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Abstract: A planar 3-index assignment problem (P3AP) of size n is an NP-complete problem. Its
global optimal solution can be determined by a branch and bound algorithm. The efficiency of the
algorithm depends on the best lower and upper bound of the problem. The subgradient optimization
method, an iterative method, can provide a good lower bound of the problem. This method can
be applied to the root node or a leaf of the branch and bound tree. Some conditions used in this
method may result in one of those becoming optimal. The formulas used in this method contain
some constants that can be evaluated by computational experiments. In this paper, we show a variety
of initial step length constants whose values have an effect on the lower bound of the problem. The
results show that, for small problem sizes, when n < 20, the most suitable constants are best chosen
in the interval [0.1, 1]. Meanwhile, the interval [0.05, 0.1] is the best interval chosen for the larger
problem sizes, when n ě 20.

Keywords: planar 3-index assignment problem (P3AP); NP-complete; lower bound; upper bound;
subgradient optimization method; computer experiment; step length constant

1. Introduction

Consider a scheduling machine problem where there are n machines, n tasks, and n time slots
provided. Let cijk be the cost associated with the assignment where the machine i does the task j at the
time slot k. The problem is to find an assignment that will minimizes the total cost and satisfies the
following three conditions:

(i) at every fixed time slot, every machine works in parallel;
(ii) each machine does a different task on a different time slot; and

(iii) after the last time slot, all machines have completed all tasks.

Let xijk for i, j, k “ 1, 2, ..., n be the decision variables where xijk “ 1 if the machine i is assigned to
do the task j at the time slot k, otherwise xijk “ 0. The problem can be represented by the following
mathematical programming:

minimize
n
ř

i“1

n
ř

j“1

n
ř

k“1
cijkxijk

subject to
n
ř

i“1
xijk “ 1, @ j, k “ 1, 2, ..., n

n
ř

j“1
xijk “ 1, @ i, k “ 1, 2, ..., n

n
ř

k“1
xijk “ 1, @ i, j “ 1, 2, ..., n

xijk P t0, 1u @ i, j, k “ 1, 2, ..., n

(1)
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This problem is called the planar 3-index assignment problem (P3AP). The problem was shown
to be an NP-complete problem by Frieze in 1983 [1]. Tabu search heuristics and several approximation
algorithms have been developed to solve the problem. The first approximation was presented by
Kumar et al. [2]. The algorithm had a performance guarantee of 1{2. This was improved to 1´ e´ 1

and 0.669 by Gomes et al. [3] and Katz-Rogozhnikov and Sviridenko [4], respectively. Subgradient
optimization procedures have been developed in order to create a good lower bound in an exact branch
and bound algorithm for solving the problem (see Magos and Miliotis [5]). The idea and general steps
of the subgradient optimization methods are presented in Section 2. In Sections 3 and 4 a modified
subgradient optimization method for solving P3AP is presented and its computational results are
given, respectively.

2. Subgradient Optimization Methods and Modifications

The subgradient optimization method was first developed in 1985 [6]. The method aimed to solve
non-differentiable optimization problems. One such problem is mathematical programming. The
problem optimizes a non-differentiable function with some constraints as follows:

Z “ Minimize cx
Subject to Ax ď b

Dx ď d
x ě 0 and integer

(2)

where x is an pnˆ 1q-column matrix, c is a p1ˆ nq-row matrix, b is an pmˆ 1q-column matrix, d is
an prˆ 1q-row matrix, A is an pmˆ nq-coefficient matrix, and D is an prˆ nq-coefficient matrix. The
structure of Problem (2) is suitable for applying Lagrangean relaxation [7] in order to construct an
easier solvable problem. We can propose that the constraints Ax ď b will be incorporated into the
objective function using the Lagrangean multiplier vector u “ puiq where ui ě 0 for i “ 1, 2, ..., m.
Then, the corresponding Lagrangean relaxation problem can be written as follows:

L puq “ minimize cx` u pAx´ bq
subject to Dx ď d

x ě 0 and integer
(3)

Since ui ě 0 for all i “ 1, 2, ..., m, the objective value L puq ď Z for all u. Assume that
L˚ “ max tL puq , for all uu. Then, L˚ is the best lower bound found by the Lagrangean relaxation
method. In order to find L˚, the successive values of ui need to be determined. The “subgradient
optimization method” is the most useful iterative method to do so.

At the t-th iteration of the method, we suppose that xptq is an optimal solution to Problem (3) with
the Lagrangean multiplier vector uptq. The vector Axptq ´ b provides a subgradient directions µptq

of L puq at the point uptq. At the pt` 1q-th iteration, the Lagrangean multiplier vector upt ` 1q can be
determined as follows:

upt`1q “ uptq ` sptqµptq (4)

where sptq is a step length, commonly determined as

sptq “ λptq
L pu˚q ´ L

´

uptq
¯

‖ µptq ‖2
(5)

where L pu˚q is the optimal objective value to Problem (3), and λptq is a step length constant of the
method at the t-th iteration. In general, the method will converge the optimal solution if one of the
following conditions holds [8]:

(i) sptq ě 0, lim
tÑ8

´

sptq ‖ µptq ‖
¯

“ 0 and
ř

8
t“1

´

sptq ‖ µptq ‖
¯

“ 8;
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(ii) sptq ě 0, lim
tÑ8

sptq “ 0,
ř

8
t“1sptq “ 8 and

!

µptq
)

is bounded for t ě 1.

The step length sptq plays a crucial role in any subgradient optimization method. Different choices
of step length and target values for the method have been presented [9]. Moreover, the step length
constant λptq definitely plays a crucial role for the value of the step length sptq. Many choices of
λ-value have been proposed; some authors have defined 0 ă λptq ď 1 [7], but most others have used
0 ă λptq ď 2 [5,8,10]. Held and others [10] used their computational result to report some good rules
for the λ-value as follows:

(i) set λ “ 2 for 2n iterations where n is a measure of the size of the problem; and
(ii) successively halve both the values of λ and the number of iterations until sptq is sufficiently small.

These rules were applied in the subgradient optimization algorithm for solving classical
assignment problems:

minimize
n
ř

i“1

n
ř

j“1
cijxij

subject to
n
ř

i“1
xij “ 1, j “ 1, ..., n

n
ř

j“1
xij “ 1, i “ 1, ..., n

xijk ě 0 i, j “ 1, ..., n

(6)

A modified subgradient optimization method for solving the classical assignment problem was
presented in 1981 by Bazaraa and Sherali [11]. In this method, a simple subgradient is used to identify
the search direction. Another modified subgradient method was proposed by Fumero in 2001 [8]. The
main difference between these two methods lies in the employment of the search direction. These
two methods, as well as the method proposed by Held and others, were compared for efficiency by
Fumero in 2001 [8]. The results showed that the modified method proposed by Fumero provided
higher objective values in the initial steps.

In 1981, Fisher [12] supported the rules of identifying the λ-value proposed by Held and others.
He confirmed that the λ-value must be between 0 and 2 for the subgradient procedure to converge to
optimum. Unfortunately, there is no literature that provides the exact value to the step length constant,
λ. However, a common practice is to use a decreasing sequence of λ-values.

Since the objective function value of Problem (3), L pu˚q, is unknown, most of the proposed
applications have adopted a known upper bound (UB) in the step length formula, Equation (5). Thus,
the formula becomes

sptq “ λptq
UB´ L

´

uptq
¯

‖ µptq ‖2
(7)

In order to avoid the zigzagging behavior in the Markov nature of the subgradient method
and to improve its convergence rate, modified subgradient techniques have been proposed [13–16].
The techniques contain a suitable combination of the current and previous subgradient called
search direction

dptq “ αptqµptq ` βptqdpt´1q (8)

where αptq and βptq are search direction constants at the t-th iteration. Moreover, in the (t ` 1)-th
iteration, the Lagrangean multiplier vector upt`1q is determined as follows:

upt`1q “ uptq ` sptqdptq (9)

These subgradient schemes have been analyzed for their convergence properties by Kim and
Ahn [17]. It was shown that the method with these schemes has stronger convergence properties than
the standard one.
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3. Subgradient Optimization Method for the Planar 3-Index Assignment Problem

The structure of P3AP is suitable for applying the Lagrangean relaxation [5]. The relaxation can
be formed by incorporating the constraints of type

ř n
k“1xijk “ 1 into the objective function. Hence,

Problem (1) becomes a Lagrangean relaxation problem as follows:

Z puq “ minimize
n
ř

i“1

n
ř

j“1

n
ř

k“1
cijkxijk `

n
ř

i“1

n
ř

j“1
uij

ˆ n
ř

k“1
uijk ´ 1

˙

subject to
n
ř

i“1
xijk “ 1, @ j, k “ 1, 2, ..., n

n
ř

j“1
xijk “ 1, @ i, k “ 1, 2, ..., n

xijk P t0, 1u, @ i, j, k “ 1, 2, ..., n

(10)

For any vector u “
`

uij
˘

, Z puq is a lower bound of Problem (1). Then, the best lower bound
can be found by solving the following problem: max Z puq for all possible vectors u. A solution to
the problem can be approximated by solving Problem (10) for a sequence of u obtained through a
“subgradient optimization method”. In 1980, Burkard and Froehlich [18] reported that the method
produced good boundaries for Problem (1), but there were no details provided of the procedure used.
Later, in 1994, Magos and Miliotis [5] implemented a subgradient optimization procedure that was
modified from a subgradient scheme proposed by Camerini et al. [13]. The procedure employed many
choices of the step length constant, λ, but no details of the choices were given.

In this paper, we present variants of the λ-values in the subgradient optimization method at the
root node of the tree in the branch and bound algorithm for solving the problem. The procedure has
been modified from the one proposed by Magos and Miliotis [5]. The main idea is unchanged, but the
differences are: (1) the stopping criteria; (2) the condition rules for decreasing the step length constants;
and (3) the step length formula. The stopping criterion and the rule for decreasing the step length
constant in the modified procedure are much simpler, as shown in Table 1.

Table 1. The stopping criteria, the condition rules for decreasing the step length constant, and the step
length formulas in the two subgradient optimization procedures.

The Procedures Magos and Miliotis’s Procedure [5] Modified Procedure

The stopping criteria

2n iterations are allowed from the
start of the procedure and

subsequently
n
2

iterations are
gained after an improvement of at
least 25% on the lower bound.

If there is 0.1% difference between
the function values on the current
and previous iterations, then the
procedure stops.

The condition for decreasing the
step length constant

n
2

iterations with the initial λ-value

additional
n
2

iterations for every 1%
improvement λ are allowed. If no
improvement is made within the

iterations allowed, set λ “
λ

1.5
and

continue the procedure with that

λ-value for at least
n
2

iterations.

Set λ “
λ

1.5
if no improvement on

any iteration where no
improvement occurs.

Step length formula in the
iteration t sptq “ λ

UB´ Z˚
´

uptq
¯

||dptq ||2
sptq “ λ

UB´ Z˚
´

uptq
¯

||µptq ||2

For any fixed index k, Problem (10) becomes a classical assignment problem. It can be solved by
the Hungarian method. A solution xijk for every fixed index k forms a subgradient direction vector,
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µ “
`

µij
˘

where µij “
ř

kxijk. Then, a search direction vector at the current iteration t, denoted by
dptq, is defined based on the subgradient direction, µptq, and the previous search direction, dpt´1q. This
vector can be formulated as

dptqij “ µ
ptq
ij ` βptqdpt´1q

ij (11)

where

βptq

$

’

’

&

’

’

%

´1.5
řn

i“1
řn

j“1 dpt´1q
ij µ

ptq
ij

||dpt´1q ||2
, if

n
ř

i“1

n
ř

j“1
dpt´1q

ij µ
ptq
ij ă 0

0, otherwise.

(12)

This idea is employed from Camerini et al. [13]. The current step length, sptq, is defined as

sptq “ λ
UB´ Z˚

´

uptq
¯

||µptq ||2
(13)

where UB is the current upper bound of Problem (1), and Z˚
´

uptq
¯

is the objective function value of

Problem (10) with the current Langarean multiplier vector uptq. The step length constant value, λ, is
discussed in Section 4. Finally, the Lagrangean multiplier vector for the next iteration is updated, as
for Formula (9).

4. Computational Results and Conclusions

In this section, we present the computational results from applying the modified subgradient
optimization procedure with some variations of the initial step length constant, λ0. The procedure
is operated on 1500 instants of P3AP of sizes n “ 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 30, 40, 60, 80.
Each problem size consists of 100 instants. All cost coefficients cijk where i, j, k “ 1, 2, . . . , n are
integers sampled from a uniform distribution between 0 and 100. The dataset can be reached via
www.math.psu.ac.th/html/th/component/content/article/75-person_detial/124-sutitar-m.html.

The purpose of the modified subgradient optimization procedure is to generate the best lower
bound for Problem (1). The procedure provides different lower bounds according to different λ0, even
though all problems have the same actual size. The best lower bound found by this procedure is much
better than the initial lower bound generated by the admissible transformations, see Burkard [19].
However, in the procedure in Magos and Miliotis’s paper [5], the authors considered that λ0 “ 1.85
at the root node of the branch and bound tree. For other nodes, the author considered two factors

effecting the value: the magnitude of the duality gap, π “
lower bound
upper bound

, and the location of the node,

denoted by ρ, with respect to the root of the tree. After several tests, their results are presented in
Table 2.

Table 2. The initial step length constant λ0 presented by Magos and Miliotis [5].

π ě 0.95 0.95 ą π ě 0.7 0.7 ą π ě 0.6 0.6 ą π

ρ ď 10 1.15 1.35 1.65 1.85
10 ă ρ ď 20 0.60 0.70 0.80 0.90
20 ă ρ ď 30 0.50 0.60 0.70 0.80

30 ă ρ 0.35 0.55 0.65 0.75

In our implementation, we show lower bounds behavior for the different cases of λ0. Figure 1
depicts the average of the percentage increase of the lower bound when λ0 “ 1.85, 1.5, 1 and 0.01 are
employed. After applying the modified subgradient optimization procedure, the lower bounds of all
instants were increased from the initial lower bound generated from an admissible transformation.
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However, the figure still indicates that, if a problem size is smaller, a higher λ0 should be employed.
On the other hand, for a bigger problem size, a smaller λ0 should be used.
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Table 3. The average percentage of increase of the lower bound for the P3AP generated by the modified
subgradient optimization method with different λ0-values.

Problem λ

size 0.001 0.01 0.05 0.075 0.1 0.3 0.5 0.75 1
5 19.383 21.886 23.360 23.517 23.388 23.664 23.629 23.677 23.688
6 24.604 27.864 29.917 30.169 30.292 30.348 30.342 30.249 30.347
7 29.387 32.801 35.053 35.311 35.422 35.513 35.490 35.505 35.521
8 34.668 38.362 40.744 40.958 41.054 41.104 41.115 41.091 41.086
9 37.907 41.616 43.939 44.171 44.253 44.263 44.309 44.313 44.288
10 42.018 46.064 48.332 48.497 48.585 48.653 48.642 48.639 48.588
12 47.469 51.489 53.501 53.517 53.668 53.686 53.679 53.682 53.665
14 51.941 55.728 57.421 57.646 57.676 57.667 57.668 57.673 57.632
16 56.453 59.814 61.398 61.394 61.476 61.472 61.472 61.480 61.398
18 60.624 63.762 65.060 65.104 65.101 65.104 65.118 65.089 65.087
20 63.162 66.230 67.383 67.366 67.414 67.420 67.408 67.371 67.265
30 74.366 76.614 77.174 77.197 77.177 77.175 77.166 77.031 76.950
40 81.060 83.725 84.042 84.051 84.043 84.028 83.899 83.818 83.573
60 93.747 95.043 95.160 95.180 95.169 95.133 94.999 94.516 93.945
80 104.453 104.469 104.510 104.525 104.491 104.428 104.174 103.484 102.454

Note: Each bold value shows the highest average percentage of the increase of the lower bound for each
problem size

Table 4. The average number of iterations in the modified subgradient optimization method for each
problem size with different λ0-values.

Problem λ

size 0.001 0.01 0.05 0.075 0.1 0.3 0.5 0.75 1 1.25 1.5 1.85
5 349.7 62.2 45.2 40.2 42.0 54.8 48.2 49.8 60.7 54.4 55.8 88.6
6 366.4 80.0 59.4 60.7 60.6 63.1 64.3 68.7 76.5 75.6 73.2 97.2
7 386.0 91.8 69.8 68.9 68.8 75.0 76.0 79.2 90.4 87.3 83.5 105.6
8 380.8 101.1 76.1 75.6 76.1 83.2 87.4 89.2 99.9 96.5 94.2 111.0
9 360.2 108.4 78.3 80.4 80.6 84.3 90.0 95.4 103.2 99.2 96.0 108.0

10 383.5 110.3 80.9 80.0 82.0 90.0 93.6 97.7 107.4 104.2 100.6 110.5

12 371.0 120.0 85.4 86.5 89.5 97.2 98.1 107.2 116.7 113.2 109.2 108.4
14 378.5 127.3 90.2 93.9 97.2 99.8 106.1 115.5 121.3 120.6 115.6 111.4
16 381.5 132.2 93.3 96.5 98.5 104.3 113.2 117.8 130.0 122.5 120.8 111.3
18 364.3 136.0 101.9 100.5 101.0 108.9 115.7 121.4 133.5 131.7 125.8 116.8
20 356.3 141.1 100.9 102.0 103.7 113.5 121.3 125.4 138.1 132.3 126.2 112.1
30 322.2 162.5 111.8 116.5 115.9 125.7 129.7 140.5 152.9 150.1 146.7 114.4
40 296.6 172.8 121.4 124.6 125.2 139.0 144.3 150.7 168.9 163.4 156.7 119.2
60 264.7 204.4 137.2 141.5 139.2 152.7 162.2 172.6 192.6 189.0 184.4 131.1
80 247.8 242.3 154.0 152.2 152.9 170.6 182.8 189.3 249.0 218.0 200.2 148.1

Note: Each bold value shows the lowest average number of iterations.

Since a P3AP is an NP-complete problem [1], each problem has its own properties and it is not
easy to find a global solution for this problem. The only known algorithm for finding the global
optimal solution for this problem is a branch and bound algorithm. The efficiency of the algorithm
depends on the best lower and upper bound found by the algorithm. The subgradient optimization
method is one of the methods used for generating a good lower bound for the problem. The method
can be applied to the root node or a leaf of the branch and bound tree. Some conditions used in the
method may lead to an optimal solution. The exact value for some constants in the method need
computer experiments, and the best choice will be made. For our experiments, the variant values of
the initial step length constant λ0, the most suitable are best chosen in the interval [0.1, 1] for small
problem sizes, when n ă 20, and [0.05, 0.1] for bigger problem sizes, when n ě 20.
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