
Mathematical

and Computational

Applications

Article

Predictive Abilities of Bayesian Regularization and
Levenberg–Marquardt Algorithms in Artificial Neural
Networks: A Comparative Empirical Study on
Social Data
Murat Kayri

Department of Computer Engineering, Muş Alparslan University, 49100 Muş, Turkey; muratkayri@gmail.com;
Tel.: +90 436 213 00 13

Academic Editor: Mehmet Pakdemirli
Received: 8 March 2016; Accepted: 19 May 2016; Published: 24 May 2016

Abstract: The objective of this study is to compare the predictive ability of Bayesian regularization
with Levenberg–Marquardt Artificial Neural Networks. To examine the best architecture
of neural networks, the model was tested with one-, two-, three-, four-, and five-neuron
architectures, respectively. MATLAB (2011a) was used for analyzing the Bayesian regularization and
Levenberg–Marquardt learning algorithms. It is concluded that the Bayesian regularization training
algorithm shows better performance than the Levenberg–Marquardt algorithm. The advantage
of a Bayesian regularization artificial neural network is its ability to reveal potentially complex
relationships, meaning it can be used in quantitative studies to provide a robust model.

Keywords: Bayesian regularization; Levenberg–Marquardt; neural networks; training algorithms

1. Introduction

Defining a highly accurate model for quantitative studies depends on conditions such as the
distribution of variables, the number of predictors, and the complexity of interactions between
variables. Preventing the model from defining a bias and choosing a statistical method that is robust
and can solve complex relationships are also crucial. An Artificial Neural Network (ANN) is a popular
statistical method which can explore the relationships between variables with high accuracy [1–4].
Essentially, the structure of an ANN is computer-based and consists of several simple processing
elements operating in parallel [3,5,6].

An ANN consists of three layers: input, hidden, and output layers, hence it is referred to as a
three-layer network. The input layer contains independent variables that are connected to the hidden
layer for processing. The hidden layer contains activation functions and it calculates the weights of
the variables in order to explore the effects of predictors upon the target (dependent) variables. In the
output layer, the prediction or classification process is ended and the results are presented with a small
estimation error [7,8].

In general, a backpropagation algorithm trains a feedforward network. In the training process, the
backpropagation algorithm learns associations between a specified set of input-output pairs [9]. The
backpropagation training algorithm acts as follows [7]: first, it propagates the input values forward to
a hidden layer, and then, it propagates the sensitivities back in order to make the error smaller; at the
end of the process, it updates the weights. The mathematical frame of the backpropagation algorithm
can be seen in several studies such as “Training Feedforward Networks with the Marquardt Algorithm”
by [7]. Due to the limited word count, not all of the backpropagation algorithm is presented but it can
be seen in other studies.

Math. Comput. Appl. 2016, 21, 20; doi:10.3390/mca21020020 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
http://www.mdpi.com/journal/mca

Math. Comput. Appl. 2016, 21, 20 2 of 11

In ANNs, some regularization techniques are used with the backpropagation training algorithm
to obtain a small error. This causes the network response to be smoother and less likely to overfit to
training patterns [8,10]. However, the backpropagation algorithm is slow to converge and may cause
an overfitting problem. Backpropagation algorithms that can converge faster have been developed
to overcome the convergence issue. Similarly, some regularization methods have been developed to
solve the overfitting problem in ANNs. Among regularization techniques, Levenberg–Marquardt
(LM) and Bayesian regularization (BR) are able to obtain lower mean squared errors than any other
algorithms for functioning approximation problems [11]. LM was especially developed for faster
convergence in backpropagation algorithms. Essentially, BR has an objective function that includes a
residual sum of squares and the sum of squared weights to minimize estimation errors and to achieve
a good generalized model [3,12–15].

Basically, Multilayer Perceptron Artificial Neural Network (MLPANN) or Radial Basis Function
Artificial Neural Network (RBFANN) algorithms could be examined instead of BR or LM. However,
it’s known that BR and LM have better performance than the conventional methods (MLPANN,
RBFANN) in terms of both speed and the overfitting problem; as such, the aim was to explain BR
and LM algorithms for their use with social data and compare these algorithms in terms of their
predictive abilities. There are too few studies using an Artificial Neural Network with social data.
It should be considered that “linear-non-linear relationship” or “data type” varies from case to case.
While any architecture of neural network explains the model with small error or high accuracy for
continuous variable (natural-metric data such as weight, age, amount of electric consume, temperature,
humidity, etc.), maybe this architecture is not capable of explaining the model well for a non-linear
relation or non-continuous data. As it is seen that the study contains a lot of nominal and ordinal
variables (non-continuous), it is worth studying some artificial neural networks on social data due to
different behavior of distribution.

In this study, the training algorithms of BR and LM are compared in terms of predictive ability. To
compare their respective performances, the correlation coefficient between real and predicted data is
compared via BR and LM for performance criteria, along with the sum of squared errors, which can
also be a network performance indicator.

2. Material and Methods

2.1. Data Set (Material)

The data set was composed of 2247 university students. There are 25 variables (24 predictors
and one response) in the model. The score of the target (dependent) variable was obtained from a
reflective thinking scale. This is composed of 16 items and each item is measured by using a five-level
Likert scale (1: Strongly disagree; 2: Disagree; 3: Uncertain; 4: Agree; 5: Strongly agree). The aim of the
reflective thinking scale is to measure students’ reflective thinking levels and the score varies between
16 and 80. The reliability of reflective thinking was examined with Cronbach’s Alpha, and scored 0.792.
This value shows that the reliability level of the reflective thinking scale is good. The validity of the
scale was examined with principle component analysis (exploratory factor analysis) and the result of
this analysis was within an acceptable boundary.

In this study, 24 predictors given to the students via a prepared questionnaire were used. Some of
predictors were nominal (dichotomous or multinomial), some of them were ordinal, and the rest were
continuous variables. The predictors in the model were: “1—faculty (Education, Science, Engineering,
Divinity, Economics, Health)”, “2—gender”, “3—faculty department”, “4—the graduation of the
branch from high school (social, science, linguistics, etc.)”, “5—class in department (1/2/3/4)”, “6—the
preferred department order given at the University Entrance Examination”, “7—current transcript
score”, “8—completed preschool education (yes or no)”, “9—school type graduation (science, social,
divinity, vocational, etc.)”, “10—location when growing up (village, city, small town)”, “11—degree of
mother’s education (primary, middle, high school, university, etc.)”, “12—degree of father’s education

Math. Comput. Appl. 2016, 21, 20 3 of 11

(primary, middle, high school, university, etc.)”, “13—monthly income of student’s family”, “14—level
of satisfaction with the department”, “15—frequency of reading a newspaper”, “16—newspaper
sections read”, “17—number of books read”, “18—types of book read (novel, psychological, science
fiction, politic, adventure, etc.”, “19—consultation with environment (friends, etc.) on any argument
(always/generally/sometimes/never)”, “20—taking notes during lesson regularly”, “21—discussion
with environment (such as friend, roommate) on any issue (always/generally/sometimes/never)”,
“22—any scientific research carried out yet (yes/no)”, “23—expected lesson’s details just from teacher
(yes/no)”, “24—research anxiety score” (this score was taken from the Research Anxiety Scale
composed of 12 items). During analysis, the independent variables are coded from 1 to 24 in order to
build readable tables.

2.2. Methods

2.2.1. Feed-Forward Neural Networks with Backpropagation Algorithm

In feed-forward neural networks, otherwise known as multilayer perceptrons, the input vector
of independent variables pi is related to the target ti (reflective thinking score) using the architecture
depicted in Figure 1. This figure shows one of the commonly used networks, namely, the layered
feed-forward neural network with one hidden layer. Here each single neuron is connected to those
of a previous layer through adaptable synaptic weights [3,16]. Knowledge is usually stored as a set
of connection weights. Training is the process of modifying the network using a learning mode in
which an input is presented to the network along with the desired output, and then, the weights
are adjusted so that the network attempts to produce the desired output. The weights after training
contain meaningful information, whereas before training they are random and have no meaning [17].

Math. Comput. Appl. 2016, 21, 20 3 of 11

reading a newspaper”, “16—newspaper sections read”, “17—number of books read”, “18—types of
book read (novel, psychological, science fiction, politic, adventure, etc.”, “19—consultation with
environment (friends, etc.) on any argument (always/generally/sometimes/never)”, “20—taking
notes during lesson regularly”, “21—discussion with environment (such as friend, roommate) on any
issue (always/generally/sometimes/never)”, “22—any scientific research carried out yet (yes/no)”,
“23—expected lesson’s details just from teacher (yes/no)”, “24—research anxiety score” (this score
was taken from the Research Anxiety Scale composed of 12 items). During analysis, the independent
variables are coded from 1 to 24 in order to build readable tables.

2.2. Methods

2.2.1. Feed-Forward Neural Networks with Backpropagation Algorithm

In feed-forward neural networks, otherwise known as multilayer perceptrons, the input vector
of independent variables pi is related to the target ti (reflective thinking score) using the architecture
depicted in Figure 1. This figure shows one of the commonly used networks, namely, the layered
feed-forward neural network with one hidden layer. Here each single neuron is connected to those
of a previous layer through adaptable synaptic weights [3,16]. Knowledge is usually stored as a set
of connection weights. Training is the process of modifying the network using a learning mode in
which an input is presented to the network along with the desired output, and then, the weights are
adjusted so that the network attempts to produce the desired output. The weights after training
contain meaningful information, whereas before training they are random and have no meaning [17].

Figure 1. The architecture of an artificial neural network.

The architecture of the network examined in the study was such that '
ip = (pi1, pi2, …, pi24)

contained values for 24 input (independent) variables from individual i. The input variables are
associated with each of N neurons in a hidden layer by using weights (wkj, k = 1, 2, …, N) which are
specific to each independent variable (j) to neuron (k) connection. Following Mackay (2008) [18], the

mapping has two forms for the relationship between output t̂ and independent variables:

HiddenLayer
())1(1)1()1(

1
)1(; konelevelkkjkj

R
jk nfabpwn −= =+Σ=

 (1)

OutputLayer
())2()2()2(

1
1)1,2(

1
)2(ˆ; ktwolevelkikkjk nfatbawn −= ==+Σ=

(2)

Figure 1. The architecture of an artificial neural network.

The architecture of the network examined in the study was such that p1i = (pi1, pi2, . . . , pi24)
contained values for 24 input (independent) variables from individual i. The input variables are
associated with each of N neurons in a hidden layer by using weights (wkj, k = 1, 2, . . . , N) which are
specific to each independent variable (j) to neuron (k) connection. Following Mackay (2008) [18], the
mapping has two forms for the relationship between output t̂ and independent variables:

HiddenLayer np1qk “ ΣR
j“1wp1qkj pj ` bp1qk ; a1

k “ flevel´one

´

np1qk

¯

(1)

Math. Comput. Appl. 2016, 21, 20 4 of 11

OutputLayer np2qk “ Σj“1wp2,1q
k a1

k ` bp2q1 ; t̂i “ ap2qk “ flevel´two

´

np2qk

¯

(2)

In the case of N neurons in the neural network, the biases are bp1q1 , bp1q2bp1qN . Prior to activation,

the input value for neuron k is bp1qk `
24
ř

j“1
wkj pj. Then an activation function f (.) (linear or nonlinear)

is applied to the input in each neuron and v is transformed as fk

˜

bp1qk `
24
ř

j“1
wkj pj

¸

= fk

´

np1qk

¯

,

k = 1, 2, ..., N. After applying activation, the activated quantity is then transferred to the output layer

and gathered as
N
ř

ki“1
w1k fk

˜

bp1qk `
24
ř

j“1
wkj pj

¸

` bp2q, where wk (k = 1, 2, . . . , N) are b(1) and b(2) bias

parameters in the hidden and output layers. At the end of the process, this activated quantity is carried

out again with function g(.) as g
„ N
ř

k“1
w1k fkp.q ` bp2q

= fk

´

np2qk

¯

, which then becomes the estimated

target variable (reflective thinking score) value of ti in the training data set, or t̂i [3]:

t̂i “ g
!

ΣN
k“1w1k f

´

ΣR
j“1wkj pj ` bp1qk

¯

` bp2q
)

; j “ 1, 2...., R k “ 1, 2, ..., N (3)

In this study, the combination activation functions (f) used are

1 fhidden layer(.) = linear(.) and foutput layer(.) = linear(.)
2 fhidden layer(.) = tangentsigmoid(.) and foutput layer(.) = linear(.)

In this study, 70% of the organized data set was used for the training set and the rest (30%) of the
data set was used for the test set.

2.2.2. Solution to the Overfitting Problem with Bayesian Regularization and Levenberg–Marquardt
Neural Networks

The main problem with implementing regularization is setting the correct values for the objective
function parameters. The Bayesian framework for neural networks is based on the probabilistic
interpretation of network parameters. That is, in contrast to conventional network training where an
optimal set of weights is chosen by minimizing an error function, the Bayesian approach involves
a probability distribution of network weights. As a result, the predictions of the network are also a
probability distribution [19,20].

In the training process, a common performance function is used for computing the distance
between real and predicted data. This function can be expressed as follows:

F “ EDpD|w, Mq “
1
N

n
ÿ

i“1

pt̂i ´ tiq
2 (4)

Here, ED is the mean sum of squares of the network error; D is the training set with input-target
pairs. M is a neural network architecture that consists of a specification of the number of layers, the
number of units in each layer, and the type of activation function performed by each unit. ED is a
criterion for early stopping to avoid overfitting; it is used in MATLAB for many training algorithms.
Therefore, early stopping for regularization seems to be a very crude method for complexity control [21].
However, although the early stopping regularization can reduce the variance it increases the bias. Both
can be reduced by BR [22].

In a BR network, the regularization adds an additional term and then an objective function to
penalize large weights that may be introduced in order to obtain smoother mapping. In this case, a
gradient-based optimization algorithm is preferred for minimizing the objective [15,18,23,24];

F = βEDpD|w, Mq + αEWpw|Mq (5)

Math. Comput. Appl. 2016, 21, 20 5 of 11

In Equation (5), EW(w|M) is EW “ 1
n

n
ř

i“1
w2

j , the sum of squares of network weights, α and β, are

hyperparameters that need to be estimated function parameters. The last term, αEW(w|M), is called
weight decay and α is also known as the decay rate. If α << β then the training algorithm will make
the errors smaller. If α >> β, training will emphasize weight size reduction at the expense of network
errors, thus producing a smoother network response [25].

After the data are taken with the Gaussian additive noise assumed in target values, the posterior
distribution of the ANN weights can be updated according to Bayes’ rule:

Ppw|D, α, β, Mq “
PpD|w, β, Mq.Ppw|α, Mq

PpD|α, β, Mq
(6)

Therefore, the BR includes a probability distribution of network weights and the network
architecture can be identified as a probabilistic framework [19]. In Equation (6), D is the training

sample and the prior distribution of weights is defined as Ppw|α, Mq “
`

α
2π

˘m{2 exp

´α
2 w1w

(

. M is
the particular ANN used and w is the vector of networks weights. P(w|α, M) states our knowledge of
weights before any data is collected, P(D|w, β, M) is the likelihood function which is the probability of
the occurrence, giving the network weights. In this Bayesian framework, the optimal weights should
maximize the posterior probability P(w|D, a, P, M). Maximizing the posterior probability of w is
equivalent to minimizing the regularized objective function F = βED + aEw [25]. Consider the joint
posterior density:

Ppα, β|D, Mq “
PpD|α, β, MqPpα, β|Mq

PpD|Mq
(7)

According to MacKay (1992) [10] it is

PpD|α, β, Mq “
PpD|w, β, MqPpw|α, Mq

Ppw|D, α, β, Mq
“

ZFpα, βq

pπ{βqn{2pπ{αqm{2
(8)

where n and m are the number of observations and total number of network parameters, respectively.
The Equation (8) (Laplace approximation) produces the following equation;

ZFpα, βq9|HMAP|
´ 1

2 expp´FpwMAPqq (9)

where HMAP is the Hessian matrix of the objective function and MAP stands for maximum a posteriori.
The Hessian matrix can be approximated as

H “ J1J (10)

where J is the Jacobian matrix that contains first derivatives of the network errors with respect to
network parameters. J has

J “

»

—

—

—

—

—

—

—

–

Be1pwq
Bw1

Be1pwq
Bw2

¨ ¨ ¨
Be1pwq
Bwn

Be2pwq
Bw1

Be2pwq
Bw2

¨ ¨ ¨
Be2pwq
Bwn

...
...

. . .
...

BeNpwq
Bw1

BeNpwq
Bw2

¨ ¨ ¨
BeNpwq
Bwn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(11)

The Gauss-Newton approximation versus the Hessian matrix ought to be used if the LM algorithm
is employed to replace the minimum of F [26], an approach that was proposed by [10]. In LM, algorithm
parameters at l iteration are updated as

wl`1 “ wl ´
”

JTJ` µI
ı´1

JTe (12)

Math. Comput. Appl. 2016, 21, 20 6 of 11

where µ is the Levenberg’s damping factor. The µ is adjustable for each iteration and leads to
optimization. It is a popular alternative to the Gauss-Newton method of finding the minimum of a
function [27].

2.2.3. Analyses

MATLAB (2011a) was used for analyzing the BR Artificial Neural Network (BRANN) and LM
Artificial Neural Network (LMANN). To prevent overtraining, develop predictive ability, and eliminate
superiors’ effects caused by the initial values, the algorithms of BRANN and LMANN were trained
independently 10 times. In this study, the training process is stopped if: (1) it reaches the maximum
number of iterations; (2) the performance has an acceptable level; (3) the estimation error is below the
target; or (4) the LM µ parameter becomes larger than 1010.

3. Results and Discussion

Table 1 shows some estimated parameters of the network architectures. A number of parameters
for linear BRANN with one-neuron tangent sigmoid function can be seen.

Table 1. The number of effective parameters and correlation coefficients with linear Bayesian
Regularization Artificial Neural Network (BRANN) (one-neuron).

Cross-Validation
(CV)

Sum Square of
Errors (SSE)

Effective Number
of Parameters

Sum Squared
Weights (SSW)

R-Train
(Correlation)

R-Test
(Correlation)

1. sample 61,372.000 22.300 0.312 0.263 0.232
2. sample 53,387.000 22.200 0.332 0.261 0.236
3. sample 55,915.000 25.100 0.251 0.252 0.252
4. sample 60,031.000 22.200 0.316 0.270 0.225
5. sample 51,190.000 22.100 0.329 0.261 0.243
6. sample 53,843.000 22.200 0.289 0.271 0.222
7. sample 61,012.000 21.700 0.269 0.260 0.220
8. sample 61,888.000 22.200 0.283 0.278 0.217
9. sample 55,574.000 22.100 0.339 0.272 0.231

10. sample 60,606.000 22.600 0.333 0.220 0.213

Average of 10
samples 57,481.800 22.470 0.305 0.261 0.229

It is known that the Bayesian method performs shrinkage in order to estimate the model with
the least effective number of parameters. BRANN provides shrinkage by using a penalty term
(F = βED(D|w, M) + αEW(w|M)), thereby removing the unnecessary parameters. It is also known that
LM is unable to use a penalty term to estimate a model with the least number of parameters. Indeed,
using a penalty term for shrinkage is an important advantage of a Bayesian approach. As mentioned
before, the sample was divided into 10 sub-samples by using cross-validation and the valid result was
calculated by the average of 10 sub-samples. According to this, the effective number of parameters
is 22.470 with 0.305 sum of squared weights (SSW), and the correlation coefficient between real and
predicted responses is 0.229 for the test process (0.261 for the training process).

The model was tested as non-linear (with one-neuron, two-, three-, four-, and five-neurons) and
the results are shown in Table 2. The results were calculated as the averages of the cross-validation
samples (10 runs).

As shown in Table 2, the best model has a two-neuron architecture, with 0.2505 correlation
coefficient and with 34.48 parameters. In fact, the least effective number of parameters is found with a
slight difference in one-neuron architecture, but in this case the correlation coefficient is lower than in
the two-neuron architecture. Hence, the architecture with two-neurons is more acceptable than the
one-neuron architecture.

Math. Comput. Appl. 2016, 21, 20 7 of 11

Table 2. The effective number of parameter estimations and correlation coefficients with
non-linear BRANN.

Architecture SSE Effective Number of
Parameters SSW R-Train

(Correlation)
R-Test

(Correlation)

1 neuron 57,689.3333 22.27 0.33118 0.2671 0.2296
2 neurons 57,541.400 34.48 0.8921 0.3044 0.2505
3 neurons 58,103.300 44.68 1.6879 0.3432 0.2385
4 neurons 57,127.500 62.17 2.4836 0.3666 0.2367

After examining the BRANN architecture, the LM training algorithm was applied to the data
set and the results of the LM training algorithm are shown in Table 3. Just the average results of the
cross-validation samples are given for simplicity.

Table 3. The SSE and the correlation coefficients of different architectures with the LM
training algorithm.

Architecture SSE R-Train (Correlation) R-Test (Correlation)

1-neuron linear 57,545.600 0.269 0.183
1-neuron non-linear 58,512.200 0.2789 0.2047
2-neuron non-linear 59,707.700 0.355 0.203
3-neuron non-linear 62,106.200 0.3968 0.1971
4-neuron non-linear 63,180.800 0.4446 0.1933

Table 3 shows the correlation coefficients of the training and test processes with the value of
the sum of squared errors (SSEs). The highest correlation coefficient (0.2047) was obtained with
the one-neuron architecture. The correlation coefficient of the LM algorithm with the one-neuron
nonlinear model is lower than BRANN’s two-neuron architecture (0.2505 correlation coefficient). When
comparing Tables 1 and 3 or Tables 2 and 3 it is clearly seen that the value of the LMANN SSE is higher
than the BRANN result due to the penalty equation since the LM training algorithm cannot use it.
Although the LM training algorithm aims to minimize the sum of mean squared errors and has the
fastest convergence, the BRANN result is better in terms of predictive ability.

In Table 4 and Figure 2, the correlation coefficients are summarized in order to see the predictive
ability more clearly.

Math. Comput. Appl. 2016, 21, 20 7 of 11

Table 2. The effective number of parameter estimations and correlation coefficients with non-linear
BRANN.

Architecture SSE Effective Number
of Parameters

SSW R-Train
(Correlation)

R-Test
(Correlation)

1 neuron 57,689.3333 22.27 0.33118 0.2671 0.2296
2 neurons 57,541.400 34.48 0.8921 0.3044 0.2505
3 neurons 58,103.300 44.68 1.6879 0.3432 0.2385
4 neurons 57,127.500 62.17 2.4836 0.3666 0.2367

As shown in Table 2, the best model has a two-neuron architecture, with 0.2505 correlation
coefficient and with 34.48 parameters. In fact, the least effective number of parameters is found with
a slight difference in one-neuron architecture, but in this case the correlation coefficient is lower than
in the two-neuron architecture. Hence, the architecture with two-neurons is more acceptable than the
one-neuron architecture.

After examining the BRANN architecture, the LM training algorithm was applied to the data set
and the results of the LM training algorithm are shown in Table 3. Just the average results of the
cross-validation samples are given for simplicity.

Table 3. The SSE and the correlation coefficients of different architectures with the LM training
algorithm.

Architecture SSE R-Train (Correlation) R-Test (Correlation)
1-neuron linear 57,545.600 0.269 0.183

1-neuron non-linear 58,512.200 0.2789 0.2047
2-neuron non-linear 59,707.700 0.355 0.203
3-neuron non-linear 62,106.200 0.3968 0.1971
4-neuron non-linear 63,180.800 0.4446 0.1933

Table 3 shows the correlation coefficients of the training and test processes with the value of the
sum of squared errors (SSEs). The highest correlation coefficient (0.2047) was obtained with the one-
neuron architecture. The correlation coefficient of the LM algorithm with the one-neuron nonlinear
model is lower than BRANN’s two-neuron architecture (0.2505 correlation coefficient). When
comparing Tables 1 and 3 or Tables 2 and 3, it is clearly seen that the value of the LMANN SSE is
higher than the BRANN result due to the penalty equation since the LM training algorithm cannot
use it. Although the LM training algorithm aims to minimize the sum of mean squared errors and
has the fastest convergence, the BRANN result is better in terms of predictive ability.

In Table 4 and Figure 2, the correlation coefficients are summarized in order to see the predictive
ability more clearly.

Figure 2. The predictive ability of Bayesian regularization (BR), Levenberg–Marquardt (LM), and Scale
Conjugate Gradient (SCG).

Math. Comput. Appl. 2016, 21, 20 8 of 11

Table 4. The predictive ability of BR and LM.

Training
Algorithm Linear Nonlinear

(One-Neuron)
Nonlinear

(Two-Neuron)
Nonlinear

(Three-Neuron)
Nonlinear

(Four-Neuron)

BR 0.229 0.23 0.251 0.239 0.237
LM 0.183 0.205 0.203 0.197 0.193

Table 4 shows that BR has the best predictive ability for both linear and nonlinear architectures.
In this empirical study, a higher SSE and a lower correlation coefficient have been obtained by the LM.
Figure 2 shows that the optimal model can be defined with two-neuron architecture in BRANN. Due to
its predictive ability, using two-neuron architecture with BRANN was shown to be more reliable and
robust. So, for clarity of the findings, the importance of the predictors was tested just with BRANN,
not with LM.

Determining the importance of independent variables with the BR training algorithm is shown
in Table 5 where the effects of predictors are revealed according to priorities. The model was tested
with one-, two-, three-, four-, and five-neuron architectures. The connection weight matrix of the
neural network can be used to assess the relative importance of the various input neurons on the
output [28,29]. The relative importance of the predictors (input factors) was calculated as below.

I j “

řh
i “ 1

`

p|Wji|{
řn

k“1 |Wki|q.|WOi|
˘

řn
k “ 1 t

řh
i “1 p|Wki|{

řn
k “ 1 |Wki|q.|WOi|u

(13)

where Ij is the relative importance of the input factors j for the output, n is the number of input factors,
h is the number of hidden neurons, W is the synaptic weight matrix between the input and the hidden
layer, and WO is the synaptic weight matrix between the hidden and output layers [28,30].

Table 5. The relative importance of predictors with different architectures of BRANN.

Predictors Br_1neur. Pred. Br_2neur. Pred. Br_3neur. Pred. Br_4 neur. Pred. Br_5neur.

24 0.075826 21 0.14369 12 0.12251 16 0.1111 5 0.10333
16 0.069195 16 0.11314 16 0.07112 5 0.09779 24 0.08138
7 0.060357 23 0.08125 6 0.05684 21 0.07807 11 0.06017
4 0.050891 8 0.07418 21 0.05631 12 0.07447 12 0.05692
6 0.050532 24 0.07294 5 0.0556 15 0.06365 4 0.05661
12 0.048386 10 0.06862 19 0.05302 1 0.05183 1 0.05389
10 0.047885 12 0.06106 8 0.05076 18 0.04997 9 0.04936
17 0.047311 2 0.05554 24 0.04671 11 0.04395 6 0.04713
8 0.047199 7 0.04651 7 0.04425 9 0.04257 20 0.04578
2 0.046716 18 0.04221 1 0.04406 3 0.03772 16 0.04452
9 0.043606 20 0.04074 13 0.04253 24 0.0376 14 0.04377
15 0.043048 1 0.03932 20 0.04133 20 0.03522 18 0.04253
22 0.041268 5 0.02792 23 0.04024 7 0.03193 13 0.03518
3 0.040365 9 0.02497 4 0.03922 8 0.02974 8 0.03504
5 0.039735 11 0.01811 10 0.03784 4 0.02808 3 0.03427
18 0.036124 6 0.01616 17 0.03607 6 0.02513 2 0.03183
13 0.035587 3 0.0148 18 0.03285 14 0.02483 15 0.03038
19 0.033427 15 0.01372 11 0.02699 23 0.02402 19 0.02815
14 0.032593 14 0.01176 9 0.0256 13 0.02075 22 0.02449
21 0.025644 4 0.00903 14 0.02197 17 0.02022 23 0.02403
20 0.025484 13 0.00885 3 0.01687 19 0.019 21 0.02313
11 0.021935 17 0.00847 2 0.01394 10 0.01868 17 0.01958
1 0.020202 19 0.00538 22 0.01239 2 0.01712 10 0.01605
23 0.016684 22 0.00162 15 0.01097 22 0.01656 7 0.01249

Table 5 and Figure 3 show the relative importance of 24 input neurons upon the target for BR
models. According to the findings, there is no serious difference among architectures in terms of
predictive ability. The performance of the two-neuron architecture is slightly better, however, this
difference is not significant. A model that has a complex structure cannot be explained with a single

Math. Comput. Appl. 2016, 21, 20 9 of 11

neuron in terms of revealing the relationships between predictors and target. Since complex models
are penalized in accordance with the Bayesian approach, this approach is able to explore complex
architecture [3]. All in all, the model with two-neurons is the best architecture because of the highest
importance level of predictors. According to two-neuron architecture, the most important predictor is
“Taking notes during lesson regularly”, with a relative index of 14.36%. The other important predictors
are “Section being read from newspaper”, “Expected lesson’s details just from teacher”, “Completed
preschool education”, and “Research Anxiety Score”, as can be seen in Table 5. In the architecture
with three-, four-, and five-neurons, the relative indexes are lower than the two-neuron architecture.
Therefore, the best model should be defined with two-neurons by using BRANN in this study.Math. Comput. Appl. 2016, 21, 20 9 of 11

Figure 3. The relative importance of predictors with different architectures, with BRANN.

Table 5. The relative importance of predictors with different architectures of BRANN.

Predictors Br_1neur. Pred. Br_2neur. Pred. Br_3neur. Pred. Br_4 neur. Pred. Br_5neur.
24 0.075826 21 0.14369 12 0.12251 16 0.1111 5 0.10333
16 0.069195 16 0.11314 16 0.07112 5 0.09779 24 0.08138
7 0.060357 23 0.08125 6 0.05684 21 0.07807 11 0.06017
4 0.050891 8 0.07418 21 0.05631 12 0.07447 12 0.05692
6 0.050532 24 0.07294 5 0.0556 15 0.06365 4 0.05661
12 0.048386 10 0.06862 19 0.05302 1 0.05183 1 0.05389
10 0.047885 12 0.06106 8 0.05076 18 0.04997 9 0.04936
17 0.047311 2 0.05554 24 0.04671 11 0.04395 6 0.04713
8 0.047199 7 0.04651 7 0.04425 9 0.04257 20 0.04578
2 0.046716 18 0.04221 1 0.04406 3 0.03772 16 0.04452
9 0.043606 20 0.04074 13 0.04253 24 0.0376 14 0.04377
15 0.043048 1 0.03932 20 0.04133 20 0.03522 18 0.04253
22 0.041268 5 0.02792 23 0.04024 7 0.03193 13 0.03518
3 0.040365 9 0.02497 4 0.03922 8 0.02974 8 0.03504
5 0.039735 11 0.01811 10 0.03784 4 0.02808 3 0.03427
18 0.036124 6 0.01616 17 0.03607 6 0.02513 2 0.03183
13 0.035587 3 0.0148 18 0.03285 14 0.02483 15 0.03038
19 0.033427 15 0.01372 11 0.02699 23 0.02402 19 0.02815
14 0.032593 14 0.01176 9 0.0256 13 0.02075 22 0.02449
21 0.025644 4 0.00903 14 0.02197 17 0.02022 23 0.02403
20 0.025484 13 0.00885 3 0.01687 19 0.019 21 0.02313
11 0.021935 17 0.00847 2 0.01394 10 0.01868 17 0.01958
1 0.020202 19 0.00538 22 0.01239 2 0.01712 10 0.01605
23 0.016684 22 0.00162 15 0.01097 22 0.01656 7 0.01249

4. Conclusions

The objective of this work is to demonstrate the predictive abilities of BR and LM neural network
training algorithms. The ability to predict reflective thinking in the data was employed with two
different backpropagation-based algorithms (BR and LM). The model was tested as both linear and
nonlinear for BR and LM, separately. It was observed that the relationship between input and output
neurons was nonlinear. To put the best nonlinear architecture forward, the model was tested with
one-neuron architecture, two-, three-, four-, and five-neuron architectures. The best model was
obtained according to the highest correlation coefficient between predicted and real data sets. The
best model was scrutinized by BRANN not only by examining the highest correlation but also
examining the least effective number of parameters. The other indicators of the best architecture were
the SSE and SSW for BRANN.

Figure 3. The relative importance of predictors with different architectures, with BRANN.

4. Conclusions

The objective of this work is to demonstrate the predictive abilities of BR and LM neural network
training algorithms. The ability to predict reflective thinking in the data was employed with two
different backpropagation-based algorithms (BR and LM). The model was tested as both linear and
nonlinear for BR and LM, separately. It was observed that the relationship between input and output
neurons was nonlinear. To put the best nonlinear architecture forward, the model was tested with
one-neuron architecture, two-, three-, four-, and five-neuron architectures. The best model was
obtained according to the highest correlation coefficient between predicted and real data sets. The best
model was scrutinized by BRANN not only by examining the highest correlation but also examining
the least effective number of parameters. The other indicators of the best architecture were the SSE
and SSW for BRANN.

Between the BRANN and LM training methods, the BRANN obtained the highest correlation
coefficient and the lowest SSE in terms of predictive ability. The LM training algorithm showed lower
performance in terms of predictive ability. Similarly, Okut et al. (2011) [3] proved that the BR training
algorithm was the most effective method in terms of predictive ability.

Okut et al. (2013) [24] investigated the predictive performance of BR and scale conjugate gradient
training algorithms. In their study, they found that the BRANN gave slightly better performance, but
not significantly so. In many studies [8,31–33], the BR training algorithm has given either moderate
or the best performance in terms of comparison with other training algorithms. BRANNs have
some important advantages, such as choice and robustness of model, choice of validation set, size
of validation effort, and optimization of network architecture [13]. Bayesian methods can solve the
overfitting problem effectively and complex models are penalized in the Bayesian approach. In contrast
to conventional network training, where an optimal set of weights is chosen by minimizing an error
function, the Bayesian approach involves a probability distribution of network weights [21,34].

Math. Comput. Appl. 2016, 21, 20 10 of 11

If data type (scale, nominal, ordinal) and distribution type of any data set is similar to the current
data set then it is expected to have close results. For social data, it is possible to generalize the BRANN
performance. Because Cross-Validation sampling enhances the findings and the sample was run many
times to generalize the findings, it is concluded that among learning algorithms mentioned in this
study, the BR training algorithm has shown better performance in terms of accuracy. This, combined
with its advantage of having the potential ability to capture nonlinear relationships, means it can be
used in quantitative studies to provide a robust model.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Alaniz, A.Y.; Sanchez, E.N.; Loukianov, A.G. Discrete-time adaptive back stepping nonlinear control via
high-order neural networks. IEEE Trans. Neural Netw. 2007, 18, 1185–1195. [CrossRef] [PubMed]

2. Khomfoi, S.; Tolbert, L.M. Fault diagnostic system for a multilevel inverter using a neural network.
IEEE Trans Power Electron. 2007, 22, 1062–1069. [CrossRef]

3. Okut, H.; Gianola, D.; Rosa, G.J.M.; Weigel, K.A. Prediction of body mass index in mice using dense molecular
markers and a regularized neural network. Genet. Res. Camb. 2011, 93, 189–201. [CrossRef] [PubMed]

4. Vigdor, B.; Lerner, B. Accurate and fast off and online fuzzy ARTMAP-based image classification with
application to genetic abnormality diagnosis. IEEE Trans. Neural Netw. 2006, 17, 1288–1300. [CrossRef]
[PubMed]

5. Gianola, D.; Okut, H.; Weigel, K.A.; Rosa, G.J.M. Predicting complex quantitative traits with Bayesian neural
networks: A case study with Jersey cows and wheat. BMC Genet. 2011, 12, 1–37. [CrossRef] [PubMed]

6. Moller, F.M. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533.
[CrossRef]

7. Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans.
Neural Netw. 1994, 5, 989–993. [CrossRef] [PubMed]

8. Saini, L.M. Peak load forecasting using Bayesian regularization, Resilient and adaptive backpropagation
learning based artificial neural networks. Electr. Power Syst. Res. 2008, 78, 1302–1310. [CrossRef]

9. Beal, M.; Hagan, M.T.; Demuth, H.B. Neural Network Toolbox™ 6 User’s Guide; The Math Works Inc.: Natick,
MA, USA, 2010; pp. 146–175.

10. Mackay, D.J.C. Bayesian interpolation. Neural Comput. 1992, 4, 415–447. [CrossRef]
11. Demuth, H.; Beale, M. Neural Network Toolbox User’s Guide Version 4; The Math Works Inc.: Natick, MA, USA,

2000; pp. 5–22.
12. Bishop, C.M.; Tipping, M.E. A hierarchical latent variable model for data visualization. IEEE Trans. Pattern

Anal. Mach. Intell. 1998, 20, 281–293. [CrossRef]
13. Burden, F.; Winkler, D. Bayesian regularization of neural networks. Methods Mol. Biol. 2008, 458, 25–44.

[PubMed]
14. Marwalla, T. Bayesian training of neural networks using genetic programming. Pattern Recognit. Lett. 2007,

28, 1452–1458. [CrossRef]
15. Titterington, D.M. Bayesian methods for neural networks and related models. Stat. Sci. 2004, 19, 128–139.

[CrossRef]
16. Felipe, V.P.S.; Okut, H.; Gianola, D.; Silva, M.A.; Rosa, G.J.M. Effect of genotype imputation on

genome-enabled prediction of complex traits: an empirical study with mice data. BMC Genet. 2014,
15, 1–10. [CrossRef] [PubMed]

17. Alados, I.; Mellado, J.A.; Ramos, F.; Alados-Arboledas, L. Estimating UV erythemal irradiance by means of
neural networks. Photochem. Photobiol. 2004, 80, 351–358. [CrossRef] [PubMed]

18. Mackay, J.C.D. Information Theory, Inference and Learning Algorithms; University Press: Cambridge, UK, 2008.
19. Sorich, M.J.; Miners, J.O.; Ross, A.M.; Winker, D.A.; Burden, F.R.; Smith, P.A. Comparison of linear

and nonlinear classification algorithms for the prediction of drug and chemical metabolism by human
UDP-Glucuronosyl transferesa isoforms. J. Chem. Inf. Comput. Sci. 2003, 43, 2019–2024. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TNN.2007.899170
http://www.ncbi.nlm.nih.gov/pubmed/17668670
http://dx.doi.org/10.1109/TPEL.2007.897128
http://dx.doi.org/10.1017/S0016672310000662
http://www.ncbi.nlm.nih.gov/pubmed/21481292
http://dx.doi.org/10.1109/TNN.2006.877532
http://www.ncbi.nlm.nih.gov/pubmed/17001988
http://dx.doi.org/10.1186/1471-2156-12-87
http://www.ncbi.nlm.nih.gov/pubmed/21981731
http://dx.doi.org/10.1016/S0893-6080(05)80056-5
http://dx.doi.org/10.1109/72.329697
http://www.ncbi.nlm.nih.gov/pubmed/18267874
http://dx.doi.org/10.1016/j.epsr.2007.11.003
http://dx.doi.org/10.1162/neco.1992.4.3.415
http://dx.doi.org/10.1109/34.667885
http://www.ncbi.nlm.nih.gov/pubmed/19065804
http://dx.doi.org/10.1016/j.patrec.2007.03.004
http://dx.doi.org/10.1214/088342304000000099
http://dx.doi.org/10.1186/s12863-014-0149-9
http://www.ncbi.nlm.nih.gov/pubmed/25544265
http://dx.doi.org/10.1562/2004-03-12-RA-111.1
http://www.ncbi.nlm.nih.gov/pubmed/15362949
http://dx.doi.org/10.1021/ci034108k
http://www.ncbi.nlm.nih.gov/pubmed/14632453

Math. Comput. Appl. 2016, 21, 20 11 of 11

20. Xu, M.; Zengi, G.; Xu, X.; Huang, G.; Jiang, R.; Sun, W. Application of Bayesian regularized BP neural
network model for trend analysis. Acidity and chemical composition of precipitation in North. Water Air
Soil Pollut. 2006, 172, 167–184. [CrossRef]

21. Mackay, J.C.D. Comparison of approximate methods for handling hyperparameters. Neural Comput. 1996, 8,
1–35. [CrossRef]

22. Kelemen, A.; Liang, Y. Statistical advances and challenges for analyzing correlated high dimensional SNP
data in genomic study for complex. Dis. Stat. Surv. 2008, 2, 43–60.

23. Gianola, D.; Manfredi, E.; Simianer, H. On measures of association among genetic variables. Anim. Genet.
2012, 43, 19–35. [CrossRef] [PubMed]

24. Okut, H.; Wu, X.L.; Rosa, G.J.M.; Bauck, S.; Woodward, B.W.; Schnabel, R.D.; Taylor, J.F.; Gianola, D.
Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks
and Bayesian regression models. Genet. Sel. Evolut. 2013, 45, 1–8. [CrossRef] [PubMed]

25. Foresee, F.D.; Hagan, M.T. Gauss-Newton approximation to Bayesian learning. In Proceedings of the IEEE
International Conference on Neural Networks, Houston, TX, USA, 9–12 June 1997; pp. 1930–1935.

26. Shaneh, A.; Butler, G. Bayesian Learning for Feed-Forward Neural Network with Application to Proteomic
Data: The Glycosylation Sites Detection of The Epidermal Growth Factor-Like Proteins Associated with
Cancer as A Case Study. In Advances in Artificial Intelligence; Canadian AI LNAI 4013; Lamontagne, L.,
Marchand, M., Eds.; Springer-Verleg: Berlin/Heiddelberg, Germany, 2006.

27. Souza, D.C. Neural Network Learning by the Levenberg–Marquardt Algorithm with Bayesian Regularization.
Available online: http://crsouza.blogspot.com/feeds/posts/default/webcite (accessed on 29 July 2015).

28. Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Landslide susceptibility assessment in the HoaBinh
province of Vieatnam: A comparison of the Levenberg–Marqardt and Bayesian regularized neural networks.
Geomorphology 2012, 171, 12–29.

29. Lee, S.; Ryu, J.H.; Won, J.S.; Park, H.J. Determination and application of the weights for landslide
susceptibility mapping using an artificial neural network. Eng. Geol. 2004, 71, 289–302. [CrossRef]

30. Pareek, V.K.; Brungs, M.P.; Adesina, A.A.; Sharma, R. Artificial neural network modeling of a multiphase
photo degradation system. J. Photochem. Photobiol. A Chem. 2002, 149, 139–146. [CrossRef]

31. Bruneau, P.; McElroy, N.R. LogD7.4 modeling using Bayesian regularized neural networks assessment and
correction of the errors of prediction. J. Chem. Inf. Model. 2006, 46, 1379–1387. [CrossRef] [PubMed]

32. Lauret, P.; Fock, F.; Randrianarivony, R.N.; Manicom-Ramsamy, J.F. Bayesian Neural Network approach to
short time load forecasting. Energy Convers. Manag. 2008, 5, 1156–1166. [CrossRef]

33. Ticknor, J.L. A Bayesian regularized artificial neural network for stock market forecasting. Expert Syst. Appl.
2013, 14, 5501–5506. [CrossRef]

34. Wayg, Y.H.; Li, Y.; Yang, S.L.; Yang, L. An in silico approach for screening flavonoids as P-glycoprotein
inhibitors based on a Bayesian regularized neural network. J. Comput. Aided Mol. Des. 2005, 19, 137–147.

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11270-005-9068-8
http://dx.doi.org/10.1162/089976699300016331
http://dx.doi.org/10.1111/j.1365-2052.2012.02326.x
http://www.ncbi.nlm.nih.gov/pubmed/22742500
http://dx.doi.org/10.1186/1297-9686-45-34
http://www.ncbi.nlm.nih.gov/pubmed/24024641
http://crsouza.blogspot.com/feeds/posts/default/webcite
http://dx.doi.org/10.1016/S0013-7952(03)00142-X
http://dx.doi.org/10.1016/S1010-6030(01)00640-2
http://dx.doi.org/10.1021/ci0504014
http://www.ncbi.nlm.nih.gov/pubmed/16711757
http://dx.doi.org/10.1016/j.enconman.2007.09.009
http://dx.doi.org/10.1016/j.eswa.2013.04.013
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Material and Methods
	Data Set (Material)
	Methods
	Feed-Forward Neural Networks with Backpropagation Algorithm
	Solution to the Overfitting Problem with Bayesian Regularization and Levenberg–Marquardt Neural Networks
	Analyses

	Results and Discussion
	Conclusions

