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Abstract: This paper is concerned with the design of a parameter-dependent optimal controller for
an active vibration attenuation problem of a non-linear vehicle system. A five degree-of-freedom
vertical vibration model having an integrated vehicle seat, a non-linear vehicle suspension system,
and a seated human body is presented to analyze ride comfort and safety requirements under
different types of road disturbances. In the suspension system, the non-linear parts of spring and
damper dynamics are considered as scheduling parameters, which are measurable and available for
feedback. Then, a parameter-dependent optimal state-feedback controller design that minimizes L2

gain from disturbance to performance output for a linear parameter-varying (LPV) system is presented
with linear matrix inequality (LMI) constraints. Finally, numerical simulations are conducted to
demonstrate the effectiveness of the proposed controller.

Keywords: active suspension control; driver body model; linear parameter-varying (LPV) system;
parameter-dependent optimal control

1. Introduction

Suspension systems are one of the most critical parts of a vehicle. A successfully designed
suspension system should be able to provide safety for the passengers and protect the vehicle from
damage caused by road irregularities [1]. Dynamic loads in vehicles resulting from road irregularities
are recognized as a significant factor in causing fatigue damage. In addition, ground-induced vibrations
can contribute to a reduction in the driver’s capability to control the vehicle and cause discomfort [2].
Therefore, a vehicle suspension system has to mitigate vertical vibrations to improve safety and ride
comfort performance simultaneously.

Vehicle suspension has been extensively studied for a long time. For all vehicles, passive
suspension is designed as a primary suspension system to provide ride comfort, tire deflection,
and other dynamic characteristics. A well-designed passive suspension system can mitigate
ground-induced vibrations. The problem of the passive vehicle suspension design with an inerter has
been taken into account by Hu et al., concerning the multiple performance requirements including ride
comfort suspension deflection and tire grip, and the analytical solutions of the designed six-suspension
configurations have been derived [3]. Chen et al. have proposed an efficient H2 optimization method
to design passive vehicle suspensions based on a full car model [4]. In the literature, numerous types of
semi-active and active suspensions are currently employed and studied, since the capability of passive
suspensions is limited due to the absence of on-line control action. Chen et al. have proposed a novel
structure for a semi-active suspension with an inerter, which consists of a passive part and semi-active
part, to obtain performance benefits in their brief study [5]. The active suspension systems especially
have been attracting attention in recent years, and many linear and non-linear control methods for
active seat and suspension systems have been proposed [6]. Guclu has designed a fuzzy logic controller
for reducing seat vibrations of a non-linear full vehicle model [7]. A seat and suspension system with
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a driver model has been considered in Gundogdu, and an optimal controller has been designed by
the use of a genetic algorithm [8]. Hu et al. have designed a multiplexed model predictive control for
active vehicle suspension systems under the consideration of actuator saturation [9]. Gysen et al. have
proposed an electromagnetic suspension system to provide additional stability and maneuverability
conditions as well as the elimination of road irregularities for vehicle systems [10]. Wang et al. have
developed a high-force density tubular permanent motor for an active vehicle suspension system
in terms of performance optimization [11]. Onat et al. have applied a linear parameter-varying
(LPV) model-based gain-scheduling controller for a full vehicle active suspension system [12]. Fialho
and Balos have dealt with the LPV gain-scheduling controller for a road adaptive active suspension
system [13]. Among these aforementioned works, it is apparently seen that there are only a few
results concerning non-linear suspension control via a parameter-dependent optimal controller to
evaluate ride comfort performance in terms of driver body acceleration responses under worst-case
road excitations, which is the main motivation factor of this study.

In this paper, the design of a parameter-dependent optimal state-feedback controller is developed
to mitigate the ground-induced vertical vibration of a non-linear vehicle system. A proposed
controller synthesis is accomplished for the LPV model of non-linear vehicle suspension such that
a minimum allowable disturbance attenuation level could be achieved by satisfying a set of LMIs.
In the suspension system, the non-linear part of a position-dependent spring and velocity-dependent
damping characteristics are assumed as scheduling parameters. In order to reach realistic results,
road bumps and very poor random road profiles, are modeled and used as disturbance input.
Finally, numerical simulation studies have been presented to illustrate the effectiveness of the
proposed approach.

2. Integrated Vehicle Seat and Non-Linear Suspension Model with Driver Body

In this study, a five-degree-of-freedom vehicle model, including a quarter car non-linear
suspension model, a seat suspension model, and a driver body model, shown in Figure 1, is considered
for the parameter-dependent optimal controller design. This integrated model provides a platform to
evaluate ride comfort and vehicle safety performance requirements in terms of driver body acceleration,
suspension stroke, and tire deflection responses under worst-case random road disturbances and to
develop a parameter-dependent optimal control of a non-linear vehicle suspension system. In this
figure, m1 is the unsprung mass, which represents the wheel assembly, m2 is the quarter car sprung
mass, which represents the vehicle cabin floor, m3 is the mass of the seat frame, m41 and m42 are the
masses of human thighs together with buttocks and seated cushion, respectively, and m5 is the mass of
the upper body of a seated human. z1(t), z2(t), z3(t), z4(t), and z5(t) are the vertical displacements of
the corresponding masses, respectively, and zr(t) is the road disturbance input. k1 is the coefficient
of tire spring, c1 and k2 are the damping and stiffness of the vehicle suspension system, respectively.
c2, c3 and k3, k4 are damping and stiffness of the passive seat suspension system, respectively, and c4

and k5 stand for the damping and stiffness of the components inside the human body. In addition,
u(t) represents the active control force that is applied to the vehicle suspension. The characteristics of
the non-linear spring of the vehicle suspension, which is the mathematical model of the well-known
hardening spring behavior, is described as follows:

Spring Force “ Fs “ rk2 ` 0.1k2pz2ptq ´ z1ptqq
2
spz2ptq ´ z1ptqq (1)
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where the damping coefficient is non-linear. Additionally, the change of the damping coefficient due 
to the velocity is discussed in [10,14]. The dynamic vertical motion of equations for the quarter car 
active suspension, seat suspension, and driver body are given by 
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Figure 1. Integrated vehicle seat and suspension model with driver body. 

To design the parameter-dependent optimal controller, the LPV vehicle suspension model is 
constructed under the assumption that the modeled vehicle system has two scheduling parameters, 
which are the non-linear parts of the spring and damping forces. The scheduling parameters vector 
is defined as: 
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By the use of the scheduling parameters vector, the dynamic vertical motion of equations can be 
represented in the matrix form: 
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( ) [ ( )]rw t z t=  is the disturbance input acting on the system, F gives the location of the controller, and 
E weights the disturbances. These matrices are given as: 

[ ]1 1 0 0 0 TF = −  (10) 

 

Figure 1. Integrated vehicle seat and suspension model with driver body.

Similar dynamical models with position-dependent stiffness coefficients have been previously
reported in the literature [14–16]. The quadratic damping feature of the suspension system can be
mathematically modeled as:

Damper Force “ Fd “ rc1 ` 0.41c1
ˇ

ˇ

.
z2ptq ´

.
z1ptq

ˇ

ˇsp
.
z2ptq ´

.
z1ptqq (2)

where the damping coefficient is non-linear. Additionally, the change of the damping coefficient due
to the velocity is discussed in [10,14]. The dynamic vertical motion of equations for the quarter car
active suspension, seat suspension, and driver body are given by

m1
..
z1ptq ` k1z1ptq ´ rk2 ` 0.1k2pz2ptq ´ z1ptqq

2
spz2ptq ´ z1ptqq

´rc1 ` 0.41c1
ˇ

ˇ

.
z2ptq ´

.
z1ptq

ˇ

ˇsp
.
z2ptq ´

.
z1ptqq “ k1zrptq ` uptq

(3)

m2
..
z2ptq ` rk2 ` 0.1k2pz2ptq ´ z1ptqq

2
spz2ptq ´ z1ptqq ´ k3pz3ptq ´ z2ptqq

`rc1 ` 0.41c1
ˇ

ˇ

.
z2ptq ´

.
z1ptq

ˇ

ˇsp
.
z2ptq ´

.
z1ptqq ´ c2p

.
z3ptq ´

.
z2ptqq “ ´uptq

(4)

m3
..
z3ptq ` k3pz3ptq ´ z2ptqq ´ k4pz4ptq ´ z3ptqq ` c2p

.
z3ptq ´

.
z2ptqq ´ c3p

.
z4ptq ´

.
z3ptqq “ 0 (5)

m4
..
z4ptq ` k4pz4ptq ´ z3ptqq ´ k5pz5ptq ´ z4ptqq ` c3p

.
z4ptq ´

.
z3ptqq ´ c4p

.
z5ptq ´

.
z4ptqq “ 0 (6)

and
m5

..
z5ptq ` k5pz5ptq ´ z4ptqq ` c4p

.
z5ptq ´

.
z4ptqq “ 0. (7)

To design the parameter-dependent optimal controller, the LPV vehicle suspension model is
constructed under the assumption that the modeled vehicle system has two scheduling parameters,
which are the non-linear parts of the spring and damping forces. The scheduling parameters vector is
defined as:

θ “ r0.1k2pz2ptq ´ z1ptqq
2

looooooooooomooooooooooon

θ1

0.41c1
ˇ

ˇ

.
z2ptq ´

.
z1ptq

ˇ

ˇ

looooooooooomooooooooooon

θ2

s (8)

By the use of the scheduling parameters vector, the dynamic vertical motion of equations can be
represented in the matrix form:

Ms
..
yptq ` Cspθ2q

.
yptq ` Kspθ1qyptq “ Ewptq ` Fuptq (9)
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where yptq “ r z1ptq z2ptq z3ptq z4ptq z5ptq s
T

is the displacement vector, u(t) is the control force,
wptq “ rzrptqs is the disturbance input acting on the system, F gives the location of the controller, and E
weights the disturbances. These matrices are given as:

F “
”

´1 1 0 0 0
ıT

(10)

and

E “

«

kt1 0 0 0 0
ct1 0 0 0 0

ffT

(11)

Here, Ms is the mass matrix and given as:

Ms “ diagpm1, m2, m3, m4, m5q (12)

where diag(¨) denotes the diagonal matrix. Kspθ1q “ Ks0 ` Ks1θ1 is the stiffness matrix, and Ks0 and Ks1

can be constructed as

Ks0 “

»

—

—

—

—

—

–

k1 ` k2 ´k2 0 0 0
´k2 k2 ` k3 ´k3 0 0

0 ´k3 k3 ` k4 ´k4 0
0 0 ´k4 k4 ` k5 ´k5

0 0 0 ´k5 k5

fi

ffi

ffi

ffi

ffi

ffi

fl

, Ks1 “

»

—

—

—

—

—

–

1 ´1 0 0 0
´1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

fl

(13)

Finally, Cspθ2q “ Cs0 ` Cs2θ2 is the stiffness matrix, and Cs0 and Cs2 can be written as

Cs0 “

»

—

—

—

—

—

–

c1 ` c2 ´c2 0 0 0
´c2 c2 ` c3 ´c3 0 0

0 ´c3 c3 ` c4 ´c4 0
0 0 ´c4 c4 ` c5 ´c5

0 0 0 ´c5 c5

fi

ffi

ffi

ffi

ffi

ffi

fl

, Cs2 “

»

—

—

—

—

—

–

1 ´1 0 0 0
´1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

fl

(14)

Using the definition xptq “ ryptqT
.
yptqTs, the constructed LPV vehicle model can be written in the

state-space form as:
.
xptq “ Apθqxptq ` Bupθquptq ` Bwpθqwptq (15)

where Apθq “ A0 ` θ1 A1 ` θ2 A2, Bupθq “ Bu0 ` θ1Bu1 ` θ2Bu2, Bwpθq “ Bw0 ` θ1Bw1 ` θ2Bw2, A0 “
«

0 I
´M´1

s Ks0 ´M´1
s Cs0

ff

, A1 “

«

0 0
´M´1

s Ks1 0

ff

, A2 “

«

0 0
0 ´M´1

s Cs2

ff

, Bu0 “

«

0
M´1

s F

ff

,

Bu1 “ Bu2 “ 0, Bw0 “

«

0
M´1

s E

ff

, and Bw1 “ Bw2 “ 0.

Here, A(θ) is the system matrix, Bu(θ) is the control input matrix, and Bw(θ) is the disturbance
input matrix. A0, Bu0, and Bw0 are the constant and real matrices. The constant and real valued
matrices, A1, A2, Bu1, Bu2, and Bw1, Bw2 represent the change in system dynamics that are caused by
the variations of scheduling parameters. The state variables of the LPV model are the displacements
and velocities of the each mass. The control vector and disturbance vector are assumed to be in the
forms uptq “ rupθqs and wptq “ rzrptqs, respectively. The non-linear vehicle system parameters [14] and
driver body parameters [3] are assumed to be as follows: m1 = 36 kg, m2 = 240 kg, m3 = 15 kg, m4 = m41

+ m42 = 1 + 7.8 = 8.8 kg, m5 = 43.4 kg, c1 = 980 Ns/m, c2 = 830 Ns/m, c3 = 200 Ns/m, c4 = 1485 Ns/m,
k1 = 160 KN/m, k2 = 16 KN/m, k3 = 31 KN/m, k4 = 18 KN/m, and k5 = 44.130 KN/m.
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In this study, three typical road profiles are used as disturbance inputs, which are applied to the
vehicle wheel. The road bump profile is considered first to reveal the transient response characteristic,
which is given by:

zrptq “

#

a
2 p1´ cosp 2πV0

l tqq, 0 ď t ď l
V0

0 t ď l
V0

(16)

where a and l are height and length of the bump, respectively, and V0 is the vehicle velocity [6]. Here,
road bump profile parameters are chosen as a = 0.1 m, l = 5 m, and V0 = 45 km/h. Then, ISO2631
very poor random road profile is used as the worst-case disturbance input for the different vehicle
velocities [17]. The road disturbance can be considered as the vibration, and it is typically specified as
a random process with a ground displacement power spectral density of

Sgpϕq “

#

Sgpϕ0qp
ϕ
ϕ0
q
´n1 , i f ϕ ď ϕ0

Sgpϕ0qp
ϕ
ϕ0
q
´n2 , i f ϕ ě ϕ0

(17)

where ϕ0 “ p1{2πq is a reference frequency, φ is a frequency, and n1 and n2 are road roughness
constants [17]. The Sgpϕ0q value can be computed by measuring the roughness of the road. The road
irregularities can be constructed by the following series, when the vehicle horizontal speed v0 is

assumed to be constant, zrptq “
N f
ř

n“1
znsinpnw0t`φnq, where zn “

a

2Sgpn∆ϕq∆ϕ, ∆ϕ “ p2π{lq, l is

the length of the road segment, w0 “ p2π{lqv0, and φn are treated as random variables that follow
uniform distribution in the interval r0, 2πq. Nf limits the frequency range. The very poor random road
profile parameters are chosen according the ISO2631 standards as n1 = 2, n2 = 1.5, Nf = 100, l = 200, and
Sgpϕ0q “ 1024ˆ 10´6 m3. The vehicle velocities are considered as 36 and 60 km/h [17]. The modeled
bump and ISO2631 very poor random road disturbances for 36 and 60km/h are shown in Figure 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Bump and ISO2631 very poor random road disturbance inputs.

In order to demonstrate the effects of the non-linear characteristics of the spring and
damper of the vehicle suspension system, a simulation study is also carried out, which is given
in Table 1 for the comparison of behaviors of the linear and non-linear suspension systems.
The linear suspension model can be easily obtained when the non-linear spring and damper
parts, r0.1k2pz2ptq ´ z1ptqq

2
spz2ptq ´ z1ptqq and r0.41c1

ˇ

ˇ

.
z2ptq ´

.
z1ptq

ˇ

ˇsp
.
z2ptq ´

.
z1ptqq are removed from

Equations (3) and (4), respectively. The corresponding peak-to-peak vibration amplitude values
and RMS values of cabin floor displacement and acceleration responses are compared for both the
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linear vehicle system and the non-linear vehicle system in Table 1 against the very poor random road
disturbance inputs for 36 and 60 km/h.

Table 1. The comparison of the linear and non-linear suspension model using time history responses
of cabin floor under very poor random road excitations for 36 and 60 km/h.

Comparison of Linear,
Non-Linear Models

Peak to Peak (PP) RMS Values

Linear Nonlinear Linear Nonlinear

Very Poor Random Road
Profile for 36 (km/h)

z2(t) 0.1942 0.1916 0.0411 0.0408
..
z2ptq 6.0502 6.1436 1.1357 1.1560

Very Poor Random Road
Profile for 60 (km/h)

z2(t) 0.2156 0.2073 0.0418 0.0410
..
z2ptq 10.4889 13.3136 1.7557 1.9233

Remark: As can be observed from Table 1, the displacement and acceleration responses of the cabin floor
are changed prominently when the vehicle velocity is increased. Additionally, Table 1 reveals that, when the
non-linear behaviors of the spring and damper of the suspension system are considered in the controller design,
the more realistic results may be obtained for the active suspension control problem. Therefore, the consideration
of non-linear behaviors of the suspension spring and damper as the linear parameter-varying (LPV) parameters
of the proposed vehicle system within the controller design process provides a more realistic realization of
results for the active vibration control of the vehicle suspension system. Due to this result, with this study,
a simple realizable synthesis method is introduced to obtain a practically applicable, parameter-dependent
optimal state-feedback control law for a parameter-varying vehicle suspension system without utilizing any
tuning parameters.

3. Parameter Dependent Optimal Controller Design for LPV Systems

In this paper, a state-feedback LPV controller is designed to mitigate the vertical vibrations
of a non-linear vehicle suspension system. LPV methods have received considerable attention in
recent years [18]. LPV-based controller design is a gain-scheduling control method to enable the
application of linear methods on the control of non-linear systems. The conventional approach to
gain scheduling is a repetitive design procedure with a gridding of an operating domain. Despite the
fact that such implementations frequently enjoy success and are deployed in many realistic control
systems, conventional techniques provide no guarantee for stability or performance. At this stage, LPV
methods guarantee Lyapunov stability and specific performance objectives for non-linear systems [19].
Therefore, to guarantee the closed-loop stability and improve system performance, a LPV-based control
algorithm is very suitable for the vibration attenuation of non-linear vehicle suspension systems.

The control objectives are to guarantee the closed-loop stability and disturbance attenuation
in the sense of L2 norm. First, solvability conditions for the L2 gain controller that depends on the
measured scheduling parameters are expressed in terms of a set of LMIs. Then, a coupling constraint is
added to the controller design, which fulfills the multiconvexity condition [20]. Consider the following
LPV system:

.
xptq “ Apθqxptq ` Bupθquptq ` Bwpθqwptq
zptq “ Cpθqxptq `Dupθquptq `Dwpθqwptq

(18)

where xptq P <n is the state vector, uptq P <mu is the control input, wptq P <mw is the disturbance
input acting on the system, and zptq P <p is the controlled output. Then, θ “ pθ1, ..., θkq P <k, and
i “ 1, 2, ..., k is a vector of scheduling parameters. The state-space matrices A(θ), Bu(θ), Bw(θ), C(θ),
Du(θ), and Dw(θ) depend affinely on the parameters θi. It is assumed that lower and upper bound
are available for parameter values and rates of variation. Each parameter θi ranges between known
extremal values θi and θi,

θi P rθi, θis (19)
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This assumption means that the scheduling parameters vector θ is valued in a hyper-rectangle
called the parameter box. In the sequel,

Rvex :“
 

pw1, ..., wkq : wi P tθi, θiu
(

(20)

denotes the set 2k vertices or corners of this parameter box. The rate of variation
.
θi is well defined at

all times and satisfies .
θi P r

.
θi,

.
θis (21)

where
.
θi ď 0 ď

.
θi are known lower and upper bounds on

.
θi. Similarly, Equation (21) delimits on

hyper-rectangle of Rk with corners in

Dvex :“
"

pτ1, ..., τkq : τi P t
.
θi,

.
θiu

*

(22)

Then, our goal is to design an optimal state-feedback LPV controller that depends on the
scheduling parameters θi, expressed as uptq “ Kpθqxptq, which ensures the quadratic stability of
the system Equation (18), with a Lyapunov function depending on θi’s with a disturbance attenuation
level γ. Using this control law, one obtains the closed-loop system as

.
xptq “ rApθq ` BupθqKpθqsxptq ` Bwpθqwptq
zptq “ rCpθq `DupθqKpθqsxptq `Dwpθqw ptq

(23)

The following theorem presents an optimal state-feedback LPV controller synthesis.

Theorem: Consider the closed-loop system Equation (23) with a parameter dependence on θi, assume that the
parameter trajectories and their derivatives range in hyper-rectangles Equations (20) and (22), and let Rvex and
Dvex denote the corner sets of these hyper-rectangles. For a given non-negative scalar constant, γ “

?
µ ą 0,

the closed-loop system Equation (23) is parameter-dependent quadratically stable with the disturbance attenuation
level, γ, if there is a positive definite parameter-dependent symmetric matrix Xpθq “ XpθqT and a rectangular
matrix Lpθq for each vertex of Equations (20) and (22) subject to

Φ :“

»

—

–

Φpθ,
.
θq Bwpθq pCpθqXpθq `DupθqLpθqqT

Bwpθq
T

´µI Dwpθq
T

CpθqXpθq `DupθqLpθq Dw pθq ´I

fi

ffi

fl

ă 0 (24)

«

AiXi ` Xi AT
i ` BuiLi ` LT

i BT
ui ` ηi I pCiXi `DuiLiq

T

CiXi `DuiLi ηi I

ff

ě 0,@i “ 1, ..., k (25)

and

X0 `

k
ÿ

i“1

θiXi ą 0, θi P Rvex,
.
θi P Dvex (26)

where Φpθ,
.
θq “ ApθqXpθq ` XpθqApθqT ` BupθqLpθq ` LpθqT Bupθq

T
´

.
Xp

.
θq. Then, γ “

?
µ is an

L2 gain of the resulting closed-loop system from wptq to zptq for all t ě 0, and the control law
uptq :“ LpθqX´1pθqxptq is an LPV controller associated with γ.

Proof: Let us choose an affine quadratic Lyapunov function, Vpxptq, θq :“ xptqT Ppθqxptq, such
that Vpxptq, θq ą 0 and

.
Vpxptq, θq ă 0 along all admissible parameter trajectories and, for all

initial conditions, xpt0q “ x0. Provided that θi and their time derivatives
.
θi vary in compact sets,

this guarantees asymptotic stability. The closed-loop system Equation (23) is affinely quadratically
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stable if there is a parameter-dependent symmetric Lyapunov matrix, Ppθq “ P0` θ1P1` ...` θkPk ą 0.
Taking the time derivative of Vpxptq, θq along the system trajectory Equation (23), one obtains

.
Vpxptq, θq “

.
xptqT Ppθqxptq ` xptqT Ppθq

.
xptq ` xptqT

.
Ppθqxptq (27)

and .
Ppθq “

.
θ1P1 ` ...`

.
θkPk “

.
Ppθq ´ P0 (28)

In addition, closed-loop system Equation (23) has an affine quadratic L2 gain performance, γ,
with the condition .

Vpxptq, θq ` zptqTzptq ´ γ2wptqTwptq ă 0 (29)

which holds for all admissible parameter trajectories θi “ θ1, ..., θk and
.
θi “

.
θ1, ...,

.
θk for i “ 1, 2, ..., k.

Then, substituting the closed-loop system Equation (23) into the condition Equation (29), one obtains

rpApθq ` BupθqKpθqqxptq ` BwpθqwptqsT P pθq xptq
`xptqT PpθqrpApθq ` BupθqKpθqqxptq ` Bwpθqwptqs
`xptqT

.
Ppθqxptq ` xptqTpCpθq `DupθqKpθqqTpCpθq `DupθqKpθqqxptq

`wptqT DwptqTpCpθq `DupθqKpθqqxptq ` xptqTpCpθq `DupθqKpθqqT Dwpθqwptq
`wptqT Dwpθq

T Dwpθqw ptq ´ γ2wTptqwptq ă 0

(30)

On the other hand, let us define an extended state vector as χT :“ rxTptq wTptqs. Then, one can
easily see that Equation (29) and χTptqΩχptq ă 0 are equivalent. Hence, if Ω ă 0 is satisfied, negative
definiteness of Equation (29) is also satisfied, where

Ω :“

»

—

—

—

–

pApθq ` BupθqKpθqqPpθq ` PpθqpApθq ` BupθqKpθqq
`

.
Ppθq ` pCpθq `DupθqKpθqqTpCpθq `DupθqKpθqq

PpθqBwpθq

`pCpθq `DupθqKpθqqT Dwpθq

Bwpθq
T Ppθq `Dwpθq

T
pCpθq `DupθqKpθqq Dwpθq

T Dwpθq ´ γ
2 I

fi

ffi

ffi

ffi

fl

ă 0 (31)

Applying the Schur complement formula [20] on Equation (31), Ω ă 0 is congruent to

Ω :“

»

—

–

Ω11pθ,
.
θq PpθqBwpθq pCpθq `DupθqKpθqqT

Bwpθq
T Ppθq ´γ2 I Dwpθq

T

pCpθq `DupθqKpθqq Dwpθq ´I

fi

ffi

fl

ă 0 (32)

where Ω11pθ,
.
θq “ pApθq ` BupθqKpθqqT Ppθq ` PpθqpApθq ` BupθqKpθqq `

.
Ppθq. Pre- and

post-multiplying Equation (32) by diagpXpθq, I, Iq, where Xpθq :“ P´1pθq, and applying the variable
change Lpθq :“ KpθqXpθq, inequality Equation (32) is congruent to

Φ :“

»

—

–

Φ11pθ,
.
θq Bwpθq pCpθqXpθq `DupθqLpθqqT

Bwpθq
T

´µI Dwpθq
T

CpθqXpθq `DupθqLpθq Dwpθq ´I

fi

ffi

fl

ă 0 (33)

where Φ11pθ,
.
θq “ ApθqXpθq ` XpθqApθqT ` BupθqLpθq ` LpθqT Bupθq

T
´

.
Xp

.
θqwith γ “

?
µ ą 0 and

X0 `

k
ÿ

i“1

θiXi ą 0, θi P Rvex,
.
θi P Dvex (34)

As for affine quadratic stability, Equations (33) and (34) put an infinite number of constraints on
the unknowns X0, ..., Xk. For tractability, Equations (33) and (34) are reduced to a system of finitely
many LMIs by imposing multiconvexity. The implications of multiconvexity for scalar quadratic
functions are clarified by the following lemma [20].
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Lemma [20]: Consider a scalar quadratic function of θ P Rk,

f pθ1, ..., θkq “ α0 `
ÿ

i

αiθi `
ÿ

iăj

βijθiθj`
ÿ

i

γiθ
2
i (35)

and assume that f p¨q is multiconvex, that is,

2γi “
B2 f
Bθ2

i
pθq ě 0 for i “ 1, ..., k (36)

Then, f p¨q is negative in the hyper-rectangle Equation (19) if and only if it takes negative values at
the corners of Equation (19): that is, if and only if f pwq ă 0 for all w in the vertex set Rvex given by
Equation (20). The multiconvexity condition can be constructed by considering the inequality Equation
(33) as a quadratic function in the form of Equation (35). Then, inequality Equation (37) is resulted
which is equivalent to Equation (36) by the use of the lemma.

«

AiXi ` Xi AT
i ` BuiLi ` LT

i BT
ui XiCT

i ` LT
i DT

ui
CiXi `DuiLi 0

ff

ě 0 (37)

For clarity, representation of Φ11pθ,
.
θq ă 0 in the form of Equation (35) can be shown:

A0X0 ` X0 AT
0 ` Bu0L0 ` LT

0 BT
u0 ´

ř

k

.
θkXk

`
ř

i
θi
`

A0Xi ` Xi AT
0 ` AiX0 ` X0 AT

i ` Bu0Li ` LT
i BT

u0 ` BuiL0 ` LT
0 BT

ui
˘

`

ř

iăj
θiθj

´

AjXi ` Xi AT
j ` AiXj ` Xj AT

i ` BujLi ` LT
i BT

uj ` BuiLj ` LT
j BT

ui

¯

`

ř

i
θ2

i
`

AiXi ` Xi AT
i ` AiXi ` Xi AT

i ` BuiLi ` LT
i BT

ui ` BuiLi ` LT
i BT

ui
˘

ă 0

(38)

for all Equations (20) and (22). As it can be observed from Section 2, scheduling parameters are located
in only a few entries of the parameter-dependent matrices. Since the matrices, A1, ..., Ak, Bu1, ..., Buk,
Bw1, ..., Bwk, C1, ..., Ck, Du1, ..., Duk, and Dw1, ..., Dwk are mostly low ranked, strict inequalities are not
constituted easily. A simple solution to this numerical problem is proposed in [20]. By implanting
non-negative scalars ηi into Equation (37), Equation (25) is obtained. This completes the proof.

4. Numerical Simulation Study

In this section, an extensive number of simulations are carried out to illustrate the effectiveness of
the proposed controller. To improve the driver’s ride comfort and essential performance requirement,
a parameter-dependent optimal controller is designed which is scheduling online according to
suspension stroke and its variation rate. To ensure that both responses are within permissible limits,
the performance output vector z(t) is constructed as

zptq “ Cpθqxptq `Dupθquptq `Dwpθqwptq (39)

where Cpθq “ C0 ` θ1C1 ` θ2C2, Dzupθq “ Du0 ` θ1Du1 ` θ2Du2, Dwpθq “ Dw0 ` θ1Dw1 `

θ2Dw2, C0 “ r 04ˆ1 I4 04ˆ5 ; Ap6, 1 ´ 10q; Ap10, 1 ´ 10q; ´1 1 01ˆ8 ; 1 01ˆ9 s, C1 “

r04ˆ10; 1{m2 ´1{m2 01ˆ8 ; 03ˆ10s, C2 “ r04ˆ10; 01ˆ5 1{m2 ´1{m2 01ˆ3 ; 03ˆ10s, Du0 “

r06ˆ1; 1{m2; 03ˆ1s, Du1 “ Du2 “ 08ˆ1, Dw0 “ r07ˆ1;´1s and Dw1 “ Dw2 “ 08ˆ1. These matrices
are chosen to represent the following variables:

zptq “ r z2ptq z3ptq z4ptq z5ptq
..
z2ptq

..
z5ptq z2ptq ´ z1ptq z1ptq ´ zr ptqs

T
(40)
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as a specified performance output vector. To achieve a minimum L2 gain from w(t) to z(t) for all
t ě 0, the proposed theorem is applied to this problem, and the minimum allowable disturbance
attenuation level γ is calculated as 14.72 and a parameter-dependent optimal state-feedback control law
is constructed as uptq “ LpθqXpθq´1xptq, where Lpθq “ L0`θ1L1`θ2L2 and Xpθq “ X0`θ1X1`θ2X2.
In order to demonstrate the proposed controller performance, bump and very poor random road
irregularities are used as the disturbance input as modeled in Section 2 and shown in Figure 2.

Figure 3 shows the time responses of the vertical displacements and accelerations of cabin floor
and driver body of the considered vehicle system, respectively. As can be observed from this figure,
very successful vibration suppression is achieved by the use of the designed controller. Note that the
designed controller achieves good control performance on ride comfort in terms of the peak value of
driver body acceleration.
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Figure 3. Controlled and uncontrolled vertical displacement and acceleration responses under the
bump and very poor random road excitations.

To evaluate the proposed controller performance on different performance aspects, vehicle
suspension stroke and tire deflection properties are shown in Figure 4. This figure reveals that
the designed controller has a satisfactory control performance and achieves a good trade-off.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Controlled and uncontrolled bump and very poor random road responses on suspension
stroke and tire deflection properties.
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Figure 5 demonstrates the amplitude spectrum plots of displacement of the very poor random
road profile, as well as displacement responses of the vehicle wheel and acceleration responses of the
cabin floor and driver body for both controlled and uncontrolled cases under very poor random road
excitation at 60 km/h.

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Amplitude spectrum of very poor random road profile and controlled and uncontrolled
responses of vehicle wheel, cabin floor and driver body.

As expected, frequency content of the zr(t) for 60 km/h is limited to 8.33 Hz. Note that
computation of random road roughness is based on the summation of different sine waves as

zrptq “
N f
ř

n“1
znsinpnw0t ` φnq. Upper bound of the frequency content can be easily obtained by

the multiplication of nw0, where the upper bound of the n is given as 100 and w0 “ p2π{lqv0 takes
the value of 0.5236 for l = 200 m and v0 = 16.67 m/s. Therefore, the maximum value of the nw0 is
52.36 rad/s and 8.33 Hz.

As can be seen from Figure 5, there is no degradation in the performance of the closed-loop control
system when the displacement response plot of the vehicle wheel with controlled and uncontrolled
cases is compared. Note that the proposed controller largely reduces the cabin floor and driver body
accelerations compared to the uncontrolled system and therefore achieves a very successful ride
comfort performance.

As is mentioned in Section 3, the parameter-dependent controller design for the LPV system is a
kind of gain-scheduling control method. In this method, the value of the controller gain matrix of the
proposed controller does not remain fixed while the controller is in operation; rather, it is modified in
accordance with the scheduling parameters. Therefore, the frequency responses can be obtained by
assuming that time-varying parameters are frozen for their vertex points. Figure 6 shows the frequency
responses of the displacements and accelerations of the cabin floor and driver body, respectively,
for both controlled and uncontrolled cases when the frozen scheduling parameters for their vertex
points are considered. As expected, high gain responses belong to the uncontrolled system. When
the response plots of the system with uncontrolled and controlled cases are compared, a superior
improvement in the mitigation of the resonance values is obtained by the proposed controller. On the
other hand, Figure 7 demonstrates that the change in control forces the inputs for the bump and
very poor random road excitations. As can be observed from this figure, the applied control forces,
which range within maximum˘2200 N for the worst-case road excitations, are very suitable to produce
for practical implementations, as discussed in [6,10,11].
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Figure 6. Frequency responses of the accelerations and displacements of the cabin floor and driver
body for minimum and maximum values of scheduling parameters.
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In this section, the root mean square (RMS) value, which is the statistic measure of the magnitude
of varying quantity, is employed to investigate the active suspension performance. The RMS analysis
method is very useful for evaluating active control performance when the variants are positive and
negative [6]. The corresponding RMS values of the vertical cabin floor, driver body displacement,
acceleration responses, suspension stroke, and tire deflection responses are compared for both the
controlled and uncontrolled cases in Table 2 for the bump and very poor random road disturbance
inputs at different velocities, respectively.

Table 2. Comparison of RMS values of the vertical cabin floor and driver body displacement and
acceleration responses, suspension stroke, and tire deflection responses.

RMS Values
Bump Very Poor Random Road

for 36 (km/h)
Very Poor Random Road

for 60 (km/h)

Uncontrolled Controlled Uncontrolled Controlled Uncontrolled Controlled

z2(t) 0.0299 0.0043 0.0408 0.0114 0.0410 0.0109
z5(t) 0.0407 0.0049 0.0439 0.0116 0.0447 0.0110
..
z2ptq 1.6877 0.1436 1.1560 0.1347 1.9233 0.3866
..
z5ptq 3.1507 0.2313 1.7388 0.1393 2.0037 0.1706

z2ptq ´ z1ptq 0.0249 0.0213 0.0156 0.0281 0.0178 0.0299
z1ptq ´ zrptq 0.0032 0.0010 0.0020 0.0010 0.0038 0.0040
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5. Conclusions

This paper presents an approach for designing a parameter-dependent optimal controller to
mitigate the vertical vibration occurring in non-linear vehicle suspension systems with an integrated
seat and driver body model. Using parametric Lyapunov functions, the solvability conditions for the
design parameter-dependent optimal state-feedback controller that depend on the measured non-linear
suspension parameters are expressed in terms of LMIs and an additional constraint which overtakes
the convexity problem. The main purpose of this study is to develop an easily realizable synthesis
method to obtain a practically applicable parameter-dependent state-feedback controller that provides
the best performance while also taking the non-linear behaviors of the suspension spring and damper
into account, without utilizing any tuning parameters. Numerical simulations are used to show the
performance of the proposed controller. Simulation results indicate that the proposed controller is
completely effective in reducing vertical vibration amplitudes of the modeled vehicle system and
provides satisfactory ride comfort, suspension stroke, and tire deflection performances. Expanding the
proposed method with a parameter-dependent optimal controller design under the consideration of
actuator dynamics, actuator saturation, and active seat suspension might be a direction of future work.
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