )nv V f∈ . Thus, we get 2 ( ) 1av nf nγ = + . 

Theorem 20. If nH  is a helm graph of order 2 1n + , then 
2

2
2 4 1( )

2 1av n
n nH

n
+ +

γ =
+

. 

Proof. Since the 2 ( )nHγ -set is unique in the graph nH , we have ( )2 ( ) 2 ( 1) (2 1)av nH n n nγ = + − + +  

by the Theorem 10. As a result, 
2

2
2 4 1( )

2 1av n
n nH

n
+ +

γ =
+

 is obtained.  

Theorem 21. If nSf  is a sun flower graph of order 2 1n + , then 
2

2
2 2 1( )

2 1av n
n nSf

n
+ +

γ =
+

. 

Proof. The proof follows directly from the Theorem 18. 

It is point out that the gear graph nG  is tougher than the friendship graph nf  and the helm 
graph nH , where ( ) ( ) ( )n n nV G V f V H= =  and ( ) ( ) ( )n n nE G E f E H= = . Similarly, the wheel 
graph 2nW  is tougher than the sun flower graph nSf , where 2( ) ( )n nV W V S f=  and 

2( ) ( )n nE W E S f= . Readers can see that these results are shown in Figures 3 and 4. 

 
Figure 3. Values of 2 ( )av nGγ , 2 ( )av nfγ  and 2 ( )av nHγ . 

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

22
Average Lower 2-domination Number of Graphs Gn, fn  and Hn

 

 
Gn

fn
Hn

 

Figure 3. Values of γ2avpGnq, γ2avp fnq and γ2avpHnq.Math. Comput. Appl. 2016, 21, 29  7 of 10 

 
Figure 4. Values of 2 2( )av nWγ  and 2 ( )av nSfγ . 

4. An Algorithm for Computing the Average Lower 2-Domination Number 

In this section, the algorithm in [29] which finds the domination number and all the minimal 
dominating sets of a graph is improved. The improved algorithm also computes the 2-domination 
number and the average lower 2-domination number of a graph. The definitions used in the 
algorithm below are found in [29]. 

2, , , , , ,min :i j n es topγ  positive integer 
:f  element of ( )L n  
, :D W  array n+  of ( )L n  

2avγ : real number 

BEGIN 
for 1j ←  to n  do 
begin 
    [ ] 0D j ← ; 

     if  [v ] 0G jd =  then [ ] [ ] jD j D j v← +  end if; 

     if  [v ] 1G jd =  then [ ] [ ] jD j D j v← +  

     ELSE 
    [ ] [ ] jD j D j v← +  

        for 1i ←  to 1n −  do 
        begin 
              for 1k i← +  to n  do 
              begin 

                    if ( )^j i =  and ( )^ kj =  and ( )j iv Ev  and ( )k jv E v   

                    then [ ] [ ] i kD j D j v v← +  end if; 

              end; {for k} 
       end; {for i} 
    end if;  
end; {for j} 

1f ←  
 for 1j ←  to n do 
 begin 
     [ ]*f f D j← ; 

 end; 
 { }2 min

x f
x

∈
γ ← ;  

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

22
Average Lower 2-domination Number of Graphs W2n and Sfn

 

 
W2n

Sfn

 

Figure 4. Values of γ2avpW2nq and γ2avpS fnq.



Math. Comput. Appl. 2016, 21, 29 7 of 9

4. An Algorithm for Computing the Average Lower 2-Domination Number

In this section, the algorithm in [29] which finds the domination number and all the minimal
dominating sets of a graph is improved. The improved algorithm also computes the 2-domination
number and the average lower 2-domination number of a graph. The definitions used in the algorithm
below are found in [29].

i, j, n,γ2, es, top, min : positive integer
f : element of Lpnq
D, W : array n` of Lpnq
γ2av: real number
BEGIN
for j Ð 1 to n do
begin

D rjs Ð 0 ;
if dGrvjs “ 0 then D rjs Ð D rjs ` vj end if;
if dGrvjs “ 1 then D rjs Ð D rjs ` vj
ELSE
D rjs Ð D rjs ` vj

for i Ð 1 to n´ 1 do
begin

for k Ð i` 1 to n do
begin

if
“`

j “̂ i
˘

and
`

j “̂ k
˘

and
`

vjE vi
˘

and
`

vkE vj
˘‰

then D rjs Ð D rjs ` vivk end if;
end; {for k}

end; {for i}
end if;

end; {for j}
f Ð 1

for j Ð 1 to n do
begin

f Ð f ˚D rjs ;
end;
γ2 Ð min

xP f
t|x|u ;

es Ð 0 ;
for x P f do
es Ð es` 1 ;
top Ð 0 ;

for i Ð 1 to n do
begin
S Ð 0 ;

for j Ð 1 to es do
begin

if vi P f rjs then S Ð S` 1 end if;
if pS “ 1q then min Ð | f rjs| end if;
if p| f rjs| ă minq then min Ð | f rjs| end if;

end; {for j}
top Ð top`min;
end; {for i}
γ2av Ð top{n ;

END.
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Example 1. Compute the 2-domination number and the average lower 2-domination number of graph
G in Figure 5.

Firstly, we must find function f as follows:

f “ paq pb` ecq pc` bdq pd` ecqpe` bdq

Then, two mathematical logic functions are used as follows:
piq x x “ x
piiq x` xy “ x

Thus, we have

f “ pab` aecq pc` bdq pd` ecqpe` bdq
“ pabc` abd` aecq pd` ecqpe` bdq
“ pabd` aecq pe` bdq
“ pabd` aecq.

Furthermore, we have | f | “ |abd` aec|.

Clearly, the 2-domination sets ta, b, du and ta, e, cu have been found by the algorithm. Thus, we get
γ2pGq “ γ2avpGq “ 3.
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5. Conclusions

Communication systems are often subjected to failures and attacks. A variety of measures have
been proposed in the literature to quantify the robustness of networks and a number of graph theoretic
parameters have been used to derive formulas for calculating network reliability. In this paper we
have studied the average lower 2-domination number for graph vulnerability. The average lower
2-domination number can be more sensitive than the other measures of vulnerability like connectivity,
domination number, average lower domination number and 2-domination number. We have also
studied wheel graphs and wheels related graphs. Finally, an algorithm is proposed for computing the
2-domination number and the average lower 2-domination numbers of any given graph G.
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9. Aytaç, A.; Turacı, T.; Odabaş, Z.N. On the Bondage Number of Middle Graphs. Math. Notes 2013, 93, 803–811.

[CrossRef]
10. Aytaç, A.; Odabas, Z.N.; Turacı, T. The Bondage Number for Some Graphs. C. R. Lacad. Bulg. Sci. 2011, 64,

925–930.
11. Turaci, T.; Okten, M. The edge eccentric connectivity index of hexagonal cactus chains. J. Comput.

Theor. Nanosci. 2015, 12, 3977–3980. [CrossRef]
12. Aytaç, A.; Turacı, T. Vertex Vulnerability Parameter of Gear Graphs. Int. J. Found. Comput. Sci. 2011, 22,

1187–1195. [CrossRef]
13. Henning, M.A. Trees with Equal Average Domination and Independent Domination Numbers. Ars Comb.

2004, 71, 305–318.
14. Aslan, E.; Kırlangıç, A. The Average Lower Domination Number of Graphs. Bull. Int. Math. Virtual Inst.

2013, 3, 155–160.
15. Aytaç, V. Average Lower Domination Number in Graphs. C. R. Lacad. Bulg. Sci. 2012, 65, 1665–1674.
16. Blidia, M.; Chellali, M.; Maffray, F. On Average Lower Independence and Domination Number in Graphs.

Discrete Math. 2005, 295, 1–11. [CrossRef]
17. Tuncel, G.H.; Turaci, T.; Coskun, B. The Average Lower Domination Number and Some Results of

Complementary Prisms and Graph Join. J. Adv. Res. Appl. Math. 2015, 7, 52–61.
18. Beineke, L.W.; Oellermann, O.R.; Pippert, R.E. The Average Connectivity of a Graph. Discrete Math. 2002,

252, 31–45. [CrossRef]
19. Aslan, E. The Average Lower Connectivity of Graphs. J. Appl. Math. 2014, 2014. [CrossRef]
20. Bauer, D.; Harary, F.; Nieminen, J.; Suffel, C.L. Domination alteration sets in graph. Discrete Math. 1983, 47,

153–161. [CrossRef]
21. Chellali, M. Bounds on the 2-Domination Number in Cactus Graps. Opusc. Math. 2006, 26, 5–12.
22. Fink, J.F.; Jacobson, M.S. n-Domination in Graphs. In Graph Theory with Applications to Algorithms and

Computer Science; Alavi, Y., Schwenk, A.J., Eds.; Wiley: New York, NY, USA, 1984; pp. 283–300.
23. Turaci, T. On the Average Lower 2-domination Number a Graph. 2015. submitted.
24. Turaci, T. The Concept of Vulnerability in graphs and Average Lower 2-domination Number. In Proceedings

of the 28th National Mathematics Conference, Antalya, Turkey, 7–9 September 2015.
25. Yang, Z.; Liu, Y.; Li, X.Y. Beyond trilateration: On the localizability of wireless ad-hoc networks.

In Proceedings of the IEEE INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009.
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