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Abstract- In this paper, impulsive Nicholson’s blowflies model with linear harvesting
term is studied. By using the contraction mapping fixed point theorem, we obtain
sufficient conditions for the existence of a unique positive almost periodic solution.
In addition, the exponential convergence of positive almost periodic solution is
investigated.
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1. INTRODUCTION

The dynamic behaviors of biological models are very important research

topics. In 1980, Gurney [1] proposed the following delay differential equation
X' (t) = —ax(t) + bx(t — 7)e "

to describe the population of the Australian sheep-blowfly and to agree with the
experimental data obtained by Nicholson in [2]. Since this equation explains
Nicholson’s data of blowfly more accurately, this model and its modifications have
been now referred to as the Nicholson’s blowflies model. The theory of
Nicholson’s blowflies model has made a remarkable progress[3-10,16-19,21-23].

The assumption that the environment is constant is rarely the case in real life.
When the environmental fluctuation is taken into account, a model must be
nonautonomous. Due to the various seasonal effects of the environmental factors in real
life situation, it is rational and practical to study the biological system with periodic
coefficients or almost periodic coefficients. Many authors [4,6,7,10,16-18] have studied
nonautonomous differential equations with periodic  coefficients of the above
Nicholson’s blowflies model and its generalized models. Recently, L. Berezansky
[9] pointed out an open problem: How about the dynamic behaviors of the
Nicholson’s blowflies model with linear harvesting term.

In the natural biological systems, there exist many impulsive phenomena. If
impulsive factors are introduced into biological models, the models must be
governed by impulsive differential equations. The theory of impulsive differential
equation has been well developed [11-13].

In this paper, motivated by the above mentioned facts, we will study the
following impulsive Nicholson’s blowflies model with linear harvesting term
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X'(t) = —a(t)x(t) + Z b ()Xt —7)e O _HMx(t-7), t=t,

(1.2
AX(t,) =c x(t, ) +h,, t=t,,
where t eRt <t keZ, kIirp t, =10, Ax(t,)=x(t)—x(t), X(t) = x(t.),

a(t),b.(t), A(t), H(t) e PC(R, R) and a(t),b (t), 4 (t),H(t) are positive bounded almost
periodic functions(i=1,2,---,n), PC(R,R)={x(t)|x:R—R,x(t) is continuous for
t=t,x(t), x(t,) exist and x(t)=x(t)}. The admissible initial condition associated
with equation (1.1) is

x(t)=¢(t)>0 for te[-7,0], 7>0, ¢eBPC([-z,0],R"),

where  BPC([-7,0],R")={#|4:[-,0] >R" is bounded piecewise left continuous

function with points of discontinuity of the first kind }.

A function x(t) is called the solution of equation (1.1) if the function x(t) is
defined on [-7,+0) and satisfying (1.1) for t>0. For a given initial function
pe BPC([—r,O],R*), by [15] we know that (1.1) has a unique solution x(t) = x(t;¢)
defined on [-7,+x) and satisfying the initial condition: x(t;¢) =¢(t) for te[-z,0].

In the study of biological systems, an important problem is concerned with
the existence of positive periodic solutions or positive almost periodic solutions.
Many authors have investigated the existence of positive periodic solution by using
Krasnoselskii cone fixed point theorem and Mawhin's coincidence degree theory.

The almost periodicity is closer to the reality of biological systems. In this
paper, we aim to obtain sufficient conditions that guarantee the existence of unique
positive almost periodic solution of model (1.1) by using contraction mapping fixed
point theorem. We also investigate the exponential convergence of positive almost
periodic solution by means of Liapunov functional. For the impulsive Nicholson’s
blowflies model with linear harvesting term, we give answers to the open problem
proposed in [9] by L. Berezansky. The results of this paper are valuable in
applications, which complement the previously obtained results in [3-10,16-19,21-
23].

2. PRELIMINARIES

We denote  B={t |t, eR,t, <t ke Z, lim t, = oo}

Definition 1. ([13]) The set of sequences {i! |t =t , —t,.k,icZ,t B} Is said to be

uniformly almost periodic if for arbitrary >0 there exists relatively dense set of
¢ -almost periods common for any sequences.

Definition 2. ([13]) A function x(t)e PC(R,R) issaid tobe almost periodic, if:
() The set of sequences {t, |t, =t —t.k,ieZ,t, B} is uniformly almost periodic.

(if) For any £>0 there exists real number §>0 such that if the points t' and t”
belong to one and the same interval of continuity of x(t) and satisfy the
inequality |t'-t"|<& ,then |x(t")—x(t")|<e.
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(ili) For any &>0 there exists relatively dense set T such that if »eT, then
|x(t+o)-x(t)|<e for teR satisfying |t—t, [>¢c,keZ.
The elements of T are called & -almost periods.

In this paper, for any bounded function f (t), we denote

f=supf(t), f=inf f()-

teR

We make the following assumptions:
(C,) The bounded almost periodic functions a(t),b.(t), 3.(t), H(t) satisfy o<a<a(t)<a,

O<b <b()<b, 0<A<BM)<B.0<H<HM)<H (i=12--n).
(C,) The set of sequences {t,|t, =t —t..k,ieZ,t, B} is uniformly almost periodic,
and 'an It —t|=6,>0-

K+i

(C,) The sequence {c,} is almost periodicand -1<c <0, keZ.
(C,) The sequence {h,} is almost periodic and there exists constant m>0, such
that 0<h <m, keZ.

Consider equation

{x'(t) =-a(t)x(t), t=t, 2.1)
AX(t)=cx(t,), t=t,.
The Cauchy matrix w(t,s) of (2.1) is defined as follows: ([13])
exp(—j:a(u)du), t , <s<t<t,
W(t, S) = K t
H(1+ci)exp(—fsa(u)du), t,, <S<t <t <t<t,.
i<

Equation  (2.1)  with  initial  condition X(t,) = X, has a unique
solution x(t;t,, X,) =W (t,t,)%, -

Lemma 1. ([13]) Let the conditions (C,)-(C,) hold. Then for each £>0, there exist
g>0,¢ <¢, relatively dense sets Tof positive real numbers and Q of natural
numbers , such that the following relations are fulfilled:

()at+w)-at)<e, |bt+o)-bM)|<e, |Bt+o)-Lt)|<e, [Ht+o)-H{)|<s teR weT;
(i) Jc.,-cl<e, qeQ,keZ;

(iii) |h.,—h|<e, qeQ,keZ;

(iv) |tf —a)|<gl, qeQ,weT keZ.

Lemma 2. ([13]) Let the condition (C,) be satisfied. Then for each L >0, there
exists a positive integer N , such that i(s,t)<N(t-s)+N, where i(s,t) is the
number of the points t, in the interval (s,t) of length L.

By Lemma?2,we get the following Lemma 3.
Lemma 3. Letthe condition (C,) be satisfied. Then for L =1, there exists a positive

integer P, such that i(s,t)<2P, where i(s,t) is the number of the points t, in the
interval (s,t) of length 1.
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Lemma 4. Let the conditions (C,)-(C,) be satisfied. Then, the Cauchy matrix W(t,s)
of (2.1) satisfies 0<W(t,s)<e?", t>s, t,seR.
Proof. Because W(t,s) is expressed as follows

exp(—J':a(u)du), t, <s<t<t,
W (t,s)=1 « .
H(1+ci)exp(—La(u)du), t, <S<t <t <t<t,.
-]

From the condition (C,) -1<c, <0, kez, we have 0<1l+c <1, VkeZ.

k

Thus, it follows that o <JJ(+c) <1
=

Hence we get

0<W(t,s) sexp(—jta(u)du) Sexp(—jtgdu)ze’g“’s), t>s, t,seR.

By the Lemma 3 in [11], we have the following Lemma 5.
Lemma 5. Let the conditions (C,)-(C,) be satisfied. Then forany £>0, t>s, tseR,

t—t|>e,|s—t|>e,keZ ,there exist relatively dense set T of &-almost periods
of the function a(t) and positive constants E>0,7>0, such that for weT it

follows that

—E(t—s)
W (t+o,5+w)-W(t,s)|<cEe 2 .

Let X={ x(t) x P(C F is almost periodic function} with the norm
|| =sup|x(t)|, then X is Banach space.
teR

It is easy to verify that x(t) is the solution of equation (1.1) if and only if x(t)
is the solution of the following integral equation

x(t) = j_tww (t,s) {Zﬁ: b, (s)x(s —7)e A —H (s)x(s - r)} ds+ > W(t,t)h,.

<t

We define operator A: X — X
(AX)(t) = J';W (t,s) {i b, (s)x(s —7)e AC) _H(s)x(s - r)} ds+ Y W(tt)h,.

<t
It is clear that x(t)e PC(R,R) is the almost periodic solution of equation (1.1) if
and only if x is the fixed point of operator A.

Let

2mP 1 &b
— g_

= + —
1-e* aeiF f
We make assumptions:

6) (3Rt

M
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(SZ) ﬁ < ZtﬁeiﬁiM 1

(S,) cM+h <0, keZ.

It is easy to check the global existence of the positive solution x(t)=x(t;¢) for
equation (1.1) defined on [-r,+00) with the admissible initial condition
X(t;9) = p(t) >0 for te[-r,0].
Let

={¢|¢eBPC([-r,O],R*),0<¢(t)<M,te[-T,O]}.
Now we prove that every solution x(t) = x(t;¢) of equation (1.1) with initial function
¢<U° is positive and bounded.
Lemma 6. Assume that (C)-(C,) hold. If (s,) is satisfied, then every solution
x(t) of equation (1.1) with initial function g<u® satisfies

0<x(t)<Mm forall t>0.
Proof.  For te[-7,0], x(t)=¢(t)eU® and 0<g¢(t)<M . Hence there must exist an
interval (0,T,) = (0,+w) suchthat x(t)>0 for te(0,T,).
For impulsive point t < (0,T,), If 0<x()<M, then
X(t) =(1+c ) xt)+h <(I+c )M +h <M and  x(t) =(1+c,)x(t)+h >0,

which implies  0<x(t)<M.

We claim that 0 < x(t) <M for te(0,T,). (2.2)
Suppose the claim (2.2) is not true, then there must exist a t <(0,T,) such
that xt)=M , xX(t))>0 and o<x(tt)<m for o<t<t.

Thus,

X' () =-a(t)x(t) + Zb (E)x(t; —2)e A —H(E)x(t; ~7)

<= a()x(E) + b ()x(G —r)e O (23)

i=1
+ 3 bx(t; —r)e B,
i=1

Since the function g (u)=ue?, ue[0,+0) reaches itsmaximum 1 at ,_1,
pe B

then we have x(t; —r)e 24 < ﬂi . (2.4)

e
By (2.3)and (2.4), we have

X'(t) < aM+Z[b—]:— [2mP _Z }i b _ _12mP_%<0,
e _e@

i=1 Ee E_lell

which contradicts x'(t;)>0. So theclaim (2.2) is true.

Hence, 0<x(t)<M for te(O,T).

Thus, there must exist an interval [T,,T,) < [T,,+) such that x(t)>0 for te[T,T,).
By the above similar arguments, we claim that
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O<x(t)y<M for te[T,T,). (2.5)
Suppose the claim (2.5) is not true, then there must exist a t; [T, T,) such
that xt)=M , xX(t;)>0 and o<xt)<m for T <t<t;.

Thus,
X'(t;) = —a(t;)x(t;) + Z by (t;)X(t; —7)e A —H (t)x(t; — 7)
=
<—a(t)x(t)+ Z b, (t;)x(t; — 7)e A@*t) (2.6)
=
<—aM+ Z bX(E —r)e A,
Note that Xt - T)elﬂiazr) <1, (2.7)

pe
By (2.6)and (2.7), we have B
A e i

which contradicts x'(t;)>0. So the claim (2.5) is true. Hence, 0<x(t)<M
for te[T,T,).

Repeating the above similar steps, we have  0<x(t)<M on intervals
[T, T.). [T, ), [T, T.)-. Thatmeans O0<x(t)<M for all t>0. The proof of
Lemma 6 is complete.

3. EXISTENCE OF POSITIVE ALMOST PERIODIC SOLUTION

Let
Q={x|xe X,0<x({t)<M,teR}.
Theorem 1. Assume that (C,)-(C,) hold. If (s) and (s,) are satisfied, then

equation (1.1) has a unique almost periodic positive solution in Q.
Proof. ByLemma4, we have o0o<w(t,t)<e?"% for t <t.

Thisand Lemma3 imply that

SRR B I o I B R
to<t t <t =0 \ t— 1<t <t—j =0 \ t—j-1<t, <t—j -0 1-e~*

Firstly, we prove that AQc Q.
For vwxeQ ,we have
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(AX)(1)
=[ w(ts) [i by (s)X(s —7)e ) —H (s)x(s - T)} ds+ > W (t.t)h,
> 3.1)

ti <t

:J‘;W(t,s)(zn:tﬁeﬂiwl _HJ X(S_T)ds+zw(t’tk)hk > 0.

<t

Again, we get
(AX)(t)
= J';W(t, s){zn: b, (s)x(s —7)e A _H (s)x(s —r)}ds + > W (t,t,)h,
i=1 t <t
n k (3.2)
<[ W(t.9)Y b (s)x(s—)e O ds +mY W (L)
< LW (t,s)zn:b_ix(s ~7)e s+ mY W (L t,).
i=1 <t
Since the function g (u)=ue™, ue[0,+wx) reaches its maximum % at ,_1,
Be A
then we have  y(s_p)e ¢ < L.
Be

From (3.2), we obtain B
(AX)(t) < j_‘wW(t,s)zn: B s m> W (t,t,)

i=1 Ee ty <t

nhot 2P
<y 1| W(t,s)ds+m

2 gel Wetssrm = (33)
< lr e 29ds+m _

i=1 ée I 1_ -
_1gb  2mP

aisfe 1-e*

Let weT,by Lemmaland Lemma 5, we can deduce that

[(AX)(t + @) — (AX)(t)| < K,e, Where K, is a positive constant.
Hence, (Ax)(t) is almost periodic. This and (3.1) (3.3) imply Axe Q.
So we have AQcQ.

Next, we show that A is a contraction mapping.
For vx,yeQ , we have
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[Ax=Ay]| = sup | (A - (AN

J';W (t,s) {Zn: b, (s)x(s —7)e A0 Zn: b,(s)y(s —7)e A®YED } ds

=sup
teR

[ W) (HE)X(s—) - H(s)y(s —r))ds‘

ds

< stuE {thw (t, s)iznl:|bi (S)X(s—7)e AW _p (s)y(s—7)e AV (3.4)

[ WES)HEX(s 1) - H()y(s - r)|ds}

ds

<sup {It W (t, S)Zb_i|X(S —7)e ALXET) _y(s_)e AlVET)
teR e i=1

[ WESHxE-7)- y(s—r)|ds}

=sup { j_tww (t, s)2[5%| B (s)X(s—)e A0 _ g (5)y(s— £)e AOVE

Js

+ﬁJ.;W (t,s) |X(S —-7)—y(s— r)| ds},

For the function g(x) = xe™™, it is easy to see thatg'(x) = (1—x)e™ .
Hence, by means of the mean value theorem, we get

|ﬂ| (S)X(S _ Z—)e*ﬂi (s)x(s-7) _ ﬁ| (S)y(S _ T)e—ﬂi (s)y(s—7)
~|@- 9 (AEX(s-1) - AE)Y(s )

=|@-&e |8 ()x(s—7) - B () y(s—7)],
where & lies between g(s)x(s—z) and g(s)y(s—r).

(3.5)

Since the function  f(x)=|@-x)e™|, xe[0,+x) has maximum f_ -1,

Then we get |(1-¢£)e | <1

Thus, from (3.5), we have
|ﬂi (s)x(s - T)e*ﬂi (s)x(s-7) _ ﬂl (s)y(s— T)e—ﬂi (s)y(s-7)

<|B(s)X(s=7) ~ B ()Y (s —7)|-

(3.6)

Hence, (3.4) and (3.6) imply that
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A=Ay

SSup{J't W(t,s)zn:(b_i|x(s—r)—y(s—r)|)ds+ﬁj't W(t,s)|x(s—r)—y(s—r)|ds}
teR - i=1 -
SSup{”x—y"Zn:b_ijt W(t,s)ds+ﬁ||x—y||ft W(t,s)ds}

teR i=1 e -
< sup{”x - y||Zn:b_,J't e ds+ H x— y||J't e‘a“‘s)ds}

teR i—1 - -

18— — 1

= “vI=Sb +Hlx=vl=

sup{ - o128+ - 1 |

1= &
=—(H+Zbij||x—y||.
a i1

From the conditionl(ﬁJan:b_ijd, we know that A is a contraction mapping. So the
a

i=1
operator A exists a unique fixed point x* in Q. Moreover, from the inequality (3.1),
we have (Ax)(t) >0 for vxeQ. Sothe fixed point x*eQ satisfiesx” = Ax* >0, which

means that x* is positive. This implies that equation (1.1) exists a unique almost
periodic positive solution x*(t) in Q satisfying 0<x’(t)<M . The proof is completed.

4. EXPONENTIAL CONVERGENCE OF POSITIVE ALMOST PERIODIC
SOLUTION

Theorem 2. Assume that (C,)-(c,) hold. If (s)), (S,) and (s,) are satisfied , then
every solution x(t) of equation (1.1) with initial function g<u® converges
exponentially to x*(t) as t— +wo, Where x*(t) is the unique almost periodic positive
solution of equation (1.1) satisfying 0<x*(t)<M .

Proof. From Theorem 1, we know that equation (1.1) exists a unique almost
periodic positive solution x'(t) satisfying o<x'(t)<M. Assume the initial function
of x@)is x(t)=w(@)>0 for —r<t<0.

Suppose x(t) is arbitrary solution of equation (1.1) with initial function geu®,
here 0<g(t)<M and x@)=gt) for —r<t<0.

By Lemma6, we know 0<x(t)<M for all t>0.

Consider the function
F(x)=x—g+(ﬁ+zn:b_ije“a xe[0,1].
i=1
Since F(O)=ﬁ+2":b_i_§<o, then there exists a constant 1e(0,1), such that
i=1
F(1)<0.
That is,
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ﬂ—g+(ﬁ+zn:b_iJe“<0 : (4.1)

i=1

Define the Liapunov functional
V(1) =|x(®) - x" (®)]e" -

For t=t, we have
D'V (t)

< Alx@®) - x" ®)]e" ~at)|x(t) - x ®)]e” (4.2)

+ ibi (t)x(t —7)e A=) _ ibi OX (t-7)e 2O —(HOX(t-7) - H D)X (t-7))[e™.

For t=t ,we have
V() =|x(t) - X (&)
:|1+ck||x(tk)—x*(tk)|e’”‘*,
V(1) =|x(t) - X (t,)]e* -
From the condition (C,) -1<c, <0, we know [l+c|=1+c <1, hence it implies that
V(L) SV (L) -

et — |X(tk) +c x(t)+h, —(x*(tk) +¢, X (t,) +h, )|€‘Mk

Let
h=M+ sup |¢(t) —y/ )|
For vt e[-7,0], we have
V(1) =[x(t) - X ()] e™ <|x(t) - X" )] =[a) —w () < sup [$(0) ~y (O] <M + sup [g() /()] =h-

Now, we prove that
V(t)<h forall t>o. (4.3)

Suppose that (4.3) does not hold true, then there must exist t*>0, K'ez* and
t'e(t,..t.], such that v@)=h, v(y<h for t<t’;and DVv()|_.>0.

It follows from (4.2) that
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0<DV()|_.
<AX(E) =X (@©)|e™ —alt)|x() - x"t")|e*

T ) AT N ()X (- 2)e MO —(HE)X(E - 1) - H )X (t —7))e™
i=1

= V() -a(t' )V (") (44)
+ Zn:(bi ()X —7)e A _p ()X (" - r)e-/’*")”“-”)—(H (E)X(E ~)—H ()X (' ~7)))e*
</I1:;(t*) a(t’\V (t)
[Zb(t WXt —7)e A _p ()X (t - 7)e A " \H(t X" —7)—H @)X (t —r)j et
_zlvl(t Y-a(t V(')
+[;;((tt) —e)e O () e PO 4 HEX(E o) - H X —r)} <
Using the mean value theorem, we get
B =) MO B (1 o) MO
=|@-me " (BE)XE -7)-BE)X (" ~7)) “s)

=|@-me||BEIXE -2 - [EIX - 1)|
<[BEIXE -7) - BE )X —7)|
= )Xt -7)-x"(t" -7,

where 7 lies between gt )xt -z) and g t")x (t" -7).

Hence, (4.4) and (4.5) imply that
0<D'V(t)]_.

<AV () —a(t' )V (t*)+(zn:

i=1

(b, ()Xt —2) =X (" =)|)+[HE XX —1) = H ()X (¢ —r)|je“
<AV (L) - aV(t)+( ( Xt —7)-x'(t’ —r)|)+H|x(t —7)-X'(t —¢)|j

H Xt —2)-x"(t" = 7)|e*
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Thus we get ,1_§+(Zn:b_i+ﬁJeﬂr >0, Which contradicts (4.1). So (4.3) holds true.

Hence we have v ()=|xt)-x'(t)e* <h forall t>o.
That is |x(t)—x*(t)|<he’)‘t for all t>0, which means that x(t) converges exponentially
to x’(t) aS t— +wo. The proof is completed.

5. APPLICATION

Now we give an example to illustrate our results.
Consider equation

X(V)= (90+Sm‘/_t)x(t)+(2+COSx/_t)x(t—T)e (1009 -0

(5.1)
+(i+%sin \/gtj x(t—r)e(“msﬁt)x(tT)—(i+—sm \/_tj x(t—7), t=t,

10 10 20
Ax(t,) =c x(t,)+h,, t=t,,

where a(t)=90+sinJ§t,b1(t):2+cosJ§t,ﬁ1(t)=1+isinJ§t,
2(t)— +—S|nJ_t L) = 4+cos/2t, H(t)——+—3|nJ_ta =1

1
¢ =—L4Lgin k,h, =—+—sm k., P=2.
210 V2 5 &

It is easy to calculate that
a=89,b =3,b =1, =0.26, 4 =0.24,b, =0.125,b, =0.075, 3, =5, 8, =3,H =0.15,

1 = &=
-0.6<c, <-04, 0.15§hksZ=m, H+> b<a:

2 _
M = 2mP l 2 bI ~1.05 ﬁ<z oM c¢M +h <-04x1.05+0.25<0.
- ae oy ,B. i1

By Theorem 1 and Theorem 2, we know equation (5.1) exists a unique almost
periodic positive solution x*(t) satisfying 0<x'(t)<M . Moreover, every solution x(t)
of equation (5.1) with initial function gecuU® converges exponentially to  x'(t)

ast — +oo, here y° :{¢|¢E BPC ([-7,0],R"),0 < g(t) < M,te[—r,O]}.

6. CONCLUSION

Impulsive phenomena exist extensively in natural biological systems,
almost periodicity is closer to real world. This paper has studied the almost
periodic impulsive Nicholson’s blowflies model with linear harvesting term. By
applying the contraction mapping fixed point theorem, we obtain sufficient conditions
for the existence of unique positive almost periodic solution. By constructing Liapunov
functional, we study the exponential convergence of positive almost periodic
solution. The dynamic behaviors have close relations to the harvesting term and
impulsive term. For the impulsive almost periodic Nicholson’s blowflies model with
linear harvesting term, we answer the open problem proposed in [9]. Our results
complement the previous results of some past literatures.
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