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Abstract: In this 'MJrk, the nonexistence of the global solutions of a quasilinear hyperbolic boundary
value problem with dissipative term in the equation is considered. In one space dimension this initial
value problem models the behavior of a riser vibrating dl1e to the effects of\Wves and current.
The nonexistence proof is achieved by the use of the so called concavity method. In thiS method one
writes do""n a functional which represents the norm of the solution in some sense. Then it is proved

that this functional satisfies the hypotheses of the concavity lemma. Hence one concludes that one
cannot continue the solution for all time by sho•.•.•-ing that this functional and hence the norm of the
solution, lMJuldotherwise blow up in finite time.

The nonexistence of global solutions of quasilinear hyperbolic equations \\Ii.th dissipative
terms in the equations are investigated by 1. L. Lions [1], R. T. Glassey [2], H. A. Levine
[4,5,6], and O. A. Ladyzhenskaya and V. K. Kalantarov [81 and many others. Levine,
(7] has a survey article with many relevant references (see also Straughan [9]).

In [4] Levine studied the initial value problem for the following "abstract" wave equation
with dissipation

in a Hilbert space where P, A I and A are positive linear operators defined on some dense
subspace of the Hilbert space and f is a gradient operator with potential F. It is
assumed that (u,j(u» ~ F(u) for all u in the domain of F. The global nonexistence
result he proved is the following: If the energy is initially negative then the solution can not
be global This is the same result that he proved in the case that A=O (see [6].) To our
knowledge this was the first global nonexistence theorem for nonlinear wave equations
with damping.



However, the functional used for the investigation of initial-boundary value problems
with no dissipative terms in tb.e boundary conditions can not be continued directly to the
problems with the dissipative terms in the boundary conditions. Whenever damping is
present, one must allow for the pOSSIbilitythat the data restrictions could be more severe
than without damping.

The tool used in this work is a Lemma to be found in [3,6,8]. From now on we'll call it
the Concavity Lemma. The most crucial point in the application of this tool is to find a
functional that represents the dissipation on the boundary and satisfies the conditions of the
Concavity Lemma.

tp(O)
to = .:0P'(O) (1.2)

The proof ofthis lemma is quite easy. One observes that from (1.1) we have (\fI-r)" sO

as long as "P > O. Since the differential inequality tells us that tp is convex and
tp'(O) > 0,tp must be increasing and hence cannot change sign. The rest of the lemma
follows from the observation that qrr must be below its tangent line at (0, tp-r (0» and
that the "lope of thi••line is negative. TIlerefore the line and hence tp-r must cross the t
axis. The line does so in time to while the fimction tp-r does so in a possibly
earlier time t 1.



u/1+ClU,+2{Junn - 2[(ax +b)uxL + ~.(u:)= - [(ax+b)u;L - j3 (u~u.)x = j(u),

(l,x) E (O,T)x[O,l]

In the above T> 0 is an arbitrary number, a, fJ,a and b are nonnegative numbers.
The equation (2.1) models the behavior of a riser vibrating due to effects of waves and
current [10].

In this section using the method of concavity «(2], [3]), it will be shown that under certain
conditions on f, Uo and up the IBVP (2.1 )-(2.3) has no global solutions.

Let the function j(u), \-vith its primitive F(u) =: rf(~)d'; satisfies the inequality

a
uf(u) 2::: 4(2r +-2 + l)F(u),

where y > 0 is a suitable numbt;r Then we can prove the foHowing theorem on the
nonexbi:ence of the global solutions of the IBVP (2.1)-(2.3).

Let the flmctions Uo(x), u1 (x) satisfy the inequalities

fuou1thc> 0,
o

f22 flZ I( 4
13 u~u~ dx+ utdx+- J(ax+b)u~ dx

o 0 2 0

+2 f (ax +b)U~2 dx +2 j3 JU;2 dx- 2 fF( uo)dx :.s; 0
o 0 0



Let feu) satisfies the condition (2.4) with
a l+a

y> 32fJpI2 - -4-

where PI is the smallest eigenvalue of the operator

condition.

(}2
- &2 as to satisfy the Dirichlet

1

fll~dx
to = 0 _

2r Juou1dx
o

1

\)i'(t} = -y[<tXI)rr-I<I>,(t):: -2r[~t)rY-1 f uU,dx (2.10)

,¥W(t) == r(Y + l)[~t)rT-l <I>'(t) 2 - y[<I>(t)rr-I<I>w(t) =

'-r[¢(t)rr-2[<IY(i)<I>(t)-(y + 1)<1Y(t?]



,¥'(O):::: -2y[et:(O)rr-l fuoultcb:
o

<1Y(t):::: 2 fUUtLtt ,
o

<f>'"(t)'--:2 fUUltdx+2 f u;dx=4(y +1) f u;dx+{fUUttdx-(2Y +1)2 Ju,2dx 1 . (2.16)
o 0 0 0 0 J

From the Cauchy-Schwarz theorem, the sum of the terms in the bracelet in (2. l7) is
nonnegative. Hence to prove the inequality (2.14), it suffices to prove that

Multiplying both sides of (2.1) by Ii. and integrating over the interval [0,1J after
application of integration by pans when necessary, one has

-'2J(QX+b)U;dx- f(QX+b)u.~ete+ fu!(u)ete .
o 0

On the other hand the fact J(!!. - U
f
)2 dx?- 0 implies

o 2



af2 a (2 (2 (2'
G(t)~--- u dt-2(2r+---+1)Ju, -2/3 JUJOdt-2/3 JU:au;dt-

40 2 0 0 0

-'2J(ax+b)u;dx- [(ax + b)u:dx + [uf(u)dx.
o 0 0

Next we multiply both sides of (2. 1) by ut and integrate over the region [0,1]. Then we
integrate with respect to t, over the interval [0, tJ to obtain:

Ju;dt = -la f f u,2dxdt-2fJ [u;'dx-2fJ fu;,u;dx -If(ax+b)u;dt-
o 00 0 0

1 • f+J.. f (ax+b)u~·dx+ fll~dx+2 F(uo)dx.
2 0 0 0

G(t) ~ --~ f u2dx+2fJ(4r +a + 1) f'u;'{ft+ f u/(u)dx-2(4y +a +2) f F(u)dx-
40 0 0 0

-(4y +a +2)[fJ fU~2U;2dt+2fJ Ju;2dx+2 J(ax+b)U~2dx+
o 0 0

++ r{ax+-b)u~4dx+ ru~dt+2 JF(uo)dx]
- 0 0 U

) 1

G(t) 2 -~ J u2dx+2f3(4y +a +1) Ju;"dx
4 0 0

82
Since PI is the smalles.t eigenvalue of the op~rator - &2' from Courant-Weil theorem

one obtains



J1.1
2 f U

2 dx s: fu~ dx .
o 0

Hence the inequality (2.23) becomes

G(r) 2: [2fi,ul\4r + a + 1)- : J fu2dx
o

and for 2 PJ1.; ( 4y +a + 1) - ~ ~ 0 one immediately obtains G(t) 2: 0 .
4

, 1
As an example of the problem above for a :;.i ' j3 == a == b == 0.01, let us consider the

initial boundary value problem

lOOu" + 50ur + 2u= --2[(x + l)uxl, + ~(ll~), .••-- [(x + l)u;L - (u~u,)., == 2500u~,

t E (O,n, x E [0,1]

25 6
F(u) == -u .

6

The hypotheses of Theorem 1 are satisfied by the initial data in (3.3), and the blow up
time is estimated as

1

fu2dx
• 0

to::::: __ 0_,). == lOGr. .

2y J uou1dx
o

Using a suitable numerical scheme, the accuracy of this upper b01md for the blow up time
can be investigated.
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