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Abstact

A controliable system described by lmear differential equation with uncertainties in the
initial condition and forcing function is considersd. We aim to find a control which
minimizes a cost fimction having terminal and integral parts. Using game theory and convex
analysis, under soine sufficient conditions, the optimal control is obtamed.

We consider a linesr system whose model is given by the differential equation

x(2) = A()x () + BEOu(t) + COL) W
x(t,)=x, €8, teft,,t/]

where x(¢) e R", w(¥) € P < R?, and v(7) e 0 < N such that P and O are known
compact sets. The continuous matrices A(7), B(¢), and C(¢) have compatible
dimensions. The control input u(7) and disturbance input v(7) are not known. Even
though the initial condition x, is not known the compact set § which it belongs to is
known.

Let us associate the sysiem g:ven by Eqn. (1) with the cost function
Ju(.),x, v( J1=h [x(1, J}+ j’ gle.u(t))r @

where x(7,)is the value of solunon of Eqn. (1) at r=1,, h:R" — Ris convex, and
&:t,,1,1x P —> Ris continuous with respect to ¢ and convex with respect to x. It is

desired to select centrol function « minimizing the cost J. Also it is given that the
state vector x in the system given by Eqn.(1) is not observable, therefore, u(¢) will be
designed without having feedback from it.

K u(r) e P is measurable with respect to #in [#,,7, Jthen the function # is called an

admissible control. Let us denote the set of admissible control functions by U .
Assuming that the unknown inputs are measurable and taking valies from the set Q we
denote such set of unknown inputs by V.

Now we can restate the problem in the terms defined above: It is desired to find
u° €U such that
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min - sup  Ju(),x,,v() }= sup S (), %0, v() }=2J° 3)

u)U goesvi ) eS i ja

The function «° satisfying Eqn. (3) is called guaranteed optimal control.

In this paper we present sufficient conditions for the solution of problem given by (3),
and we present illustrative examples.

If the initial position is known, ie. §={x,}, then the problem (1)3) is a
programmed minimax problem and can be investigated by methods of [1-3].

Schmitendorf [4] gives sufficient conditions for nonlinear systems with unknown initial
vector x, and unknown parameters, but the conditions obtained there are very
complicated.

In {5] the problem (1)-(3) without integral term in the cost functional was

investigated.

Let us present the following notation to use in the sequel. Let ®(¢,1) denote the

fundamental matrix for the homogeneous system ;c( t)=A(1)x(t), and let A°(x)
denote the complex conjugate of A(x) defined by A*(/):=sup[</x>-h(x)],

xeR"”
where < -, > denotes the scalar product. Let Li={/ e R": A" (1) <+x} ¥ can be shown
that if /(' x) satisfies the Lipschitz conditions in R” then the set L 15 bounded. In order to
express the results compactly also defme

‘P;(I)f"" 12‘2? < 1>d)(tf,r)xo =
7
o, ()= ;fnvqe%x <4, ®(,,0)C(z)v > dr,
(9(1):' ‘p)(l) +(Pz(1)“'h'(1,)p
and

I t ’]
J(x,u()) = :quLW) +(,x)+ j' gt u(t))ar J .
Let x(7,u(')) denote the solution of

{t(t) =@, ,0)B()u(r) @

x(t,)=0

Utilizing Cauchy formula to obtain the solution of Eqn. (1), and from the property of
interchangability of inner and outer maximums we can express the problem given by
(3) in terms of the notations iniroduced above:

For the system (4) find 4° €U satisfying
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min T[x(t, 1O} )] = Tt w* O} O] = 7° ®)
The initial condition and uncertainty in the problem given by (1)-(3) have been
transferred into the supremum, Due to the definition of functional J, compared to
(1)-(3) the solution of {4)-(5) is sometimes casier. We, however, analyze the problem
(1)-(3) next.

Lemma 1: [1-2] The following are true:

L1

: T
min) (6,00, B @) + | 206100 ] = Jmin]{(£.9(¢, 0BV + gt 1)} (6)

v()eg

max :f'(e,qxz . ,f)C(t,v(I)))le = j'%x(e,w D0V, %)

| % I3

and #*(7,#) computed from
trégx(t’, (1, ,:)B(z)u) = (e,«b(:, ,t)B(t)u'(r,Z))

qualifies as & minimum for the leflhand side of (6). 0

Let X and Y be nonempty metric compact sets, and let £XxY—%R be a continuous
function. Then, the pair (x,,y,) € X x ¥ satisfying

S, ) s f(x0,30) < f(%,5,) ®
forall x € X and y €V is called a saddle point. If there exists a saddle point, then

min max f(x,y) =max minf(x,y) ®

holds. In Eqgn. (9) the outer minimum and outer maximum pair is a saddle point. The
vector x, which minimizes the lefthand side of (9) and the vector y, which maximizes

righthand side of (9) are called minimax and maximin respectively.

Lemma 2: Let (x,,y,) be a saddle point. Then the vector x, minimizes the function
m(x) = f(x,y,). O

Lemma 2 is a consequence of Eqn (9).

23



If y, is a maximin vector qualifying as a maximum for the righthand side of (9) then
the vector mininizing mf{x)= f(x,y,) is not necessarily the minimax vector.
Consider the example below.

Example: Let X =Y =[0,1] and fbe defined by

U
f(x’y)‘{x~y ; 0<y<x<l1

Then, clearly,
min xggxf(x,y) = minx =0
and x, is the unique minimax element. Similarly

max min f(x,y)=max0=0

and each y, €[0,1]is a maximin element. If y, = 05 is selected then

0 ; 0<x<0S

g(x)z{x~o,s . 05<xsl

and the set of minimizing x is computed as {x[ O<x< 0,5} . Only x=0 is the minimax
element in this set. 0

Let us reconsider the problem given by (1)-(3):

Theorem 1: Let the function @(.) be concaye. Then the guaranteed optimal control
can be computed from

5 1
J = rx}g{q)(c’) +I’ﬁi§{[[’ Dz, ,i)B(t)u] + g(t,u)}dtJ (10)

The guaranteed optimal control #°(.) solving (3) satisfies:
minf(£°, (¢, )B(w) + g(t,0)] = [(¢°. @i, 0DBEW () + g @] (D

where £° is the vector maximizing expression (10).
Proof: 1t is known that [6]

hix) = iz:?[(e, )=k (©)}
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Considering Lemma 1, this can be written as

o ") >
J =min max J{ul(.), %)

J@(),0 = o) + <e, { @(rf,r)B(z)umdr> + [ gt un)ar

Since the function J{u( ),#) is linear with respect to #() and, due to the hypothesis,
concave with respect io £, then according to the minimax theorem [7] there exists a

saddle point (u°(.),€°) and
o __ . ~
d = max 132}1 J(u( ). 6.

Considering Lemma 1 we can write

I’
7= maX\ o)+ mw

[/ ef w(:,,:)B(:)u(:)>dy + f et u{t))dt }
ig i
[ i
= maxi @(f) + frz)ei;l{(f,ﬂ(t)u) + g(t,u)}it}

2zL

According to Lemma 2, the function #°()
o{2) + I(I ‘@fr, J)B(i)u(t)}dt + f glt, u(y)t
minimizes the following expression:
uueuK I W1, 1)Be)u(tyar > .f &, "(t))‘i‘] <£°’ j q’(’f”)B(i)u°(t)¢if>
+ jg(t,uo(t))dt (12)

This equation with Lemma 2 imply

?[%ﬂ{(f“,Q(! £ 1)BlEw) + g(t,u)} - {{.e",q»(t, 2B (1) + g(t,u"(t))}}lt =0.13)
s
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Since the integrand is nonnegative we obtain (11) from (13). 0

Coroftary 1: Let the function g(#,u) be strictly convex with respect to u. Then #°(?)
satisfying the condition (11) is the optimal minimax control.

Proof: Since the function g{(f,u) is strictly convex with respect to u, the function
u’(t) minimizing the expression (11) is unique. According to Lemma 2 it is the
optimal control. £l

Let vs define the set 7 by

&
P= {p = (P, Dy, D) 20 =L, B, 20}

i=1

Theorem 2: Let the fusction @(£) be convex, L be the convex hull of {e,,...,e,}. In
the sequel it will be denoted by coff,,...,¢,}. Then

Jo= 1333‘[2 polt)+ fggpn{(?,m  DBE) + g(t,u)]dt}. (14)

If #°(¢) is the guaranteeing optimal control then it satifies

minl(7°, (1, )B(1)u) + g(0,1)] = (0,00, .HBEOW° () + g(e.u° (1)) (15)

x k
where £ =3 pf,, €' =73 p'¢, and the vector p° =(p{,p;,..,p;) maximizes the
i=1 i=1

righthand side of expression (12).

Proof: Note that by the hypothesis of the theorem, the function J(u(.),£) is convex
with respect to ¢ . The following equalities can be shown easily:

B J@(),0)= max Ju().L,) (16)

and

mex J@(),t,) = max Y p ()., (7
L)

Thus we obtain

'3
0 __ . . -~
J -ggg%xizﬂ,pif(u(-),f,)-
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The expression under minimax is convex with respect to u and linear with respect to p.
Using the minimax theorem we obtain

J° ~me&xmmZp,J(u( %L, (18)

PEP u{yeU

Using Lemma 1, the expression (12) can be obtained from (16). The remaining part of
the proof uses substitution of 7° for ¢° in that of Theorem 1.

Corollary 2: I L is the convex hull of {£,,£,,..,2, }, the function ¢(f} is convex,

and the function g(¢,u#) is strictly convex with respect to u then the control #°(r)
obtained from (13) is optimal minimax control. 0

Example 1: Consider

x €fo,1]

{x,=x2 . , = i <2, M1, x(0)=x, x0)=x], { " efo]
xz k)

X, =u, +v
and
J(x(1)) = ixl(l)! + X, ().

Here P={ufuj<1}, 0={v :M<1}, S={r=(x,x) 0<x <1, 0sx,<1},
h(x) = h(x,,x,) = x,|+x,, and g{t,x) =0 are given.

Direct calculation shows that

. 0:lel<1e,=1
h (l"fz):{' ) l !‘ 2
+0; otherwise |

ltr]

@, 7)= ( 1)

@.(0)= x?:{%?f]e %+ x?:{%ﬁj(e‘ +1x; .

£
4’2(!):?““1 3
(&) =, () +o,(4),

and
L={¢,.L.)]e]<1e, =} =cofa 17,0 -y}
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From the expressions above @(£) is convex and L is polygon set. Therefore

. ‘, /(e,‘ ’(1 1—:\(14‘(:))
Jo*aﬁgﬁx‘e?ﬁﬂ“”“‘“?“‘”\ x)j o 1 Nu)®

0

=1+ min max { o)+ %— + j (z,u, O+ -0, + 1]y, (t))dt}
L 0

w()el £ ef-L1)

) 3
=1+ max min,( P, [% & —;— + ﬁ——u, () +1u, (!)]dtJ +

PeP u()el ‘
cpp+d [l se-ou <z)]dz)}

The control #°{¢) satisfying (13) is unique, therefore by Theorem 2 the control
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uo(t) . ;}1-}(2 —;‘L)‘.T

} =22 <)

1+2(1-1)

is minimax control. O

Example 2: Consider the system

{’f" 5 refor) st 5(0) e[} %(0)ef-L]

=

with cost functional
J =l ()] + j:(uz(t) + u(t)yr .

Here P=[-11], 0={0}, &(x)=h{x,,x,)=|x,], and gt.u)=u’ +u are given
Therefore

sll<i =0
+0; otherwise

PO=H(t,0)=]

5 ?

L=dom 1 = {(t, 0}t 1} = cof(-10, 00},
and
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o() = () (=0, () =2t

After direct calculation we use Theorem 2 to obtain

S [max {p,:p( )+ p,e(1) ~—~H(p1 P fr-1) H] dr}

P
‘ma’{”%"’ o ’%} (8)
and
min{{(e? - 2 )+ pe o} =[(p! - PN - D110 + () (19)

Maximum value in (18) is attained at p; =1 and J' = «{E hence pl =1, p; =0.

Minimum value in {19) is attained at

u

o(r)z_(p," —-pfi(r—l)ﬂ -

SR

u'(7) = —;:— is minimax control, and optimal value of functional is equal to — o
0
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