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Abstract: In this study, an elasto-plastic stress analysis is proposed in an aluminum adherend and
a ductile adhesive. Elasto-plastic analysis was carried out for the aluminum adherend and DP460
ductile adhesive in a double-lap joint. The analytical solution was compared with the finite element
solution. ANSYS 12 was used in the stress analysis. The analytical solution was performed for
the one-dimensional case in the adhesive and the adherends. A FEM solution was given for the
two-dimensional case. Similar results were obtained for both. In addition, the solution was carried
out for brittle and ductile materials. The mechanical properties of the loctite were nearly the same as
the ductile DP460 adhesive. It was observed that the ductile adhesive increased the strength of the
structure due to the small shear stresses at the free ends of the adhesive.
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1. Introduction

One of the significant solutions for ductile adhesives in single lap and double lap joints is
elasto-plastic stress analysis. When the external force is applied to the joints, the joint strength can be
increase by residual stresses.

An adhesive-bonded double-lap joint has been studied by Hart-Smith [1]. He carried-out
an elasto-plastic solution on balanced double-lap joints. He found that the greatest shear stress
components were occurring at the free ends of the adhesives. Goeij et al. [2] presented a review of
research studies performed on composite joints under cyclic loading. Adhesive bonded single or
double-lap joints were investigated in the papers [3–9]. Elastic-plastic stress analysis was carried
out in single-lap adhesively bonded joints by using analytic and finite element solutions [10,11].
Malvade et al. [12] proposed a nonlinear simulation of mechanical behaviors of adhesively bonded
joints by using the Drucker–Prager criterion for finding a close solution in experimental load
displacement curves. Markolefas and Papathanassiou [13] evolve a shear-lap model for calculating
the stress distributions in double lap joints under axial cyclic loading. In that study the adhesive
layers satisfy the perfectly elastic plastic properties. Elastic-plastic stress analysis was derived from
papers [14–16].

In this study, an analytical elasto-plastic solution is proposed for a double-lap joint. The solution is
carried out in a ductile adhesive and a ductile aluminum adherend. The analytical solution is managed
by the finite element analysis. A good agreement is received between them. In the solution, outer
adherends are selected as aluminum alloy and a middle adherend is chosen as a soft ductile aluminum.
As a result of this, the middle adherend yields the plastic deformation. In addition, the shear stress in
the adhesive is compared for ductile and brittle adhesives.
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2. Mathematical Solution

In this study, elasto-plastic solutions of the shear stresses in the adhesive and the normal stresses
in the adherend were carried out analytically and numerically, as shown in Figure 1.

Figure 1. Schematic view of the double-lap joint.

In the solution, some basic assumptions have been proposed:

(a) Shear stress does not vary through the thickness;
(b) Longitudinal stresses in the adherend do not vary through the thickness;
(c) The normal stresses along the adhesive are neglected.

The static equilibrium of infinite small elements produces the relations shown in Figure 2.

Figure 2. The free body diagram of double-lap joint.

To `
dT0

dx
∆x´ To ` τ∆x “ 0 (1)

dT0

dx
` τ “ 0 (2)



Math. Comput. Appl. 2016, 21, 5 3 of 11

The second element yields,

Ti `
dTi
dx

∆x´ Ti ´ 2τ∆x “ 0 (3)

dTi
dx
´ 2τ “ 0 (4)

where To ^ Ti are the longitudinal stresses per unit width in the outer and middle adherends,
respectively. εxy is written as shown in Figure 2.

εxy “
1
2

γxy “
Ui ´U0

2η
(5)

The strain increment of εxy can be written in the differential form as,

εxy “ dεe
xy ` dε

p
xy “

dτ

2Ga
` τdλ “

dτ

2Ga
` dε

p
xy (6)

If it both sides are divided by dx,

dεxy

dx
“

dτ

2Gadx
`

dε
p
xy

dx
“

1
2η

ˆ

dui
dx
´

du0

dx

˙

(7)

where η is the thickness and Ga is the shear modulus of the adhesive. dε
p
xy can be determined from the

equivalent plastic strain formula as in Mendelson [17]:

dε
p
xy “

?
3

2
dεp (8)

by using the Ludwick equation, for a bilinear case,

σ “ σ0 ` Kεp (9)

or
dσ “ Kadεp (10)

where Ka is the plastic constant of the adhesive.
dτ can be calculated using the von Mises criterion:

dσ “
?

3dτ (11)

The plastic strain increment is written as:

dεp “
dσ

Ka
“

?
3τ

Ka
(12)

and

ε
p
xy “

?
3

2
dεp “

?
3

2

ˆ

?
3dτ

Ka

˙

“
3dτ

2Ka
(13)

Equation (7) can be written as:

dεxy

dx
“

dτ

2Gadx
`

3dτ

2Kadx
(14)

or
dεxy

dx
“

dτ

dx

ˆ

1
2Ga

`
3

2Ka

˙

“
1

2η

ˆ

dui
dx
´

du0

dx

˙

(15)
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If =
1

2η

ˆ

1
2Ga

`
3

2Ka

˙ “ b,

then Equation (15) becomes:
dτ

dx
“ b

ˆ

dui
dx
´

du0

dx

˙

(16)

In this study, it is assumed that only the middle adherend undergoes plastic deformation.
Equation (16) can be written as:

dτ

dx
“ b pεi ´ ε0q (17)

where
dεi “

dσi
Ei
` dε

p
i (18)

or
dεi “

dTi
tiEi

` dε
p
i (19)

where Ti and Ei are the thickness and the modulus of elasticity of the middle adherend, respectively.
After integration,

εi “
Ti

tiEi
` ε

p
i ` C

If the integration constant C is obtained from the initial case as, C = 0, then

εi “
Ti

tiEi
`

σi
Ki
´

σ0

Ki
(20)

where σ0 is the yield strength of the middle adherend, or σo “
Ti p0q

ti
, which is the stress at the

yield point.

εi “
Ti

tiEi
`

Ti ´ Ti p0q
tiKi

Placing this in Equation (17), it becomes

dτ

dx
“ b

ˆ

Ti
tiEi

`
Ti ´ Ti p0q

tiKi
´

T0

t0E0

˙

(21)

where To and Eo are the thickness and the modulus of the elasticity of the outer adherends, respectively.

dτ

dx
“

1
2

d2Ti
dx2 and P “ 2To ` Ti

Placing this in Equation (21), it becomes

d2Ti
dx2 ´ λ2

pTi “ ´2b
„

Ti p0q
tiKi

`
P

2t0E0



(22)

where

λ2
p “ 2b

ˆ

1
tiEi

`
1

tiKi
`

1
2t0E0

˙

If it is said D “ 2b
ˆ

Ti p0q
tiKi

`
P

2t0E0

˙

,

the governing equation becomes:

d2Ti
dx2 ´ λ2

pTi “ ´D (23)
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The solution of the above equation is:

Ti “ Acoshλpx` Bsinhλpx`D (24)

The boundary conditions are as follows:

Ti “ P at x “
L
2

Ti “ 0 at x “
´L
2

The solution of Equation (22) under the boundary conditions is

Ti “

P´
2D
λ2

p

2cosh
ˆ

λpL
2

˙ cosh
`

λpx
˘

`
P

2sinh
ˆ

λpL
2

˙ sinh
`

λpx
˘

`
D
λ2

p
(25)

dTi
dx

“ 2τ

and the shear stress in the adhesive is obtained as

τ “

P´
2D
λ2

p

4cosh
ˆ

λpL
2

˙ λpsinhλpx`
P

4sinh
ˆ

λpL
2

˙ λpcoshλpx (26)

τ “
λp

4

»

—

—

–

Pcoshλpx

sinh
ˆ

λpL
2

˙ `
Psinhλpx

cosh
ˆ

λpL
2

˙ ´
2Dsinhλpx

λp
2cosh

ˆ

λpL
2

˙

fi

ffi

ffi

fl

(27)

3. Results & Discussion

In this investigation an analytical solution was carried out in a double-lap joint with a ductile
adhesive. The adherends were chosen as different aluminum plates. The middle adherend (Ti) was
subjected to plastic deformation; however, the outer adherends (To) were elastic. In Figure 3, the
displacement of the Y axis, which is denoted as uY, is equal to zero in the middle of the adherend. In
addition, the displacement of the X axis, which is denoted as uX, is equal to zero in the outer adherend.
These displacement values were chosen for satisfying the boundary conditions.

Figure 3. Schematic view of the half of double lap joint.

The mechanical properties of DP460 are given in Table 1. In general, the ductile adhesive increases
the failure strength of the joints. In this solution, n is taken to be 1 to get a bilinear solution. The
mechanical properties of the adherends are given in Table 2 for the elastic and plastic aluminum plates,
respectively. Work hardening exponent “n” was determined from the Ludwick–Hollomon equation
´

σ “ σ0 ` Kεn
p

¯

by using stress–strain diagrams obtained from a series of experimental tensile tests.
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Table 1. Mechanical properties of the ductile adhesive.

E (MPa) ν σy (MPa) K (MPa) n

1700 0.36 34 81 0.625

Table 2. Mechanical properties of the adherend.

E (MPa) ν σy (MPa) K (MPa) n

Outer Adherend 73000 0.33 325 520 0.610
Inner Adherend 71000 0.33 101 510 0.505

The outer adherend material is an aluminum alloy. The yield point of the adherend is very high
in comparison with the middle adherend.

The solution was performed for L = 25 mm, η = 0.14 mm, to = 1.8 mm, ti = 3.6 mm, and also for
to = 1.6 mm, ti = 3.2 mm.

The analytical and numerical solutions were performed for P = 216 N/mm. The width of the
adherends and adhesive were selected as 20 mm. A finite element solution was performed by ANSYS
12 software. The solid four-node plane 182 element was used in the solution. In this solution 5500
(for t0 = 1.6) and 6275 (for t0 = 1.8) elements were used in the mesh of the model. In the ANSYS 12
modeling, the half figure was selected due to the symmetry of the double-lap joints. The ANSYS
software solution is shown in Figure 4.

Figure 4. Cont.
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Figure 4. (a) Stress distribution in the X direction in ANSYS; (b) stress distribution in the Y direction in
ANSYS; (c) shear stress distribution on the XY plane in ANSYS.

The distribution of the stress component σi at the lower surface of the middle adherend for

to “ 1.6 mm is shown in Figure 5. As seen in this figure, σi “
Ti
ti

decreases at points distant from the

right free end. It is seen that both analytical and finite element solutions yield close results.

Figure 5. The distribution of σi along the middle adherend for to = 1.6 mm and ti = 3.2 mm.

The distribution of the stress component σo at the upper adherend for to “ 1.6 mm is shown in
Figure 6. As seen, it decreases at points distant from the left free end. It has a value of about 125 MPa

at the left free end. It vanishes at the right free end, where σo “
To

to
.

The distribution of the stress component σi at the lower surface of the middle adherend for

to “ 1.8 mm is shown in Figure 7. As seen in this figure, σi “
Ti
ti

decreases at points distant from the

right free end. It is seen that through the lower surface, both analytical and finite element methods
yield close results. The intensity of σi was found to be about 112 MPa at the right free end whereas it
vanishes at the left free end.

The distribution of the σo “
To

to
at the upper adherend for to “ 1.8 mm is shown in Figure 8. It is

seen that the largest value occurs at the left free end.
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Figure 6. The distribution of σo along the upper adherend for to = 1.6 mm and ti = 3.2 mm.

Figure 7. The distribution of σi along the middle adherend for to = 1.8 mm and ti = 3.6 mm.

Figure 8. The distribution of σo along the upper adherend for t0 = 1.8 mm and ti = 3.6 mm.
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The distribution of the shear stress for ti “ 3.2 mm through the adhesive is shown in Figure 9. As
seen in this figure, close results are obtained for the finite element and analytical methods. It has the
largest values at the free ends.

Figure 9. The distribution of shear stress along the adhesive for t0 = 1.6 mm and ti = 3.2 mm.

The distribution of the shear stress for ti “ 3.6 mm through the adhesive is shown in Figure 10. It is
seen that the shear stress component is the largest at the free ends. Both methods yield similar diagrams.

Figure 10. The distribution of shear stress along the adhesive for t0 = 1.8 mm and ti = 3.6 mm.

As seen in all of the figures, the analytical solution for the one-dimensional case and the FEM
solution for the two-dimensional cases produced close results. In addition, the brittle adhesive Loctite
was employed in the joint. The brittle and ductile adhesives were compared. The mechanical properties
of the brittle adhesive are close to those of the ductile adhesive given in Table 3.

Table 3. Mechanical properties of the brittle adhesive.

E (MPa) ν σu (MPa)

1720 0.35 34
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The distribution of the shear stress for to “ 1.6 mm and for ti “ 3.2 mm through the adhesive is
shown in Figure 11. As seen in this figure, the shear stress increases at the free ends for the brittle
adhesive. High stress can cause early damage in the joint, under loading.

Figure 11. The distribution of shear stress along the ductile and brittle adhesive for t0 = 1.6 mm and
ti = 3.2 mm.

The distribution of the shear stress for to “ 1.8 mm and for ti “ 3.6 mm through the adhesive is
shown in Figure 12. The shear stress increases at the free ends for both brittle and ductile adhesives, as
expected, but, as seen in the figure, the joint bonded with brittle adhesive has a sharp increase in the
shear stress.

Figure 12. The distribution of shear stress along the ductile and brittle adhesive for t0 = 1.8 mm and
ti = 3.6 mm.

In this investigation, it is observed that a ductile adhesive is more convenient than a brittle
adhesive in the design of adhesive joints.

4. Conclusions

In this study, an elasto-plastic solution was proposed for the ductile adhesive and for the ductile
aluminum middle adherend. Solutions are presented for to= 1.6 or 1.8 mm, and ti = 3.2 and 3.6 mm.
Stress components decreased, especially in large plastic deformations. The highest stress components
were obtained at the free ends of the adherends. Comparing the brittle and ductile adhesives, this
study showed that the shear stress dramatically increased towards the free ends, but for the brittle
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adhesive this increment was very sharp. This study also showed that using a ductile adhesive can
reduce early failure damage in many applications.

Since the analytical solution was performed for the one-dimensional case, a FEM solution was
carried out for the two-dimensional case, which is why a small difference appears between them.
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