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Abstract: This paper presents the cubic trigonometric interpolation curves with two parameters
generated over the space {1, sint, cost, sin2t, sin3t, cos3t}. The new curves can not only automatically
interpolate the given data points without solving equation systems, but are also C2 and adjust their
shape by altering values of the two parameters. The optimal interpolation curves can be determined
by an energy optimization model. The corresponding interpolation surfaces have characteristics
similar to the new curves.
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1. Introduction

It is well known that the trigonometric polynomials have important applications in different areas,
such as electronics or medicine [1]. Recently, trigonometric polynomials have received much attention
within geometric modeling. For example, Han [2] presented a class of cubic trigonometric polynomial
curves with a shape parameter, Zhang [3] constructed uniform B-splines by using trigonometric and
hyperbolic basis, Mainar [4] used a class of trigonometric Bernstein basis constructing Bézier-like curve,
Wang [5] constructed three types of splines by using trigonometric functions, Han [6] defined the
cubic trigonometric Bézier curve with two shape parameters, Han [7] used five trigonometric blending
functions defining a class of curve, Bashir [8,9] presented the rational quadratic and cubic trigonometric
Bézier curve with two shape parameters, Han [10] constructed the symmetric trigonometric polynomial
curves like Bézier curves based on normalized B-basis of the space of trigonometric polynomials of
degree n, Yan [11] presented an algebraic-trigonometric blended piecewise curve with two shape
parameters, Yan [12] constructed a class of cubic trigonometric non-uniform B-spline curves with local
shape parameters, and so on.

In order to construct interpolation curves, Su [13] and Yan [14] constructed the trigonometric
curves over the spaces {1, t, sint, cost, sin2t, cos2t} and {1, t, sint, cost, sin2t, sin3t, cos3t}. The two
trigonometric curves presented in [13,14] can automatically interpolate the given data points without
solving equation systems, which provides a simple and efficient way to construct interpolation curves.
However, although the quasi-cubic blended interpolation curves defined by Su [13] could interpolate
the given data points automatically, their shapes cannot be adjusted when the data points are fixed.
The xyB curves defined by Yan [14] could interpolate the given data points automatically and adjust
shape by changing the parameter x when the data points and auxiliary points are fixed, but they are
only G2 and have one degree of freedom in the interpolation curves. The main purpose of this paper is
to present a class of trigonometric interpolation curves, who can not only automatically interpolate the
given data points without solving equation systems, but are also C2 and have two degrees of freedom
in the interpolation curves.
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The rest of this paper is organized as follows. In Section 2, the cubic trigonometric interpolation
basis functions with two parameters generated over the space {1, sint, cost, sin2t, sin3t, cos3t} are
presented, and some properties of the basis functions are given. In Section 3, the interpolation curves
are defined on the base of the basis functions and some properties of the curves are given. Then,
determining the optimal interpolation curves is discussed. In Section 4, the corresponding interpolation
surfaces are presented. A short conclusion is given in Section 5.

2. The CTI-Basis Functions

The cubic trigonometric interpolation basis functions with two parameters are defined as follows.

Definition 1. For 0 ď t ď 1, α, β P R, the following four functions about t are called cubic trigonometric
interpolation basis functions with parameters α and β (CTI-basis functions for short),
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’

’

’

&

’

’

’

%

f0ptq “ 1
24

`

p´14α´ 2β` 6q ` p9α` 3β´ 9qS` 24αS2 ` p´19α´ β` 3qS3 ` p14α` 2β´ 6qC3˘

f1ptq “ 1
24

`

p2α´ 10β` 6q ` p´9α´ 3β` 9qC` 24βS2 ` p´2α´ 14β´ 6qS3 ` p7α` 13β` 9qC3˘

f2ptq “ 1
24

`

p2α` 14β` 6q ` p´9α´ 3β` 9qS´ 24βS2 ` p7α` 13β` 9qS3 ` p´2α´ 14β´ 6qC3˘

f3ptq “ 1
24

`

p10α´ 2β` 6q ` p9α` 3β´ 9qC´ 24αS2 ` p14α` 2β´ 6qS3 ` p´19α´ β` 3qC3˘

(1)

where S :“ sin π
2 t, C :“ cos π

2 t.

Remark 1. In order to construct curves interpolating the given data points automatically, we also previously
defined two kinds of basis functions. The first kind of basis functions are defined over the space {1, sint, cost,
sin2t, cos2t} [15]. The corresponding curves can interpolate the given data points automatically, but their shapes
cannot be adjusted when the data points and auxiliary points are kept unchanged. Hence, they do not have
any degree of freedom in the interpolation curves. The second kind of basis functions are defined over the space
{1, t, sint, cost, sin2t, cos2t} [16]. Although shapes of these interpolation curves can be adjusted by a control
parameter, they are only C1. If we force them to be C2, then there is no degree of freedom in the interpolation
curves. In order to get interpolation curves with better properties, we change the base space to {1, sint, cost, sin2t,
sin3t, cos3t}. Thus, we get CTI-basis functions.

By simple deduction, the CTI-basis functions defined as Equation (1) have the
following properties,

(a) Partition of unity: f0ptq ` f1ptq ` f2ptq ` f3ptq ” 1.
(b) Symmetry: fip1´ tq “ f3´iptqpi “ 0, 1, 2, 3q.
(c) Properties at the endpoints:

#

f0p0q “ 0, f1p0q “ 1, f2p0q “ 0, f3p0q “ 0
f0p1q “ 0, f1p1q “ 0, f2p1q “ 1, f3p1q “ 0

#

f 10p0q “ ´
π
16 p´3α´ β` 3q , f 11p0q “ 0, f 12p0q “

π
16 p´3α´ β` 3q , f 13p0q “ 0

f 10p1q “ 0, f 11p1q “ ´
π
16 p´3α´ β` 3q , f 12p1q “ 0, f 13p1q “

π
16 p´3α´ β` 3q

#

f 2

0 p0q “
π2

16 pα´ β` 3q , f 2

1 p0q “ ´
π2

8 pα´ β` 3q , f 2

2 p0q “
π2

16 pα´ β` 3q , f 2

3 p0q “ 0
f 2

0 p1q “ 0, f 2

1 p1q “
π2

16 pα´ β` 3q , f 2

2 p1q “ ´
π2

8 pα´ β` 3q , f 2

3 p1q “
π2

16 pα´ β` 3q

3. The CTI-Curves

3.1. Definition and Properties of the CTI-Curves

On the base of the CTI-basis functions, the corresponding curves can be defined as follows.

Definition 2. Given data points bi pi “ 0, 1, ¨ ¨ ¨ , n; n ě 3q in R2 or R3, the curves

piptq “
3
ÿ

j“0

f jptqbi`j (2)
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are called cubic trigonometric interpolation curves with parameters α and β (CTI-curves for short), where
i “ 0, 1, ¨ ¨ ¨ , n´ 3, f jptq pj “ 0, 1, 2, 3q are the CTI-basis functions defined in Equation (1).

Theorem 1. The CTI-curves defined as Equation (2) have the following properties,

(a) Symmetry: Both bi pi “ 0, 1, ¨ ¨ ¨ , nq and bn´i pi “ 0, 1, 2, ¨ ¨ ¨ , nq define the same CTI-curves in a different
parameterization for the same shape parameters α and β, viz.,

pipt; bi, bi`1, bi`2, bi`3q “ pip1´ t; bi`3, bi`2, bi`1, biq, i “ 0, 1, ¨ ¨ ¨ , n´ 3.

(b) Geometric invariance: Shapes of the CTI-curves are independent of the choice of coordinate system. An
affine transformation for the CTI-curves can be performed by carrying out the same affine transformation
for the data points.

(c) C2 continuity and automatic interpolation property: For given data points bi pi “ 0, 1, ¨ ¨ ¨ , nq, the
CTI-curves piptq pi “ 0, 1, ¨ ¨ ¨ , n´ 3q are C2 and automatically interpolate all the given data points expect
b0 and bn.

Proof.

(a) From the symmetry of the CTI-basis functions and Equation (2),

pip1´ t; bi`3, bi`2, bi`1, biq “ f0p1´ tqbi`3 ` f1p1´ tqbi`2 ` f2p1´ tqbi`1 ` f3p1´ tqbi

“ f3ptqbi`3 ` f2ptqbi`2 ` f1ptqbi`1 ` f0ptqbi “ pipt; bi, bi`1, bi`2, bi`3q

(b) Because Equation (2) is an affine combination of the data points, geometric invariance follows.
(c) From the properties at the endpoints of CTI-basis functions and Equation (2),

pip0q “ bi`1, pip1q “ bi`2 (3)

p1ip0q “
π

16
p´3α´ β` 3q pbi`2 ´ biq , p1ip1q “

π

16
p´3α´ β` 3q pbi`3 ´ bi`1q (4)

p2

i p0q “
π2

16
pα´ β` 3q pbi ´ 2bi`1 ` bi`2q , p2

i p1q “
π2

16
pα´ β` 3q pbi`1 ´ 2bi`2 ` bi`3q (5)

From Equations (3)–(5), it is follows that

ppkqi p1q “ ppkqi`1p0q pk “ 0, 1, 2q (6)

Equation (6) shows that the CTI-curves are C2. On the other hand, Equation (3) shows that the
CTI-curves piptq pi “ 0, 1, ¨ ¨ ¨ , n ´ 3q automatically interpolate all the given data points except b0

and bn.
From Theorem 1, if two auxiliary points b´1 and bn`1 are added to the given data points, the open

C2 CTI-curves piptq pi “ ´1, 0, 1, ¨ ¨ ¨ , n´ 2q interpolating all the data points bi pi “ 0, 1, ¨ ¨ ¨ , nqwould
be generated naturally. Generally, b´1 and bn`1 can be taken as b´1 “ 2b0 ´ b1, bn`1 “ 2bn ´ bn´1. If
three auxiliary points b´1, bn`1 and bn`2 are taken as b´1 “ bn, bn`1 “ b0, bn`2 “ b1, the closed C2

CTI-curves piptq pi “ ´1, 0, 1, ¨ ¨ ¨ , n´ 2qinterpolating all the data points bi pi “ 0, 1, ¨ ¨ ¨ , nqwould be
generated naturally.

It is clear that there exist two degrees of freedom in the C2 CTI-curves even if the data points and
auxiliary points are fixed. Different interpolation results can be obtained by altering the parameters α
and β of the CTI-curves.

Example 1. Consider the data points b0 “ p0, 0q, b1 “ p1, 1q, b2 “ p2, 0q, b3 “ p3, 1q, b4 “ p4, 0q,
b5 “ p5, 1q, b6 “ p6, 0q, and two auxiliary points b´1 “ p´1,´1q, b7 “ p7,´1q. Open C2 CTI-curves
with different values of parameters α and β are shown in Figure 1, where the parameters are taken



Math. Comput. Appl. 2016, 21, 18 4 of 11

as pα, βq “ p´0.5, 0.5q (marked with dotted lines), pα, βq “ p0, 0q (marked with solid lines), and
pα, βq “ p0.5,´0.5q (marked with dashed lines).

Example 2. Consider the data points b0 “ p0, 1q, b1 “ p1, 2q, b2 “ p2, 1q, b3 “ p1, 0q, and three auxiliary
points b´1 “ p1, 0q, b4 “ p0, 1q, b5 “ p1, 2q. Closed C2 CTI-curves with different values of parameters α
and β are shown in Figure 2, where the parameters are taken as pα, βq “ p´0.5, 0.5q (marked with dotted
lines), pα, βq “ p0, 0q (marked with solid lines), and pα, βq “ p0.5,´0.5q (marked with dashed lines).

Remark 2. When using the traditional cubic spline to construct C2 interpolation curves, the general way is to
solve a linear equations system. However, due to the interpolation property and continuity of the CTI-curves, the
interpolation curves can be generated naturally without solving an equations system. On the other hand, when
the data points and auxiliary points are fixed, the traditional cubic interpolation curves are unique, while the
CTI-curves can be adjusted by the parameters α and β.

Remark 3. Compared with some similar trigonometric interpolation curves (see in [13–16]), the CTI-curves
presented in this paper have two outstanding characteristics,

(a) Shapes of the CTI-curves can be adjusted by changing the parameters α and β even if data points and
auxiliary points are kept unchanged.

(b) The CTI-curves are not only C2 but also have two degrees of freedom in the interpolation curves.
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3.2. The Optimal Cti-Curves

The CTI-curves have two degrees of freedom. The shapes of the curves are determined by the
parameters α and β when the data points and auxiliary points are fixed. Hence, bad interpolation
curves would be generated if the parameters α and β are chosen improperly.

Example 3. Consider the data points b0 “ p0, 0q, b1 “ p1, 0.5q, b2 “ p1.5, 1q, b3 “ p2, 2q, b4 “ p2.5, 2.5q,
b5 “ p3, 2q, b6 “ p3.5, 1q, b7 “ p4, 0.5q, b8 “ p5, 0q, and two auxiliary points b´1 “ p´1,´0.5q,
b9 “ p6,´0.5q. Figure 3 shows the CTI-curves with different values of parameters α and β for the
same data points and auxiliary points, where the parameters are taken as (a): pα, βq “ p´0.1, 0.2q, (b):
pα, βq “ p3.6,´2.8q.

It is obvious that the interpolation curves in Figure 3a are more satisfactory than the interpolation
curves in Figure 3b. Hence, how to determine proper parameters α and β of the CTI-curves is the
key when constructing C2 interpolation curves when the data points and auxiliary points are fixed. A
method for determining the optimal parameters α and β of the CTI-curves is presented as follows.

When the CTI-curves are used to construct C2 interpolation curves, the interpolation curves are
usually required to be smooth. Generally, the smoothness of a curve can be measured by its energy.
The lower the energy is, the smoother the curve. According to Reference [17], the energy value of a
curve rptq pa ď t ď bq can be approximately expressed as follows,

Ec “

ż b

a
pr2 ptqq2dt (7)

From Equation (7), for given data points bi pi “ 0, 1, ¨ ¨ ¨ , nq and auxiliary points b´1, bn`1, the
optimal parameters α and β of the CTI-curves piptq pi “ ´1, 0, 1, ¨ ¨ ¨ , n´ 2q can be determined by an
energy optimization model expressed as follows,

min Ecpα, βq “
n´2
ř

i“´1

ş1
0
`

p2

i ptq
˘2 dt

s.t. α, β P R
(8)

In order to obtain the minimum energy value, there must be

#

BEc
Bα “ 0
BEc
Bβ “ 0

(9)

Set

L0ptq “
1
24

´

´14` 9S` 24S2 ´ 19S3 ` 14C3
¯

, L1ptq “
1

24

´

2´ 9C´ 2S3 ` 7C3
¯

,

L2ptq “
1

24

´

2´ 9S` 7S3 ´ 2C3
¯

, L3ptq “
1

24

´

10` 9C´ 24S2 ` 14S3 ´ 19C3
¯

,

M0ptq “
1

24

´

´2` 3S´ S3 ` 2C3
¯

, M1ptq “
1
24

´

´10´ 3C` 24S2 ´ 14S3 ` 13C3
¯

,

M2ptq “
1

24

´

14´ 3S´ 24S2 ` 13S3 ´ 14C3
¯

, M3ptq “
1
24

´

´2` 3C` 2S3 ´ C3
¯

,

N0ptq “
1

24

´

6´ 9S` 3S3 ´ 6C3
¯

, N1ptq “
1

24

´

6` 9C´ 6S3 ` 9C3
¯

,

N2ptq “
1

24

´

6` 9S` 9S3 ´ 6C3
¯

, N3ptq “
1

24

´

6´ 9C´ 6S3 ` 3C3
¯

,
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where S :“ sin πt
2 , C :“ cos πt

2 , 0 ď t ď 1. Then, Equation (2) can be rewritten as follows,

piptq “ Giptqα`Hiptqβ` Iiptq (10)

where
Giptq “ L0ptqbi ` L1ptqbi`1 ` L2ptqbi`2 ` L3ptqbi`3,

Hiptq “ M0ptqbi `M1ptqbi`1 `M2ptqbi`2 `M3ptqbi`3,

Iiptq “ N0ptqbi ` N2ptqbi`1 ` N3ptqbi`2 ` N4ptqbi`3.

From Equation (10), Equation (7) can be expressed as follows,

Ec “ C1α2 ` C2β2 ` 2C3αβ` 2C4α` 2C5β` C6 (11)

where

C1 “

n´3
ÿ

i“0

ż 1

0

`

G2

i ptq
˘2dt, C2 “

n´3
ÿ

i“0

ż 1

0

`

H2

i ptq
˘2dt, C3 “

n´3
ÿ

i“0

ż 1

0

`

G2

i ptq ¨H
2

i ptq
˘

dt,

C4 “

n´3
ÿ

i“0

ż 1

0

`

G2

i ptq ¨ I
2

i ptq
˘

dt, C5 “

n´3
ÿ

i“0

ż 1

0

`

H2

i ptq ¨ I
2

i ptq
˘

dt, C6 “

n´3
ÿ

i“0

ż 1

0

`

I2

i ptq
˘2dt.

By Equation (11), Equation (9) can be rewritten as follows,

#

C1α` C3β` C4 “ 0
C3α` C2β` C5 “ 0

(12)

When C1C2 ´ C2
3 ‰ 0, from Equation (12), then

$

&

%

α “ C3C5´C2C4
C1C2´C2

3

β “ C3C4´C1C5
C1C2´C2

3

(13)

Remark 4. If C1C2 ´ C2
3 “ 0, there would be no unique solution to Equation (13). At this point, the two

auxiliary points could be adjusted properly in order to ensure that C1C2 ´ C2
3 ‰ 0 holds.

After the optimal parameters α “ rα and β “ rβ are determined by Equation (13), the optimal C2

CTI-curves rpiptq pi “ ´1, 0, 1, ¨ ¨ ¨ , n´ 2q interpolating all the given data points bi pi “ 0, 1, ¨ ¨ ¨ , nq can
be obtained.

Example 4. For the same data points and auxiliary points in Example 3, the optimal parameters of the
CTI-curves, determined by Equation (13), are rα “ ´0.0443 and rβ “ 0.4836. The optimal C2 CTI-curves
(solid lines) and the interpolation curves constructed by the classical cubic B-spline curves (dashed
lines) are shown in Figure 4, where the tangent vectors at the endpoints of the classical cubic B-spline
curves are taken as 3pb0 ´ b´1q and 3pb9 ´ b8q.

For comparing the CTI-curves with the classical cubic B-spline curves to construct interpolation
curves, the energy values and time-consuming of the two methods are shown in Table 1.

Table 1. The energy values and time-consuming of the two methods.

Method Energy Value Time-Consuming (s)

CTI-curves 4.8584 9.6
Classical cubic B-spline curves 17.6137 16.3

Table 1 shows that the interpolation curves constructed by the CTI-curves are smoother and faster
to compute than the classical cubic B-spline curves.
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2 1 2

0
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s.t. ,

n
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i

E t t

R
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α β

−

=−

′′=

∈

∑ ∫ p  (8) 
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4. The CTI-Surfaces

Using tensor products, the corresponding CTI-surfaces can be defined as follows.

Definition 3. Given data points bk,l pk “ 0, 1, ¨ ¨ ¨ , m; l “ 0, 1, ¨ ¨ ¨ , nq in R3, the piecewise surfaces

pi,jpu, vq “
3
ÿ

k“0

3
ÿ

l“0

fkpuq flpvqbi`k,j`l (14)

are called cubic trigonometric interpolation surfaces with parameters α1, β1, α2 and β2 (CTI-surfaces for short),
where i “ 0, 1, ¨ ¨ ¨ , m´ 3, j “ 0, 1, ¨ ¨ ¨ , n´ 3, fkpuq :“ fkpu; α1, β1q and flpvq :“ flpv; α2, β2q pi “ 0, 1, 2, 3q
are the CTI-basis functions defined according to Equation (1).

It is not difficult to show that the CTI-surfaces have properties similar to the CTI-curves, which
include the following important property.

Theorem 2. Given data points bk,l pk “ 0, 1, ¨ ¨ ¨ , m; l “ 0, 1, ¨ ¨ ¨ , nq, the CTI-surfaces pi,jpu, vq
(i “ 0, 1, ¨ ¨ ¨ , m ´ 3; j “ 0, 1, ¨ ¨ ¨ , n ´ 3) automatically interpolate all the given data points except b0,l ,
bm,l pl “ 0, 1, ¨ ¨ ¨ , nq and bk,0, bk,n pk “ 0, 1, ¨ ¨ ¨ , mq and are C2.
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Proof. From the properties at the endpoints of the CTI-basis functions and Equation (14),

$

’

’

’

&

’

’

’

%

pi,jp0, 0q “ bi`1,j`1

pi,jp0, 1q “ bi`1,j`2

pi,jp1, 0q “ bi`2,j`1

pi,jp1, 1q “ bi`2,j`2

(15)

$

’

’

’

’

’

’

’

’

’

’

’
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’

’

’

’

’

’

’

’

’

’

%

Bupi,jp0, vq “ π
16

3
ř

l“0
flpvqpbi`2,j`l ´ bi,j`lq

Bupi,jp1, vq “ π
16

3
ř

l“0
flpvqpbi`3,j`l ´ bi`1,j`lq

Bupi,jpu, 0q “
3
ř

k“0
f 1kpuqbi`k,j`1

Bupi,jpu, 1q “
3
ř

k“0
f 1kpuqbi`k,j`2

(16)
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Bvpi,jp0, vq “
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l“0
f 1l pvqbi`1,j`l

Bvpi,jp1, vq “
3
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l“0
f 1l pvqbi`2,j`l

Bvpi,jpu, 0q “ π
16

3
ř

k“0
fkpuqpbi`k,j`2 ´ bi`k,jq

Bvpi,jpu, 1q “ π
16

3
ř

k“0
fkpuqpbi`k,j`3 ´ bi`k,j`1q

(17)
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l“0
f 1l pvqpbi`3,j`l ´ bi`1,j`lq
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k“0
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Buvpi,jpu, 1q “ π
16

3
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k“0
f 1kpuqpbi`k,j`3 ´ bi`k,j`1q

(18)
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flpvqpbi,j`l ´ 2bi`1,j`l ` bi`2,j`lq

Buupi,jp1, vq “ π2
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l“0
flpvqpbi`1,j`l ´ 2bi`2,j`l ` bi`3,j`lq
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3
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3
ř

k“0
fkpuqpbi`k,j ´ 2bi`k,j`1 ` bi`k,j`2q

Bvvpi,jpu, 1q “ π2

16

3
ř

k“0
fkpuqpbi`k,j`1 ´ 2bi`k,j`2 ` bi`k,j`3q

(20)
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Equation (15) shows that the CTI-surfaces pi,jpu, vq (i “ 0, 1, ¨ ¨ ¨ , m ´ 3; j “ 0, 1, ¨ ¨ ¨ , n ´ 3)
automatically interpolate all the given data points except b0,l , bm,l pl “ 0, 1, ¨ ¨ ¨ , nq and bk,0, bk,n
pk “ 0, 1, ¨ ¨ ¨ , mq. In addition, the following results can also be obtained from Equation (15),

$

’

’

’

&

’

’

’

%

pi,jp1, 0q “ pi`1,jp0, 0q
pi,jp1, 1q “ pi`1,jp0, 1q
pi,jp0, 1q “ pi,j`1p0, 0q
pi,jp1, 1q “ pi,j`1p1, 0q

(21)

From Equations (16) and (17),

$

’

’

’

&

’

’

’

%

Bupi,jp1, vq “ Bupi`1,jp0, vq
Bupi,jpu, 1q “ Bupi,j`1pu, 0q
Bvpi,jp1, vq “ Bvpi`1,jp0, vq
Bvpi,jpu, 1q “ Bvpi,j`1pu, 0q

(22)

From Equations (18)–(20),

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Buvpi,jp1, vq “ Buvpi`1,jp0, vq
Buvpi,jpu, 1q “ Buvpi,j`1pu, 0q
Buupi,jp1, vq “ Buupi`1,jp0, vq
Buupi,jpu, 1q “ Buupi,j`1pu, 0q
Bvvpi,jp1, vq “ Bvvpi`1,jp0, vq
Bvvpi,jpu, 1q “ Bvvpi,j`1pu, 0q

(23)

Equations (21)–(23) show that the CTI-surfaces pi,jpu, vq (i “ 0, 1, ¨ ¨ ¨ , m´ 3; j “ 0, 1, ¨ ¨ ¨ , n´ 3)
are C2.

According to Theorem 2, for given data points bk,l pk “ 0, 1, ¨ ¨ ¨ , m; l “ 0, 1, ¨ ¨ ¨ , nq, the
CTI-surfaces automatically interpolate all the given data points except b0,l , bm,l pl “ 0, 1, ¨ ¨ ¨ , nq
and bk,0, bk,n pk “ 0, 1, ¨ ¨ ¨ , mq. If auxiliary points b´1,j, bm`1,j pj “ 0, 1, ¨ ¨ ¨ , nq and bi,´1, bi,n`1
pi “ 0, 1, ¨ ¨ ¨ , mq are added to the given data points, the C2 CTI-surfaces interpolating all the data
points bk,l pk “ 0, 1, ¨ ¨ ¨ , m; l “ 0, 1, ¨ ¨ ¨ , nqwould be generated naturally. Generally, the auxiliary points
can be taken as follows,

$

’

’

’

&

’

’

’

%

b´1,´1 “ 2b0,0 ´ b1,1, b´1,n`1 “ 2b0,n ´ b1,n´1

bm`1,´1 “ 2bm,0 ´ bm´1,1,bm`1,n`1 “ 2bm,n ´ bm´1,n´1

b´1,j “ 2b0,j ´ b1,j, bm`1,j “ 2bm,j ´ bm´1,j, j “ 0, 1, ¨ ¨ ¨ , n
bi,´1 “ 2bi,0 ´ bi,1, bi,n`1 “ 2bi,n ´ bi,n´1, i “ 0, 1, ¨ ¨ ¨ , m

(24)

It is clear that there exist four degrees of freedom in the C2 CTI-surfaces, even if the data points
and auxiliary points are fixed. Different interpolation results can be obtained by altering the parameters
αi and βi pi “ 1, 2q of the CTI-surfaces. Figure 5 shows the C2 CTI-surfaces with different values of
parameters αi and βi pi “ 1, 2q, where the data points bk,l pk “ 0, 1, 2, 3; l “ 0, 1, 2, 3q are fixed and the
auxiliary points are added according to Equation (24).

Similar to the optimal CTI-curves, the optimal CTI-surfaces can also be determined by an energy
optimization model. According to Ref. [17], the energy value of a surface rpu, vq pa ď u ď b, c ď v ď dq
can be approximately expressed as follows,

Es “

ż b

a

ż d

c

´

pruupu, vqq2 ` 2 pruvpu, vqq2 ` prvvpu, vqq2
¯

dudv (25)
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From Equation (25), for given data points bk,l pk “ 0, 1, ¨ ¨ ¨ , m; l “ 0, 1, ¨ ¨ ¨ , nq and auxiliary points
b´1,j, bm`1,j pj “ 0, 1, ¨ ¨ ¨ , nq, bi,´1, bi,n`1 pi “ 0, 1, ¨ ¨ ¨ , mq, the optimal parameters αi and βi pi “ 1, 2q
of the CTI-surfaces pi,jpu, vq pi “ ´1, 0, 1, ¨ ¨ ¨ , m´ 2; j “ ´1, 0, 1, ¨ ¨ ¨ , n´ 2q can be determined by an
energy optimization model expressed as follows,

min Espα1, β1, α2, β2q “
m´2
ř

i“´1

n´2
ř

j“´1

ş1
0
ş1

0

˜

ˆ

B2pi,jpu,vq
Bu2

˙2
` 2

ˆ

B2pi,jpu,vq
BuBv

˙2
`

ˆ

B2pi,jpu,vq
Bv2

˙2
¸

dudv

s.t. α1, β1, α2, β2 P R
(26)

The particle swarm optimization (PSO) algorithm [18] can be used to solve Equation (26). After
the optimal parameters αi “ rαi and βi “

rβi pi “ 1, 2q are determined, the optimal C2 CTI-surfaces
rpi,jpu, vq pi “ ´1, 0, 1, ¨ ¨ ¨ , m ´ 2; j “ ´1, 0, 1, ¨ ¨ ¨ , n ´ 2q interpolating all the given data points bk,l
pk “ 0, 1, ¨ ¨ ¨ , m; l “ 0, 1, ¨ ¨ ¨ , nq can be obtained.
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Figure 5. C2 CTI-surfaces with different parameters. (a) pα1, β1, α2, β2q “ p´0.5, 0.5, 0.5,´0.5q;
(b) pα1, β1, α2, β2q “ p0.5,´0.5,´0.5, 0.5q; (c) pα1, β1, α2, β2q “ p0.1,´0.5, 0.4,´0.3q; (d) pα1, β1, α2, β2q “

p´0.3, 0, 0, 0.4q.

5. Conclusions

The CTI-curves presented in this paper can not only automatically interpolate the given data
points without solving equation systems, but are also C2 and have two degrees of freedom. The
CTI-surfaces also have characteristics similar to the CTI-curves. Therefore, the CTI-curves/surfaces
presented in this paper provide a simple and efficient way for constructing interpolation curves
and surfaces.

For practical applications of the proposed interpolation curves and surfaces in geometric
modeling, it is clear that some special algorithms need to be established. Furthermore, the proposed
interpolation curves and surfaces allow only global adjustment. Hence, local adjustment of the
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proposed interpolation curves and surfaces also need to be investigated. Some interesting results in
this area will be presented in a follow-up study.
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