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Abstact
A controllable system described by line..>rdifferential equatiOl1 with uncertainties in the
initial condition and forcing function is COllsidered, We aim to find a cartrol which
minimizes a cost function having terminal and integral parts, Using game theory and cmvex
analysis, under some sufficient cond.'tioos, the optimal control is obtained,

{
;(t) := A(I)x(? + B(t)u(t) + C(t)v(t)

x(to)=XoES,IE[to,tf],

where x(t) E ~n, u(t) E P c jRl'. and V(/) EQ c \Rq such that P and Q are known
compact sets, The continuous matrices A(I), B(I), and C(/) have compatible
dimensions, The coutrol input u(t) and disturbance input V(I) are not known, Even
though the initial condition Xu is not known the compact set S which it belongs to is
known,

Let us associate the sy'Stemgiven by Eqn (I) with the cost function
II

J[u(.),xo' v()] == h [x(1 f }J+ f g{I,u(t }}it (2)
'0

where X(I f) is the value of solution of Eqn, (l) at t == tf ' h: ~ n .~ \Ris convex, and
g:{lo.lf Ix P ~ !Ris continuous ."ith respect to I and convex with respect to x, It is
desired to select control function u minimizing the cost J Also it is given that the
state vector x in the system given by Eqn.(l) is not observable, therefore, u(t)will be
designed viJithout having feedback from it,

If u(t) E P is measurable with respect to tin [to,t f } then the function u is called an
admissible control Let us denote the set of admissible control fimctions by U.
Assuming that the unknown inputs are measurable and taking values from the set Q we
denote such set of unknown inputs by V.

Now we can restate the problem in the terms defined above: It is desired to find
UO E U such that



min sup J[u(),xo'v(.)]= sup J{u°(.),xo,v(.)]=:Jo (3)
.(.)al xoe8.v();¥ ><,e8.v(.)<V

The function UO satisfYingEqn. (3) is called guarantt"€ldoptimal control.

In this paper we present sufficient conditions fur the solution of problem given by (3),
and we present illustrative examples.

If the initial position is known, i.e. S == {xo}, then the problem (1)-(3) is a

programmed minimax problem and can be investigated by methods of [1- 3] .

Schmitendorf [4] gives sufficient conditions for nonlinear systems with unknown initial
vector Xo and unknown parameters, but the conditions obtained there are very
complicated.

In I5] the problem (1)-(3) without integral term in the cost functional was
investigated.

.
fundamental matrix for the homogeneous system X(I) == A (I )x( 1j, and let h' (x)
denote the complex conjugate of h(x) defined by h' ( /): = sup [ <I, x > -h( x)].

rE9t"

where <: .•. > denotes the scalar product. Let L:-:: {I E gtn: h' (/) <: +oo}. It can be shown
that if h(x) satisfies the Lipschitz conditions in gtn then the set L is bounded. In order to
express the results compactly also define

'I

fP2(/): == .Jrnax <: 1,(1)(tf' .)c(.)v > dr,
vE{?

'.

and
r '/ l

J(x,u(.):::: SUpllf7(£) + (t,x) + Ig(t,U(/»d/J.
teL "

{
X<t) == t1l(t j ,t)B(t)u(t)
x(/o):= 0

Utilizing Cauchy formula to obtain the solution ofEqn. (1), and from the property of
interchangability of inner and outer maximums we can express the problem given by
(3) in terms of the notations introduced above:
Fortbe system (4) find t/ EU satisf)ing



The initial condition and uncertainty in the problem given by (1)-(3) have been
transferred into the supremum. Due to the definition of functional J, compared to
(1)-(3) the solution of(4)-(5) is sometimes casier. We, however, analyze the problem
(1)-(3) next.

m~rJ(e, 4>(tf ,1)B(t)U(t»)dt +Jg(t,u(t»)4t 1== 1~;{(e,$(t [,t)B(t}U) + g(t,u)fu ,(6)
Lt. "..J t.

?l~rlf(e, <1>(tf ,t)C(t, V(t»)dt] == f r~~(l,<I>(t f,t)C(t, v»)dt,
to '0

~i?(l, <1>(tf ,t)B(t'1u) == (l,<1I(tf ,t)B(t)u· (t,f,»)

Let X and Y be nonempty metric compact sets, an<Ilet fXxY-;91 be a continuous
function. Then. the pair (xo,Yo'1 E X X Y satisfying

min maxj(x,y) -;::max minj(x,y'1
"EX yEl' >'El' ".x

holds. In Eqn. (9) the outer minimum and outer maximum pair is a saddle point. The
vector Xo which ll".inimi7.es the lefthand side of(9) and the vector Yo which maximizes
righthand side of (9) are called .mininl.!lX and maximin respectively.

Lemma 2: Let (xo,Yo) be a saddle point. Then the vector Xo minimizes the function
m(r) '" j(x,yo)' 0



If Yo is a maximin vector qualifying as a maximum for the righthalld side of (9) then
the vector minimizing m(x) = j(x,yo) is not necessarily the minimax vector.
Consider the example below.

{
0 . O~x~y:::;l

j(x,y)= '
x-y ; O~y~x~l

min maxj(x,y) == minx == 0
XEX yE1 xeX

max minj(x,y)=maxO==O
yE1 xeX yEY

{
0 ; o~ x::;: 0.5

g(x) == .x-O.5 ; O.5~xsl

and the set of minimizing x is computed as {xi 0 ~ x ~ o.s}. Only x=O is the minimax
element in this set 0

Theorem 1: Let the function <pO be concave. Then the guaranteed optimal control
can be computed from

lI(x) == sup[(e,x)-hO(O].
tEL



JO ;= min max J{u(.),£)
.OEU tEL

( '/ ) '/
J(U(.),£):: 9'<£) + £,1 <t>(tl,t)B(t)u(t)dt + Jg(t,u(t»)dt

~ ~

Since the function J(u(.),f) is linear \vith respect to u(.) and., due to the hypothesis,
concave with respect to £, then acrording to the minimax theorem [7} there exists a

saddle point (uO(.),eO) and

( fl If r 'I -j}JO
:;: max~~(f)+ miU

l
£,J4l<lf,t)B(t)u(t) +Jg(I,U{t»di

tEL 'l _(.)EU \ •
~ lC J

{

~ 1

=~~ tp(e)+ [,~~~n[(e,B(/)u)+g(t,U)}itJ

~ ~
tp(e) + f(£0, ¢(t/ ,t)B(/)li(t»)tit + Jg(t,u(t»)it

~ ~

!wJ}[/ to, J <I>(t /'I).B(i)U(l)dt) + Jg(t,U(l»)dt 1:;: 1£0,J«Il(1f ,/)B(1)1I0 (t)dt)
\'0 I. J\t,

If

+ f 8(1,UO (t»)dt (12)
10



Corollary 1: Let the fun,,1:ion g(t,u) be strictly convex with respect to u. Then uO(/)
satisfying the condition (11) is the optimal minimax control.

Proof Since the function g(t,u) is strictly convex with respect to u, the function
UO{t) minimizing the expression (II) is unique. According to Lemma 2 it is the
optimalcontrol. 0

Theorem 2: Let the function lP< i) be convex, L be the convex hull of {il, ...,i k }. In

the sequel it will be denoted by co{.e 1" .. ,!. k }. Then

t t
- '" -0 ~ ° d h 0 ° ° 0) .• hwhere f =: L,..Plf;, £ =: L,..PI ft an t e vector P =: (PI ,P2 ,· .. ,pt maxUIUZes t e

#=1 i=]

Proof Note that by the hypothesis of the theorexr.., the fjJnction J(u{.),f) is convex
with respect to f. the foUowing equalities can be shown easily:

max: J(u{.),t) =: max J(u(.),lt)
leL=co{ll.~l,J ,e!I .••!}

k

max: J(u(.),fl) =: max !:pJ(uO,f;).
I e{I •..•tI pEp #=1

t
JO := rein max LPJ(u(.),l,) .

• (.)eU pep 1=1



The expression under minimax is convex with respect to u and linear with respect to p.
Using the minimax the9fem we obtain

Using Lemma 1, the expression (12) can be obtained from (16). The remaining part of
the proof uses substitution of 'j G tor £0 in that of Theorem 1.

Corollary 2: IfL is the convex hull of {.el,fz,· ..,.etl, the function 9'(l) is convex,

and the function g(t,u) is strictly convex with respect to u then the control UO(t)
obtained from (13) is optimal minimax control. 0

Here P::o{u:ljull~]}, Q::o{v :1~~1}, S~{X::O(XI'XZ): O~xl~l, O$xz$l},
h(x) ::0 h(x1 ,xz) ::0 Ixil + xz, and g(t,x):<= 0 are given.

(1 t - ')cI>(t, r) = 0 1 '

( £1
(f)z £)=-+1,

2
(J'(£)::O (J'l (£) + 'Pz (£),



J
. .,.-2

UO(t)= ~/)2

l-Z(Z-t)
.JI + 2(1-- t)

1

J == Ix1(1)1 + f (1/(/) + U(t»):tt .
o

Here P=[-l,l], Q=={O}, h(x) = h(X1,X1}::: lXII, and g(t,u)==u1+u are given.
Therefore

L =dom h' == {(tl.O):llll $l} =: CQ{(-l,oMl,O)},



Maximum value in (18) is attained at p~ 0= 1 and JO =: ~~; hence p~ =: 1, p~ =: O.
12

Thus UO ( ,) =z _!. is minimax control, and optimal value of functional is equal to 23.
2 12

o
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