
Mathematical 

and Computational 

Applications

Article

Estimating Variances in Weighted Least-Squares
Estimation of Distributional Parameters
Yeliz Mert Kantar

Department of Statistics, Faculty of Science, Anadolu University, 26470, Eskisehir, Turkey; ymert@anadolu.edu.tr

Academic Editor: Mehmet Pakdemirli
Received: 13 January 2016; Accepted: 14 March 2016; Published: 25 March 2016

Abstract: Many estimation methods have been proposed for the parameters of statistical distribution.
The least squares estimation method, based on a regression model or probability plot, is frequently
used by practitioners since its implementation procedure is extremely simple in complete and
censoring data cases. However, in the procedure, heteroscedasticity is present in the used regression
model and, thus, the weighted least squares estimation or alternative methods should be used. This
study proposes an alternative method for the estimation of variance, based on a dependent variable
generated via simulation, in order to estimate distributional parameters using the weighted least
squares method. In the estimation procedure, the variances or weights are expressed as a function of
the rank of the data point in the sample. The considered weighted estimation method is evaluated
for the shape parameter of the log-logistic and Weibull distributions via a simulation study. It is
found that the considered weighted estimation method shows better performance than the maximum
likelihood, least-squares, and certain other alternative estimation approaches in terms of mean square
error for most of the considered sample sizes. In addition, a real-life example from hydrology is
provided to demonstrate the performance of the considered method.

Keywords: cumulative distribution function; variance estimation; heteroscedasticity; weighted least
squares; simulation

1. Introduction

Statistical distributions have many applications in the areas of engineering, medical sciences, air
quality determination, and so forth. Since the parameters of the considered distribution are used for
inference results regarding topics of interest, their estimation methods have received great interest
in the literature. The maximum likelihood estimation (MLE) method has good theoretical properties
for large sample sizes (n > 250) and is often preferred [1]. However, it can show poor performance
for small sample cases [1,2], and the MLE also requires an iterative numerical method, such as
Newton–Raphson, for most distributions. Additionally, some research has been conducted to find the
best linear unbiased estimators for distributions. However, the proposed estimators in the literature
are generally computationally intensive and require numerical methods to obtain estimates [1]. On the
other hand, a regression procedure based on a probability plot to estimate the parameters of statistical
distributions is frequently used by practitioners since its implementation procedure is simple in the
cases of complete and censoring data. This procedure is easily performed if a distribution function
can be expressed as an explicit function. A linear regression model, whose dependent variable is the
nonparametric estimate of the value of the distribution function at the ranked sample, is obtained.
Thus, the least squares (LS) estimates of the parameters of the resulting regression model become the
estimates of the parameters of the considered statistical distribution. In the literature, parameters of
different statistical distributions have been estimated by the least squares estimation (LSE) method.
For example, Altun [3] compares the LSE, the weighted least squares estimation (WLSE), and certain
other estimation methods for the Weibull distribution. [4–9] have used the LSE method for different
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statistical distributions. However, heteroscedasticity (non-constant variance) is present in the used
regression model and, thus, LS estimates lose the efficiency property, even if most studies do not take
into account this reality [9]. In such cases, the WLSE or alternative methods should be used [10–20]. It
is well-known that when conducting the WLSE, the variances of the dependent variables are unknown
and must be estimated to implement the WLSE procedure. Considering this reality, [11–16] discuss that
variances should be found in order to perform the WLSE. They all generally consider different weights
using large sample properties of the empirical distribution function or order statistics to stabilize the
variance when conducting the WLSE. For example, Hung [11] proposes the WLSE for estimating the
shape parameter of the Weibull distribution. His results from simulation studies illustrate that the
mean-squared error of WLSE is smaller than competing procedures. Lu et al. [12] consider the LSE and
WLSE for the Weibull distribution and compare their WLSE method with three existing WLSE methods.
They found that their WLSE method is more precise and has smaller variance than Bergman’s WLS
estimators. Lu and Tao [14] consider the LSE and WLSE for the Pareto distribution. Zyl [15] considers
regression procedure for the parameters of the three-parameter generalized Pareto distribution and
applies the WLSE with the Box–Cox procedure. Zhang et al. [13] discuss the WLSE methods for Weibull
distribution and related works. They find that the WLSE is an efficient method that makes good use
of small datasets. Kantar [20] introduces the generalized least squares and WLSE methods, based on
an easily-calculated approximation of the covariance matrix, for distributional parameters. They all
emphasize that a weight function should be used when performing the regression procedures.

In this article, a different approach is considered for the estimation of the weights for the WLSE.
The variances are modeled as a function of the rank of the data point in the sample by using samples
which are simulated from the dependent variable of the established regression model for the specified
distribution. Thus, the estimation of variances or weights is expressed as a simple mathematical
function of its rank. Next, the proposed WLSE is then applied to the estimation of the parameters of
the log-logistic and Weibull distributions. The simulation results show that the considered WLSE for
the shape parameter of the log-logistic and Weibull distributions provides better performance than
the MLE, LSE, and WLSE (Zyl and Schall) in terms of bias and mean square errors for most of the
considered sample cases.

The rest of the paper is organized as follows: the LSE for estimating distributional parameters is
given in Section 2; Section 3 introduces an estimation of variances to use in the WLSE as an application
of estimation of the parameters of the log-logistic and Weibull distributions; to show the performance
of the proposed WLSE, a simulation study is presented in Section 4; an application from real-life is
provided in Section 5; and, finally, the last section summarizes the conclusions of the study.

2. LSE Method for Log-Logistic and Weibull Distributions

The distribution function can be transformed to a linear regression model, Yi “ β0 `β1Xi, if it
can be written as an explicit function. Next, the LSE method can be used to calculate the parameters.
In estimation, the sum of the squares of the errors, which is defined below, should be minimized;

min
β0,β1

n
ÿ

i“1

pYi ´β0 ´β1Xiq
2 (1)

The obtained LS estimates are:

β̂1 “
n
řn

i“1 YiXi ´
řn

i“1 Xi
řn

i“1 Yi

n
řn

i“1 Xi
2 ´

`
řn

i“1 Xi
˘2 (2)

β̂0 “ Y´ β̂1X (3)

If we consider the LSE for the distributional parameters, the following procedure should be
followed for the Weibull distribution.
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The cumulative distribution function (cdf) of the Weibull random variable, widely-used in
engineering fields [1,21,22] is given as follows:

F px, λ,αq “ 1´ e´pλxqα , for x ą 0 (4)

where λ is the scale parameter and α is the shape parameter, which is of great importance to the Weibull
since it determines the shape of distribution. α and λ are unknown parameters in real applications.

After algebraic manipulation, Equation (4) can be linearized as follows:

ln r´lnp1´ F pxqs “ αlnλ`α lnx (5)

For a sample of size n and xp1q ď xp2q ď ¨ ¨ ¨ ď xpnq, the regression model is rewritten as:

ln
”

´lnp1´ F
´

xpiq
¯ı

“ αlnλ`αlnxpiq (6)

If we replace ln
”

´lnp1´ F
´

xpiq
¯ı

with Y, αlnλ with β0, α with β1, and lnxpiq with X, the
regression model with error term occurs as:

Ypiq “ β0 `β1xpiq ` εi (7)

If we consider the log-logistic distribution, its cdf is given as follows:

F pxq “ 1´

˜

1`
ˆ

x
γ

˙δ
¸´1

, x ě 0 and δ, γ ą 0 (8)

where γ is the scale parameter and δ is the shape parameter, the following linear model is obtained to
estimate the parameters of log-logistic distribution:

ln
´

p1´ F pxqq´1
´ 1

¯

“ δln pxq ´ δln pγq (9)

For a sample of size n, let xp1q, . . . , xpnq be the order statistics and thus, the regression model can be
expressed as follows:

ln
ˆ

1´
´

1´ F
´

xpiq
¯¯´1

˙

“ δln
´

xpiq
¯

´ δln pγq (10)

i´a
pn`bq , p0 ď a ď 0.5, 0 ď b ď 1q is used as estimate of F

´

xpiq
¯

, where i is the rank of the data point

in the sample in ascending order. Since i´0.3
pn`0.4q shows better performance than the other considered

alternatives, we use it in this study.
Replacing F

´

xpiq
¯

by its estimate, called F̂i, the Equations (6) and (10) with error terms yield the
following equations for estimating parameters of the Weibull and log-logistic distributions:

lnr´lnp1´ F̂iqs “ αlnλ`α lnxpiq ` εi (11)

lnp1´ p1´ F̂iq
´1
q “ δln

´

xpiq
¯

´ δln pγq ` εi (12)

On the other hand, it should be noted that the error terms of the models given in Equations (11)
and (12) are not identically distributed as mentioned by [9,15–17,19,20], since xpiq is beta distributed
with parameters i and n´ i` 1 and, thus, the models (11) and (12) have a different variance for each i
as earlier mentioned [9,19,20]. In other words, error terms of the previously mentioned models have
no equal variance. This situation can negatively affect the LSE. In such cases, alternative estimation
approaches to stabilize variances should be used.
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It should be emphasized that, without considering non-equal variances on Equations (11)–(12),
robust regression methods have also been examined in other research [3,8,9,21,23,24].

3. Estimating Weights in the Weighted Least-Squares Estimation for Parameters of the
Log-Logistic and Weibull Distributions

If we take into account the models given in Equations (11) and (12) it can be seen that the estimate
of F

´

xpiq
¯

is a function of (i´ a, n` bq. Thus, the estimate of the variance of ln
”

´lnp1´ F
´

xpiq
¯ı

can be expressed as a function of (i´ a, n` bq. That is, the following equation can be written for the
variance of the dependent variable or error term of the model Equation (11):

Varpln
”

´ln
´

1´ F
´

xpiq
¯¯ı

q “ G pi´ a, n` bq ` εi (13)

where Var denotes the variance, G is a differentiable function and εi is an error term. If we replace
Varpln

”

´ln
´

1´ F
´

xpiq
¯¯ı

q by Zi, the model occurs as follows:

Zi “ G pi´ a, n` bq ` εi (14)

Replacing Zi by its estimate, Ẑi and considering Ĝ as estimation of G, the following model yields:

Ẑi “ Ĝ pi´ a, n` bq (15)

It is known that cdf of any continuous random is distributed uniformly (U p0, 1q) with
zero and unit parameters, thus, F

´

xpiq
¯

„ U p0, 1q. By using this reality, the distribution of

pln
”

´lnp1´ F
´

xpiq
¯ı

q for each, i “ 1, . . . , n can be generated via simulation and then variance can be

estimated. Figure 1a–d shows scatter plots the variance of ln
”

´lnp1´ F
´

xpiq
¯ı

, estimated from 5000
simulated samples, versus the rank i, i “ 1, . . . , n, respectively. Thus, it can be seen from the figures
that the variances of Zi tend to decrease as the rank i increases. In other words, the weight is inversely
related to the rank (the rank 1 indicates the highest weight, while rank n indicates the lowest weight).
Thereby, the variance of ln

”

´ln
´

1´ F
´

xpiq
¯¯ı

can be modeled by a decreasing function of rank i.
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Figure 1. (a–d) show the estimated variance for the Weibull distribution versus i “ 1, . . . , n when the
sample size is taken as n “ 10, 20, 30, 50, respectively.
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As a simple model for G p.q, we take a “ 0 and b “ 0. Table 1 shows the considered models and
the obtained R2 from these models.

Table 1. The considered linear models for G p.q for the Weibull distribution.

G p.q α{i p1{iqα pα{iq `
´

α{i2
¯

exp pαiq

R2 0.98 0.98 0.99 0.95

It can be deduced from Table 1 that G pi, nq “ α{i with the determination of coefficient 0.98 and the
estimated α “ 1.51 may be an alternative function to model variance. Since the weight is the inverse of
the variance, wi “ i{α, i “ 1, 2, .., n. Hence, weights are expressed as a simple mathematical function
or as a model of its rank.

For the log-logistic distribution case, Figure 2a–d shows scatter plots of the variance of

ln
ˆ

1´
´

1´ F
´

xpiq
¯¯´1

˙

, which is estimated from 5000 simulated samples, versus rank i, i “ 1, . . . , n.

It can be seen observed from the figures that the variances, Zi, tend to decrease and increase, while
rank i increases to n

2 and n, respectively. Therefore, we can use the given functions in Table 1 to model

variance of the ln
ˆ

1´
´

1´ F
´

xpiq
¯¯´1

˙

for i “ 1, . . . ,
` n

2

˘

, and the determined function can be used

for i “
` n

2

˘

` 1, . . . , n. Alternatively, U shaped functions, which are more expensive than those given
in Table 2, may be used.
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Figure 2. (a–d) show the estimated variance for the log-logistic distribution versus i “ 1, . . . , n when
the sample size is taken as n “ 10, 20, 30, 50, respectively.

Table 2. The considered linear models for G p.q for the log-logistic distribution.

G p.q α{i p1{iqα pα{iq `
´

α{i2
¯

exp pαiq

R2 0.98 0.98 0.99 0.95
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Parallel to the Weibull distribution case, it can be concluded from Table 2 that G pi, nq “ α{i with
the determination of coefficient 0.98, and the estimated α “ 1.43 can be a plausible model for the
variance and, thus, wi “ i{α.

Therefore, we suggest a simple formula to calculate the weights to be used in WLS for estimating
the parameters of the Weibull and log-logistic distributions. Such formulae for weights of the Pareto,
Logistic, Gumbel, Burr, and such like random variables, whose cumulative distribution functions have
explicit functional form, can be easily obtained by means of the simulation study mentioned above.

The WLSE procedure for the Weibull and log-logistic distributions can be carried out
by minimizing the weighted sum of squares with respect to the unknown shape and scale
parameters, thus:

ÿ

wiplnr´lnp1´ F̂iqs ´αlnλ´α lnpxpiqqq
2 (16)

ÿ

wiplnp1´ p1´ F̂iq
´1
q ´ δln

´

xpiq
¯

` δln pγqq
2

(17)

With matrix notations for the Weibull distribution, y “ plnr´lnp1´ F̂1qs, . . . ., lnr´lnp1´ F̂nqsq
1,

X “

¨

˚

˚

˚

˝

1 log
´

xp1q
¯

...
...

1 log
´

xpnq
¯

˛

‹

‹

‹

‚

and “

¨

˚

˝

w1 0 0

0
. . . 0

0 0 wn

˛

‹

‚

, β “ pβ0, β1q, where β0 “ αlnλ and β1 “ α,

the solution of the WLSE is obtained as follows:

β̂ “
`

X1WX
˘´1 X1Wy (18)

where α̂ “ β1 and λ̂ “ exp
´

β0
β1

¯

.
A similar process can be applied to estimate the parameters of the log-logistic distribution. In

conclusion, the considered WLSE is explicit functions of sample observations and is, therefore, easy to
compute and does not have computational complexities like the MLE [1].

4. Monte Carlo Simulation

Different estimation methods may result in different estimates. Thus, it is important to have
objective criteria to inform the chosen method over other alternatives. A common approach to select
the best method is the Monte Carlo simulation by using appropriate criteria: bias and mean squared
error (MSE) [25]. In this section, the performance of the WLSE with the proposed weights is evaluated
by means of a simulation study. The considered WLSE is compared with the MLE, LSE, and WLSE
(Zyl and Schall) for the parameters of the log-logistic and Weibull distributions. In the simulation
study, the replication number is taken as 5000. All computations for simulation are performed using
Matlab 10.1. Sample sizes are taken as n = 10, 20, 30, 50, 100, and 250 and the shape parameters are
considered as α = 1, 2, 3 and 6 as parallel to previous studies concerning the log-logistic and Weibull
distributions. Without any loss of generality, the scale parameter is taken to be equal to 1.

From the simulation results presented in Table 3 for the shape parameter of the log-logistic
distribution, the following conclusions may be summarized. The MSE and bias values of the proposed
WLSE decrease when sample sizes increase. Thus, we show that the proposed WLSE provides
consistent estimates. According to the MSE criterion, the proposed WLSE apparently shows better
performance than the MLE, LSE and WLSE (Zyl and Schall) for all considered shape parameters when
sample sizes are n = 10, 20, 30, and 50. Since the MLE is asymptotically the best, it provides the best
performance for n = 100 and 250, as expected. It can be seen from analysis that WLSE has a better
performance than the LSE and the WLSE (Zyl and Schall) for estimation of the shape parameter of the
log-logistic distribution in terms of MSE.
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Table 3. Bias and MSE of the estimated shape parameters of the log-logistic distribution.

Shape Parameter 1 2 3 6

n = 10

Methods MSE Bias MSE Bias MSE Bias MSE Bias
MLE 0.15170 ´0.15212 0.61690 ´0.31629 1.37293 ´0.44112 5.67004 ´0.98941
LSE 0.11440 ´0.09667 0.54134 ´0.20337 1.10040 ´0.28495 3.99536 ´0.64275

WLSE(Zyl and Schall) 0.19999 ´0.21543 0.81328 ´0.44568 1.78391 ´0.62753 7.43891 ´1.37432
Proposed WLSE 0.10839 ´0.02486 0.43330 ´0.06128 1.00824 ´0.06953 3.98816 ´0.21838

n = 20

MLE 0.05213 ´0.06977 0.20253 ´0.13622 0.45077 ´0.20854 1.79207 ´0.40466
LSE 0.05036 ´0.03032 0.19174 ´0.05249 0.42394 ´0.08664 1.68610 ´0.17020

WLSE(Zyl and Schall) 0.07190 ´0.11669 0.28007 ´0.22935 0.63664 ´0.35112 2.46200 ´0.68556
Proposed WLSE 0.04278 0.02031 0.16383 0.04718 0.36171 0.06327 1.45807 0.14500

n = 30

MLE 0.02778 ´0.04194 0.11692 ´0.09339 0.26793 ´0.12972 1.15141 ´0.29157
LSE 0.02773 ´0.00947 0.11498 ´0.02627 0.26564 ´0.03313 1.12986 ´0.09620

WLSE(Zyl and Schall) 0.03941 ´0.07720 0.16531 ´0.15971 0.37430 ´0.23364 1.59306 ´0.50179
Proposed WLSE 0.02509 0.02770 0.10194 0.04546 0.23752 0.08039 0.99113 0.12622

n = 50

MLE 0.01566 ´0.02583 0.03070 ´0.02512 0.14066 ´0.07853 0.57653 ´0.13840
LSE 0.01633 0.00006 0.03428 0.01186 0.14630 0.00037 0.60268 0.01698

WLSE(Zyl and Schall) 0.02169 ´0.04636 0.04053 ´0.04015 0.19377 ´0.13955 0.79926 ´0.27090
Proposed WLSE 0.01521 0.02195 0.03136 0.02328 0.13589 0.06200 0.56752 0.13359

n = 100

MLE 0.00737 ´0.01237 0.02925 ´0.02169 0.06983 ´0.04588 0.26815 ´0.07447
LSE 0.00819 0.00447 0.03224 0.01293 0.07529 0.00617 0.29422 0.02979

WLSE(Zyl and Schall) 0.00993 ´0.02040 0.03966 ´0.03845 0.09062 ´0.07264 0.34757 ´0.12550
Proposed WLSE 0.00749 0.01454 0.03025 0.03137 0.07067 0.03276 0.27823 0.08239

n = 250

MLE 0.00288 ´0.00549 0.01132 ´0.00937 0.02607 ´0.01758 0.10527 ´0.02345
LSE 0.00325 0.00419 0.01289 0.01079 0.02891 0.01211 0.12167 0.03412

WLSE(Zyl and Schall) 0.00375 ´0.00810 0.01484 ´0.01423 0.03342 ´0.02428 0.13741 ´0.03586
Proposed WLSE 0.00312 0.00624 0.01228 0.01308 0.02845 0.01610 0.11304 0.04641

Note: Scale is taken as 1/λ.

If we evaluate the WLSE in terms of bias criterion, it is observed from Table 3 that the proposed
WLSE is best for n = 10, 20 and it is the best performer next to the LSE for n = 30, 50. In addition, the
WLSE provides less bias than the WLSE (Zyl and Schall) for n = 100 and 250. As a result, the considered
WLSE with the proposed weights can be a good alternative estimation method for the shape parameter
of the log-logistic distribution. In particular, it is useful in dealing with small sample sizes.

If the simulation results for the scale parameter of the log-logistic distribution are evaluated, it
can be concluded that the proposed WLSE is the best method, when sample sizes are taken as 10,
20, 50, and 100 in terms of MSE for most of the shape parameter cases except for the cases of shape
parameters 3 and 6. Similar to the results of the shape parameter, the MLE naturally provides the least
MSE for n = 250. It can be seen from Table 3 that the WLSE and WLSE (Zyl and Schall) perform very
similarly and they outperform the LSE for almost all cases. According to bias, the WLSE provides less
bias than the LSE and WLSE (Zyl and Schall) in almost all cases as seen in Table 4.

Based on the results presented in Table 5 for the shape parameter of the Weibull distribution, the
following conclusions may be summarized. The proposed WLSE shows the best performance for all
sample sizes except n = 250, which favors the MLE. The WLSE outperforms the LSE and WLSE (Zyl
and Schall) for all cases. According to bias criterion, while the LSE outperforms others for n = 10 and
20, the proposed WLSE is the best performer next to the LSE. For other sample sizes, the proposed
WLSE gives satisfactory results.
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Table 4. Bias and MSE of the estimated scale parameters of the log-logistic distribution.

Shape Parameter 1 2 3 6

n = 10

Methods MSE Bias MSE Bias MSE Bias MSE Bias
MLE 0.53291 ´0.16983 0.08620 ´0.03690 0.03530 ´0.01621 0.0086 ´0.00188
LSE 0.28823 0.28573 0.09542 0.19277 0.04874 0.14074 0.01472 0.07957

WLSE(Zyl and Schall) 0.27738 0.20752 0.08143 0.14670 0.04022 0.10846 0.01173 0.06139
Proposed WLSE 0.27505 0.19492 0.07949 0.13951 0.03900 0.10382 0.01127 0.05852

n = 20

MLE 0.20817 ´0.08162 0.04173 ´0.02409 0.01733 ´0.00745 0.00442 ´0.00346
LSE 0.16078 0.19233 0.04737 0.11886 0.02340 0.08807 0.00654 0.04575

WLSE(Zyl and Schall) 0.14875 0.11459 0.03943 0.07457 0.01863 0.05758 0.00509 0.02970
Proposed WLSE 0.14925 0.10117 0.03864 0.06670 0.01819 0.05303 0.00491 0.02705

n = 30

MLE 0.11511 ´0.04886 0.02753 ´0.01467 0.01128 ´0.00538 0.00276 ´0.00181
LSE 0.10550 0.15271 0.03210 0.08778 0.01482 0.06448 0.00399 0.03366

WLSE(Zyl and Schall) 0.09359 0.08221 0.02668 0.05080 0.01187 0.03837 0.00308 0.02013
Proposed WLSE 0.09378 0.07111 0.02630 0.04494 0.01161 0.03451 0.00299 0.01821

n = 50

MLE 0.06937 ´0.03995 0.00766 ´0.00371 0.00696 ´0.00388 0.00173 ´0.00055
LSE 0.06566 0.09608 0.00896 0.03468 0.00870 0.04251 0.00234 0.02330

WLSE(Zyl and Schall) 0.05982 0.03974 0.00765 0.01630 0.00714 0.02252 0.00185 0.01269
Proposed WLSE 0.05973 0.03129 0.00745 0.01355 0.00702 0.01960 0.00182 0.01126

n = 100

MLE 0.03096 ´0.01622 0.00757 ´0.00265 0.00327 ´0.00273 0.00085 ´0.00016
LSE 0.03227 0.05936 0.00890 0.03609 0.00395 0.02353 0.00107 0.01298

WLSE(Zyl and Schall) 0.02912 0.02344 0.00763 0.01716 0.00332 0.01043 0.00088 0.00646
Proposed WLSE 0.02901 0.01845 0.00750 0.01454 0.00328 0.00867 0.00088 0.00559

n = 250

MLE 0.01215 ´0.00633 0.00296 ´0.00003 0.00137 ´0.00053 0.00034 0.00010
LSE 0.01320 0.02975 0.00345 0.01802 0.00156 0.01156 0.00041 0.00610

WLSE(Zyl and Schall) 0.01181 0.00944 0.00300 0.00800 0.00138 0.00477 0.00035 0.00277
Proposed WLSE 0.01175 0.00720 0.00298 0.00667 0.00138 0.00399 0.00035 0.00236

Table 5. Bias and MSE of the estimated shape parameters of the Weibull distribution.

Shape parameter 1 2 3 6

n = 10

Methods MSE Bias MSE Bias MSE Bias MSE Bias

MLE 0.16290 ´0.17684 0.61002 ´0.34672 1.39320 ´0.48813 5.30808 ´1.00735
LSE 0.10553 0.02617 0.40657 0.05791 0.92350 0.10020 3.63395 0.18918

WLSE(Zyl and Schall) 0.09019 0.04832 0.33633 0.10347 0.80193 0.17179 3.01066 0.32833
Proposed WLSE 0.08970 0.04528 0.33353 0.09746 0.79808 0.16480 2.98083 0.31209

n = 20

MLE 0.05051 ´0.07862 0.20273 ´0.15801 0.43237 ´0.22142 1.76956 ´0.44148
LSE 0.05122 0.03667 0.20062 0.07636 0.45081 0.12566 1.81754 0.24342

WLSE(Zyl and Schall) 0.03805 0.04307 0.15174 0.08599 0.33618 0.13991 1.38091 0.28552
Proposed WLSE 0.03713 0.04112 0.14802 0.08202 0.32646 0.13488 1.34091 0.27419

n = 30

MLE 0.02709 ´0.04567 0.10771 ´0.09483 0.23843 ´0.14551 0.96885 ´0.30166
LSE 0.03418 0.04049 0.13882 0.07656 0.29428 0.11197 1.23346 0.22298

WLSE(Zyl and Schall) 0.02383 0.03874 0.09409 0.07331 0.20710 0.10699 0.83766 0.20695
Proposed WLSE 0.02288 0.03733 0.08996 0.07127 0.19936 0.10311 0.79907 0.19891

n = 50

MLE 0.01465 ´0.0233 0.06141 ´0.0627 0.13222 ´0.0875 0.52323 ´0.1647
LSE 0.02333 0.06806 0.09433 0.14283 0.21502 0.21366 0.86411 0.42794

WLSE(Zyl and Schall) 0.01490 0.04802 0.05899 0.08928 0.13479 0.14028 0.55811 0.28503
Proposed WLSE 0.01440 0.04733 0.05896 0.08917 0.13236 0.10311 0.5300 0.28891
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Table 5. Cont.

Shape parameter 1 2 3 6

n = 100

MLE 0.00677 ´0.01440 0.02660 ´0.03043 0.05868 ´0.04105 0.24495 ´0.09501
LSE 0.01114 0.02299 0.04404 0.04507 0.09679 0.07418 0.38372 0.13333

WLSE(Zyl and Schall) 0.00711 0.01278 0.02742 0.02316 0.06246 0.04011 0.24995 0.06395
Proposed WLSE 0.00663 0.01205 0.02589 0.02420 0.05872 0.04100 0.24438 0.06505

n = 250

MLE 0.00242 ´0.00611 0.00982 ´0.01081 0.02268 ´0.02154 0.08933 ´0.02439
LSE 0.00434 0.01466 0.01728 0.03187 0.03825 0.03658 0.16016 0.09904

WLSE(Zyl and Schall) 0.00270 0.00405 0.01112 0.01105 0.02511 0.00906 0.10153 0.04266
Proposed WLSE 0.00249 0.00404 0.01024 0.01169 0.02329 0.01205 0.09355 0.04241

The results of the simulation for the scale parameter of the Weibull distribution are given in
Table 6. While, according to the MSE criterion, the proposed WLSE, LSE, and WLSE (Zyl and Schall)
yield similar results, the proposed WLSE provides comparable efficiency in comparison with LSE
in terms of bias. Moreover, the proposed WLSE is compared to two alternative WLSE (Hung [11],
Lu et al. [12]) and also PE [2] for the shape parameter of the Weibull distribution. It can be seen that
the proposed WLSE demonstrates satisfactory results in terms of MSE.

Table 6. Bias and MSE of the estimated scale parameters of the Weibull distribution.

Shape Parameter 1 2 3 6

n = 10

Methods MSE Bias MSE Bias MSE Bias MSE Bias

MLE 0.11141 ´0.01587 0.02711 0.00626 0.01246 0.00561 0.00312 0.00412
LSE 0.15382 ´0.04226 0.03203 ´0.00566 0.01343 0.00074 0.00326 0.00258

WLSE(Zyl and Schall) 0.17017 ´0.08331 0.03342 ´0.02544 0.01375 ´0.01216 0.00328 ´0.00398
Proposed WLSE 0.17033 ´0.08574 0.03400 ´0.03128 0.01372 ´0.01586 0.00328 ´0.00590

n = 20

MLE 0.05694 ´0.00975 0.01438 0.00157 0.00613 0.00245 0.00162 0.00248
LSE 0.06613 ´0.00934 0.01561 0.00333 0.00660 0.00446 0.00168 0.00229

WLSE(Zyl and Schall) 0.07133 ´0.03953 0.01603 ´0.01178 0.00661 ´0.00566 0.00168 ´0.00258
Proposed WLSE 0.07289 ´0.04828 0.01619 ´0.01601 0.00661 ´0.00840 0.00168 ´0.00297

n = 30

MLE 0.03774 ´0.00943 0.00924 0.00119 0.00415 0.00154 0.00103 0.00096
LSE 0.04201 0.00142 0.01003 0.00484 0.00440 0.00435 0.00110 0.00328

WLSE(Zyl and Schall) 0.04407 ´0.02275 0.01004 ´0.00763 0.00438 ´0.00371 0.00107 ´0.00091
Proposed WLSE 0.04455 ´0.02932 0.01003 ´0.01076 0.00437 ´0.00478 0.00106 ´0.00119

n = 50

MLE 0.02187 ´0.00347 0.00558 0.00231 0.00248 0.00129 0.00062 0.00103
LSE 0.02378 0.00483 0.00599 0.00366 0.00264 0.00385 0.00067 0.00229

WLSE(Zyl and Schall) 0.02425 ´0.01454 0.00597 ´0.00594 0.00261 ´0.00256 0.00064 ´0.00097
Proposed WLSE 0.02423 ´0.01881 0.00597 ´0.00813 0.00259 ´0.00302 0.00064 ´0.00108

n = 100

MLE 0.01100 ´0.00012 0.00276 0.00007 0.00122 0.00199 0.00031 0.00101
LSE 0.01167 0.00325 0.00297 0.00447 0.00132 0.00169 0.00033 0.00112

WLSE(Zyl and Schall) 0.01168 ´0.00876 0.00291 ´0.00193 0.00129 ´0.00251 0.00033 ´0.00102
Proposed WLSE 0.01162 ´0.01009 0.00287 ´0.00300 0.00127 ´0.00307 0.00032 ´0.00112

n = 250

MLE 0.00432 0.00057 0.00107 0.00078 0.00048 0.00056 0.00012 0.00050
LSE 0.00457 0.00327 0.00113 0.00227 0.00052 0.00153 0.00013 0.00072

WLSE(Zyl and Schall) 0.00454 ´0.00396 0.00112 ´0.00122 0.00051 ´0.00083 0.00012 ´0.00042
Proposed WLSE 0.00436 ´0.00379 0.00110 ´0.00112 0.00050 ´0.00109 0.00012 ´0.00043

To sum up, the proposed WLSE for the shape parameter of the Weibull distribution, which
characterizes failure rate and has a significant impact on the accuracy of wind power estimation,
provides better performance than the MLE, LSE, and three alternative WLSE in terms of MSE for the
most of the considered sample (n < 100) and shape parameter cases. For the log-logistic distribution, it
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may be concluded that the proposed WLSE for the shape parameter is a good alternative to the MLE,
LSE, and WLSE.

5. Real-Life Application from Hydrology

In this study, a flood frequency analysis is performed for one station of the Aji River basin in Iran
as an illustrative example. Data measured at the SofiChai station is used. An analysis of the considered
flood data is studied in detail in [26] with most statistical distributions including the log-logistic and
Weibull distributions. We also research whether data follows the Weibull and log-logistic distributions
using statistical tests, such as Kolmogorov–Smirnov, Anderson–Darling, and Chi-squared. In the
results of the considered tests and a q-q plot, we conclude that the Weibull and log-logistic distributions
may be used as alternative models for model flood data.

Figure 3 shows the weights calculated for sample size, n = 34 for Weibull and log-logistic
distributions in order to perform the WLSE.
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Figure 3. The estimated variances corresponding to Weibull and log-logistic distributions.

We now calculate the estimates of the scale and shape parameters of the log-logistic and Weibull
distributions using the previously mentioned estimation methods in this study; see Table 7.

Table 7. Parameter estimates for log-logistic and Weibull distributions.

Log-logistic Distribution

Parameters MLE LSE WLSE (Zyl
and Schall)

Proposed
WLSE LAD WLSE (Hung) WLSE (Lu et al.)

Scale 30.0184 27.0712 28.8336 29.4025 28.5428 - -
Shape 3.94881 3.58588 4.47555 3.48969 3.82828 - -

Weibull Distribution

Scale 35.21229 35.5353 35.3532 35.2858 35.3344 35.0005 35.3607
Shape 2.80503 2.548301 2.634572 2.638023 2.659215 2.738903 2.63333

Figure 4 provides a histogram and the fitted Weibull probability density functions (pdfs) for flood
data to evaluate the results of the MLE, LSE, and WLSE. It is observed that the Weibull pdfs capture
most features of the observed frequency of the histogram of the observed data. Additionally, the
performance of WLSE is evaluated based on root mean square error (RMSE) between the area of the
histogram and the total area under the Weibull pdfs curve. It is clear that the values of RMSE are very
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close to each other for all methods. 0.0532, 0.0543, and 0.0538 are obtained for the MLE, LSE, and
WLSE, respectively. It is seen from this example that the RMSE of the WLSE is less than the LSE.Math. Comput. Appl. 2016, 21, 7 12 of 14 
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The log-logistic pdfs and the histogram are given in Figure 5. The RMSE of the MLE, LSE, and the
considered WLSE are 0.0601, 0.0674, and 0.0610 respectively. As the Weibull case, the RMSE of WLSE
is less than the LSE. Thus, the simulation results are supported by the results of application.
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6. Conclusions

The key of WLSE is to calculate the weights. In this study, we propose estimating weights as
a function of the rank of the data point in the sample based on dependent variable generated via
simulation. The considered weighted least squares estimation, which is computationally easy, is then
applied to the estimation of the parameters of the log-logistic and Weibull distributions. Considering
the results of the Monte Carlo simulation and a real application, it is shown that the proposed WLSE
for the shape parameters of the Weibull and the log-logistic distributions shows better performance
than other considered methods for most of the considered parameters and sample cases.
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