Mathematical & Computational Applications, Vol. 2, No. 2, pp. 85-90, 1997.
©Association for Scientific Research
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Abstract- A generalized equation of motion with odd nonlinearities is considered. The
nonlinearities of cubic and fifth crder are represented in the form of arbitrary operators.
The equation of motion, in its general form, may model a class of partial differential
equations encountered in vibrations of continuous systems. Approximate analytical
solutions are sought using the method of multiple scales, a perturbation technique.
Forced vibrations with viscous damping are considered. Frequency-response relation is
derived in its roost general form. Finally, an application to a specific problem is given.

1. INTRODUCTION

A new notation of expressing the nonlinearities i continuous systems has been
first proposed by Pakdemirk [1]. Quadratic and cebic nonlinearities of a general system
were expressed by arbitrary spatial operators. Free vibrations with damping were
cousidered for single-mode approximations. The analysis was generalized to mfinite
modes by Pakdermuli and Boyacs [2]. Primary resonances with forced vibrations were
considered in that analysis. Subharmonic, superharmonic and combination: resonances
were treated using the general model by the same authors {3]. Fmally, the same
notation was also used by Boyaci and Pakdemirli [4] for expressing the nonlinearities
of quadratic and cubic type. General sclutions were constructed using different
versions of the method of multiple scales.

In this work, we treat a general continuous-system model of odd nonlinearities
as follows

W+ gw+ LW+ e Clw,w,w)+* E(w,w,w,w,w) = F cosC 1

B(w)=0 at x=0, B,(w)=0 at x=1 )
where w(x,#) is the deflection, 4 is the viscous damping coefficient, F is the external
excitation amplitude and (2 is the external excitation frequency. L, C and E are the
linear seif-adjoint, nonlinear cubic and nonlinear fifth order operators respectively.
B, and B, are the linear operators for the boundary conditions. All operators are spatial
differential and/or integral operators. x and ¢ are the spatisl and time variables
respectively. The dot denotes differentiation with respect to time and the prime denotes
differentiation with respect to the spatial variable x. The equations of motion are m
dimensionless form. The nonlinear operators possess the property of being multilinear
as explained m more detail in previous work [1-4].
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For finding steady-state solutions of partial differential system (1), we use the
version of the method of multiple scales first propused by Rahman and Burton [5].
Damped vibratices with forcing are considered. Frequency-response relation is derived
in its most general form. Finally, the sclution algorithm is applied to a beam resting on
a foundation with odd nonlinearities.

2. GENERAL SOLUTION PROCEDURE

In this section, we will solve system (1) in its most general form. We follow the
analysis given by Boyact and Pakdemirli [4] for partial differential equations, which is
an adaptation of the method proposed by Rahman and Burton [5] for ordimary
differential equations. Defining a new time variable

T=021t 2)
and substtuting into (1), we have

Q%o+ gw+L(w)+eClw,w,w)+ e’ E(w,w,w,w,w)= FcosT

3
B, (w)=0a x=0, B,(w)=0 at x=1 )

where the dot now denotes differentiation with respect to the new variable 7 and
4= ;2. The response. damping coefficient, excitation amplitude and frequency are

expanded in terms of the small parameter ¢

w(x, T;6) = w,(x. T,

T T+ ew (T, T 1)+ e wy (e, T T ). (4)
H=¢eu +&°y,,  F=gF,

=gF 2° =0 +¢e0,+£%0, (5,6,7)

where 7, = 7 is the usual fast time scale and 7, = ¢7 and 7, = £°7 are the slow time
scales. Derivatives with respect to time are deficed m terms of the new vanables

didT =D, +¢D, +£°D, +..

2 2 ™2 2 2 (8)

d*/dT* = D; +2e D D, + £ (D} +2D,D, )+...
Expansion of 7 in eq. (6) is kept up to O(g). An expansion to O(e?) yields redundant
terms and requires compatibility corditions [4]. In search of approximate solutions, we
are directly attacking the partial differential system rather than discretizing the system
first and then applying perturbations. The former method has advantages over the latter
one [1,2,6-9].

Inserting eqs. (4)~(8) into eq. (3) and separating each order of ¢ yields the set of
equations

@*Diwy +L(w,)=0 (9)

&’ Diw, + L(w,) = —2@° D, D,w, — 0,Dw, - u,D,w,
- C(w,,w,,w, )+ FcosT,

(10)
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@’ Diw, + L(w, } = 26" DyDw, - &* (D} +2D,D, w, - 0,02w, - 20,0, D,w,
~a,Dyw, ~ p,Dyw, — u, Dow, = p, Dyw, — C(w,,w,,w,) (11)

= C(wy,wy,wy )~ Cw, , Wy, wy ) = B(wy, W, , Wy, Wy, W,)
Equation (9) possesses solutions of the form
w, = (A(T;, T, )e™ +cc)¥ (x) (12)
where cc denotes complex conjugate of the preceding terms and Yix) satisfy

LY)y~-a*Y =0
, , (13)
B(Y)=0 atx=0, B,{Y}=0 atx=1
The above boundary value problem is an eigenvalue-eigenfunction problem with o’
(Square of the natural frequencies of the system) the eigenvalues and Y(x) the
corresponding eigenfunctions. For contimuous systems, there are infinite number of
eigenvalues and corresponding eigenfunctions.
Substituting eq. (12) mio eg. (10) and finding the solvability condition at this
order, (see Nayfeh [10] for details of finding solvability conditions) we obtain

2i* D A= (0, ~ uiyA-3a, A4+ 12 (14)
where

a, = j}’C(Y,}",Y)dr, f= jYFdx (15)
3 U
For steady-siate solutions, requiring D, 4 = 0, writing the complex amplitude in its

polar form A = {1/2)a2” , separating the reai and imaginary parts, we have
3 ‘ 2

o, = é—axaz i-i\l;:i—«» i {16)

A solution at this order free from secular and resonant terms is

w, = (4*(1,)e*™ +ce)g(x) (17)
where @) satisfies

L{g)-9a'¢ = -C(¥,1.¥)

B(g)=0 atx=0, B,(¢)=0 amx=1l (18)

At order &°, we substitute solutions (12) and (17) into eq. (11) and find the
solvability condition

2N’ DA = (0, ~ mi)A~a,A*4* (19)
where
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a, = IY[C(Y,Y, ¢$)+C(Y,0,Y)+C(4,7,Y)+10E(Y,Y.Y,Y,Y)|dx (20)
(4]
In the steady-state D, 4 =0. Writing A= (1/2)ae”, scparating real and imaginary
parts, we have
E

o, = 16"682(1 5 4, =0 21)

Substituting o, and ¢, to equation (7), we obtain the frequency-response equation

)

. .3 7 S,
2% =w +£(zalazi—\;;;~—yf)+s Tg %4 (22)

The coefficients @, and «, are defined in their most general form in terms of the
arbitrary operators in egs. (15) and (20). For the specific forms of the operators, these
coefficients can be calculated with ease by evaluating the integrals. When ¢ is taken as
zero, the nonlinear result reduces to that of linear one.

The approximate steady-state solution can now be written as

1 1,
w=acosi_(.:u-é—:;gc:rl +-é-e'rfz)r+;5’j}’(x)

-

r (23)

1 1 i, X
+z~ea3ws’ o+ &0 +-2-£'cr: )f+3,8]¢{x)+0(£‘)

s

To summarize the algorithm developed, we have to solve the boundary value
problems appearing at each order of ¢ (i.e. egs. (13) and (18)) and then evaluate the
integrals to find the coefficients (egs. (15) and (20)). The general solutions (22) and
(23) can then be written for specific continuous systems.

3. AN EXAMPLE

In this section, we apply the geperal algorithmn to a simply-supported beam
resting on an elastic foundation with odd nonlinearities of cubic and fifth order. The
equation of motion for the problem is

i+ gu+u” +ku+ku’ +kut = F cosQt
u(0,1) = u"(0,#) = 0, u(Ly=u"(1,t)=0
where &, is the linear coefficient and %, and k; are the nonlinear coefficients of the
elastic foundation. Assuming that the vibrations are small (a weakly nonlinear system
with € a small parameter), we make the transformations

(24)

u=g"w, T=02t (25)
and substitute into eq. (24)
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2%+ [ +w” +kow+ e h,w® + ek, w' = FeosT
w(0,T)=w(0,T)=0, w(l,T)=w"LT)=0

where F = F/ ¢, Comparing eq. (26) with eq. (3), we define the operators

Liwy=w" +kw, Clwww)=kw , Ewwwww)=kw

(26)

(27)

We first solve the boundary value problem in eq. (13). With the above lmear

operator, equation (13) takes the form

Yiv "+‘(k1 . ml )Y- - 0
FO)=Y"(0)=Y(H)=Y"(1)=0

Solution of this eigenvalue-cigenfunction problem yields

Y{x) = +/2 sin nnx, w = \/n“ﬁ“ +k , n=123,.
Now, we can calculate the coefficient o, from eq. (15)

: -—jlf P = ——~!¢
0
Next, we solve the mund.ary value problem given m eq. (18)

p" +{k, ~ 9n* )¢ = -—Z«f:jic: sin® nzmx
$(0) = $7(0) = p(1) = § (1) =0

The solution is

S BJEk . ’“’k ;
T e 7T X 4 nX
16(n" 7" +k );mn N 160907  ~ k )sm "

Having determined Y(x) and ¢(x), we can calculate o,

A {
K, 1
32 { ‘r «+k T omtnt -k,

Q= ; Y(3k,Y ¢ +10k,Y° jdx = )+ 25k,
0

We now write the frequency-response relation for this case
( ] f2 \

9
W St el
2 =n'rn +k1+£[\8k2a %\’a ,u,}!

E I 1 ) 25
o o2 2 ( . "“""‘”k 4
F [512 nirt vk 9ntnt -k, "16

(28)

(29)

(30)
(3D

(32)

(33)

64

The approximate solution may be writien by substituting first eq. (33) into eq. (21), eq.
(30) into eq. (16} and then the resulis together with eq. (29) and eq.(32) into eq. (23).
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4. CONCLUDING REMARKS

We showed the essential sieps of solving a general odd nonlinearity problem.
Approximate solutions of the general equation has been found using a special notation
developed previously. Cubic and fifth order nonlinearities are represented by arbitrary
spatial operators. The method of multiple scales was used in the analysis. Frequency-
response relations and approximate steady-state solutions were found in their most
general form. A nounlinear beam problem was solved using the algorithm developed.

Only the primary resonances were considered m the analysis. Secondary
resonances can be considered as an extension of the method.
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