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Abstract: In this work, the nonexistence of the global solutions of a quasilinear hyperbolic boundary
value problem with dissipative term in the equation is considered. In one space dimension this initial
value problem models the behavior of a riser vibrating due to the effects of waves and current.

The nonexistence proof is achieved by the use of the so called concavity method. In this method one
writes down a functional which represents the norm of the solution in some sense. Then it is proved
that this functional satisfies the hypotheses of the concavity lemma. Hence one concludes that one
cannot continue the solution for all time by showing that this functional and hence the norm of the
solution, would otherwise blow up in finite time.

1. INTRODUCTION

The nonexistence of global solutions of quasilinear hyperbolic equations with dissipative
terms in the equations are investigated by J. L. Lions [1], R. T. Glassey [2], H. A. Levine
[4, 5, 6], and O. A. Ladyzhenskaya and V. K. Kalantarov [8] and many others. Levine,
[7] has a survey article with many relevant references (see also Straughan [9]).

In [4] Levine studied the initial value problem for the following " abstract” wave equation
with dissipation

Pu, + Au, + Au= f(u)

in a Hilbert space where P, A, and 4 are positive linear operators defined on some dense
subspace of the Hilbert space and fis a gradient operator with potential #. Itis
assumed that (u, f(#))= F(u) for all u in the domain of F. The global nonexistence
resuit he proved is the following: If the energy is mnitially negative then the solution can not
be global. This is the same result that he proved in the case that 4=0 (see [6].) To our
knowledge this was the first global nonexistence theorem for nonlinear wave equations
with damping.



However, the functional used for the investigation of mitial-boundary value problems
with no dissipative terms in the boundary conditions can not be continued directly to the
problems with the dissipative terms in the boundary conditions. Whenever damping is
present, one must allow for the possibility that the data restrictions could be more severe
than without damping.

The tool used in this work is 2 Lemma to be found m [3,6,8]. From now on we'll call it
the Concavity Lemma. The most crucial point in the application of this tool is to find a
functional that represents the dissipation on the boundary and satisfies the conditions of the
Concavity Lemma.

Let us begin by stating Concavity Lemima [6].

Lemma 1.
If a function
Y()eC*,  W(1)20,
satisfies the mequality
PO - 14+ 2)F(1)] 20 (L1)

for some number » > 0, then the following hold:

If W(0)>0, ¥(0)>0 then for the number
Y(0)

tG = ﬁr(o) (12)
There exists a positive mumber ¢, <7 such that,as ¢ — 1,
W(£) = oo (1.3)

”

The proof of this lemuna is quite easy. One cbserves that from (1.1) we have ( ¥y <0
as long as ¥ > 0. Since the differential inequality tells us that ¥ is convex and
Y'(0)>0,¥ must be increasing and hence cannot change sign. The rest of the lemma
follows from the chservation that ¥ must be below its tangent line at (0,%¥77 (0)) and
that the slope of this line is negative. Therefore the line and hence W™ must cross the ¢
axis. The line does so in time ¢, while the function W™ does so in a possibly
earlier time 7,
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2. THE INITIAL-BOUNDARY VALUE PROBLEM

Let us assume that the mitial boundary value problem

B

Uy + s, +2 P, — 2f(ax +b)u, ] +5-0) o @ +B)l] - i), = f(u), 5
(t,x) € (0,T) x [0,1]

w(t,0y=u(t =0, u (t,0)=u_(t)=0, te(0,7), (2.2)

u(0,x) =u,(x), #(0,x)=u(x), xel0]] (2.3)

has a local classical solution.
In the above 7 >0 is an arbitrary number, @, #,a and b are nonnegative numbers.
The equation (2.1) models the behavior of a riser vibrating due to effects of waves and

current [10].

In this section using the method of concavity {[2], [31), it will be shown that under certain
conditions on  f,z, and u, the IBVP (2.1)+(2.3) has no global solutions.

Let the function f(x), with its primitive  F{u) = rf (&£)dE  satisfies the inequality
0

W ()2 42y + = +DF (),  VYue R (2.4)

where y >0 is a suitable number Then we can prove the following theorem on the
nonexistence of the global solutions of the IBVP (2.1)~(2.3).

Theorem 1.

Let the functions  u,{x}), »,{x) satsfy the inequalities
ruou,;b: >0,
¢

02 a2 1 74
& uu ug dx+ u; dx+3 (ax+b)uj dx

]

A .
+2 f(ax +bulde +2 3 } ullde~2 J)F(uG Ydx <0 (2.5)
0 0 0

47



Let f(u) satisfies the condition (2.4) with
L@ l+a
EETY VR

2
where g, is the smallesi eigenvalue of the operator -~ 5 8 to satisfy the Dirichlet

condition.
Let
1
_‘-ugdx
t, = == : (2.6)
2y Jugudx
a
Then there exists a ¢, < ¢, such that
lim ruzdx =i, 2.7)
Proof: Let
Py =[axe)]” (2.8)
where
Nt) = f u(x) dx . (2.9)

0

Differentiating (2.8) and (2.9) with respect to # one has

wi(r) = o] o) = <2y fee)] " Jun,dx (2.10)

0

and

() = y(y + D[] D) - y[n)] o) =

—y[e)] 7 [@r (@) - (7 + V()] (2.11)
Now let us prove the inequalities
¥(0) <0, and W(t)<O for 120 . (2.12)

Using (2.10) one finds
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¥(0) = ~2y[e0)] f 4yt (2.13)

0
and one deduces the resulting imequality ‘F*(0) < 0 using the hypothesis of the theorem.
Tovprove the mequality “¥*(0)< 0 it is sufficient to show that

H=d()X)~(y + () 20. (2.14)
To prove it let us first compute the dedvatives @7(¢) and D*(¢).
One has

V() =2 Juu,de (2.15)
0

o

A
) =1 _ruu,,dx+2 | ulde=4(y +1) J ufdx#-:{fuu,,dx -2y +1)2 Jiufdx] . (2.16)
0 1]

0 0 0

Using (2.15) and (2.16) i (2.14) one obtams
H(t)_=.4()f+1){_[:u2dx _[:ufdx——[_’:uundxy}+2¢‘(1{J:uutd\:“(2;«' +1)_’Zufdx] C@17)

From the Cauchy-Schwarz theorem, the sum of the terms m the bracelet m (2.17) is
nonnegative. Hence to prove the inequality (2.14), it suffices to prove that

G(t) = fzmadx—(?;;' + 1) Julde=0 . (2.18)
0

o

Multiplying both sides of (2.1) by w« and integrating over the interval  [0,1] after
application of integration by parts when necessary, one has

,ruu,,dxz«—a J)uu,a"x«Z,H fui,dxwz,[? _ru;u;dx
a 0

a 0

-2 f(ax +bYu dx - r(ax +byulde + fuf(u)dx : (2.19)

0

On the other hand the fuct (g— —u,)’dx >0 implies
o
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Hence one obtains

G(t)z—gfuzdx—2(27+g—+l) w248 Juldc-275 Jululdc-
4 0 2 0 9 0

~2f(ax+b)ufa§c— _r(ax +byulde + J)uf(u)dx . (2.20)
(1] 0 o

Next we multiply both sides of (2.1) by », and integrate over the region [0,1]. Then we
mtegrate with respect to ¢, over the mterval [0, 7] to obtam:

fufcbc = -2 !J) udcdt -2 _ruf,dx-?.ﬁ fuf,ufdx —2f(ax+b)ufdx-

0 0 0 L] 0 [}

- £ . «

~ Nac+byutde-2 | Fde+ 8 Jupurav+25 [urde+2 [+ by e+
O 9

0 0 3
' :

+5 f (ax+byude+ ujdc+2 ,rF(ug)dx . (2.21)
= 0 0 ¢

Using this relation i {2.20) and omitting some of the positive terms one obtains

C(t) > - %— fuzcbc +28 Ay +a +1) I ul de+ qu(u)dx—2(4y +a +2) fF(u)dx—
0 0 0

0

~(dy +a +2)[p j‘u,',zu;,':cbc-i—Zﬂ _,rugzabc+2 f(ax +bYyu dx+
0 0 0

1 &
= f(ax+b)ug‘,‘dv+ Jutde+2 rF(u0 Ydx] . (2.22)
= 0 o
Using the hypotheses of the theorem one has

1
G(t) = ~% ruzdx+2ﬂ(4;/ +o +1) fu;dx . (2.23)
(1} 0

22

. . . . 4 . .
Since 4, is the smallest eigenvalue of the operator — Pl from Courant-Weil theorem

one obtams



ul ruzdx < Jul dx . (2.24)
0

¢
Hence the meguality {2.23) becomes

G(r) 2 [2ui(4y +a +1)- %1 fu’dx (2.25)
o

) a . .
and for 2 fu’(4y +a +1)- :‘20 one immediately obtains G(7)2 0 .

3. AN EXAMPLE

As an example of the problem above for @ = — , f =a=5=001, let us consider the

(SR

initial boundary value problem

1 , .
100w, +50u, +2u_ ~2[(x+1u,] + 0 - [Ce+ ] —(uu,), =2500u",

(351)
te(0,T), xel0]]
=10 u, =0, te{0,7), x=0,1 (3.2)
u(0,x) = u,(x)=sin(zx),  u,(0,%)=u(x)=00l x e [01] (3.3)

In the above

s ) 25
f(w)=254, F(u)z?us.

Hence for the real number y =1/8 and forall = e R', the nequality (2.4) is satisfied.

The hypotheses of Theorem 1 are satisfied by the imtial data in (3.3), and the blow up
time is estimated as
1

g
t, = = 1007 . (3.4)
2y Jugu,dx

(1

Using a suitable numerical scheme, the accuracy of this upper bound for the blow up time
can be investigated.
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