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Abstract- This study aims to determine the technical efficiency levels of the enterprises 

active in the “Manufacture of Basic Iron and Steel and of Ferro-Alloys” sector in 

Turkey. The inputs and outputs are deterministic in classical Data Envelopment 

Analysis, so the changes in exchange rate, inflation rate, etc. aren’t considered, and the 

precautions for future inconsistencies are not foreseen. This leads to critics of 

deterministic Data Envelopment Analysis models. In this paper, the additive model 

developed depending on the Banker, Charnes and Cooper (BCC) model was extended 

by chance constrained programming formulations in order to overcome the 

insufficiencies in deterministic Data Envelopment Analysis, and the technical analysis 

of “Manufacture of Basic Iron and Steel and of Ferro-Alloys” sector was performed. 

 

Key Words-  Efficiency, data envelopment analysis, chance constrained programming 

 

1. INTRODUCTION 

 

Data Envelopment Analysis (DEA) is a technique used in the evaluation of the 

efficiencies of decision making units (DMUs) that use multiple inputs for producing 

multiple outputs. Up to now since it has appeared, DEA has found widespread 

applications in various areas and still goes on its advancement with an interaction to 

many techniques. In fact, DEA is the most popular approximation which developed very 

fast and has widespread applications especially in the operations research and other 

science areas.  In the study the micro-level data pertaining to the mentioned sector 

which have been compiled by the Turkish Statistical Institute (TurkStat) have been 

evaluated, and it should also be noted that these data are the most recently published 

annual data. Using the micro-data of the production units for the year 2004, the 

technical efficiency of the Manufacture of Basic Iron and Steel and of Ferro-Alloys” 

sector was analyzed according to the deterministic DEA BCC Additive model and 

Chance Constrained DEA (CCDEA) Additive model. 

 The contribution of the study is two dimensional; under the light of previous 

scientific studies conducted, using micro-data on the basis of production rather than 

panel data and applying the deterministic DEA and CCDEA method, the measurement 

of technical efficiency was studied and the results were compared. On the other hand, 

by applying the methodology to the “Manufacture of Basic Iron and Steel and of Ferro-
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Alloys” sector, technical efficiency of the sector was measured. The layout of the article 

is as follows: in the second part basic DEA approach is presented, in the third part 

Additive DEA models are explained. In the fourth part, the chance constrained DEA 

models are presented. In the fifth part, determination of input and output variables are 

presented, and in the sixth part, a real data application and the results of this application 

entirely are discussed and interpreted. 

 

2. BASIC APPROACHES IN DEA 

 

 Following the first study concerning the production efficiency by Farrell [1], 

numerous methods were used regarding the measurement of efficiency. The most 

widely employed methods for setting an efficiency margin are the econometrical 

stochastic frontier approach (SFA), and the data envelopment analysis, which is a 

mathematical programming method. 

 SFA is based on an econometrical model and it requires the determination of a 

functional structure. Thus SFA is found to be limiting, yet the SFA method is preferred 

in many studies for its separation of statistical errors from errors caused by inefficiency 

[2]. 

 Data envelopment analysis is used frequently in the sectors where different input 

and output units are utilized, since it is based on the production technology. In contrast 

to the econometrical methods, DEA is widely used because it does not require 

functional structures such as the production function, cost function etc.  

 The main forms of DEA models and their extensions include the CCR model 

[3], the BCC model [4] and the additive models [5]. In these treatments, the input and 

output data are always assumed to be deterministic but the surveys in Lovell [6] and 

Banker and Cooper [7] extend this to the introduction of chance (statistical or 

probabilistic) elements in DEA [8].  

 This classification can be further divided into three on the basis of orientation as 

non-oriented, input-oriented, and output-oriented. The oriented models in the data 

envelopment analysis can be named as input reduction and output augmentation models. 

The objective of the former is how to reduce the inputs to obtain the given level of 

output, while the objective of the latter is to obtain the highest possible level of output 

with a given input level [9]. 

 The BCC model had been proposed by Banker, Charnes and Cooper. The BCC 

model measures the efficiency of decision making units under the assumption of 

variable return-to-scale. Hence, pure technical efficiency can be obtained with the BCC 

model under the assumption of variable return-to-scale. 

 

3. BCC-ADDITIVE MODEL 

 

 Basic approaches such as CCR and BCC models conduct separate evaluations 

concerning input and output. But in the additive model there is no input-output 

orientation, the model evaluates these two types of orientation together. Additive model 

was developed in 1985 by Charnes et al [5]. 
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 In this paper, the “return-to-scale” assumption of BCC model is included into the 

additive model in order to develop BCC-Additive model, and its formulation is as 

follows; 

 

BCC-Additive Model 
s m

+ -
max

r i

r=1 i=1

s + s   

Constraints: 

0

1

0

1

, , 0, , ,

1

















 

  

  

 









n

ij j i i

j

n

rj j r r

j

r i j

j

x s x i

y s y r

s s r i j

               (1) 

where 

0

1, ,  inputs

1, ,  outputs

1, ,  the collection of DMUs

and  are column vectors of slack variables

sample input matrix

sample output matrix

column vector of inputs of the partic

r i

ij

rj

i

i m

r s

j n

s s s s

x

y

x

   







 













0

ular DMU investigated

column vector of outputs of the particular DMU investigated

weight of input and output

r
y







 

 The total of λ’s is equal to 1 in model. 

 The actual purpose here is to calculate the farthest point to the inefficient 

decision unit on the efficiency margin, assessing the excess input is
 and output deficit 

rs together. The efficiency level can not be obtained at the end of this model, however 

for the decision units, being efficient or not can be assessed on the basis of the values of 

the slack variables, and it can also be stated that there is no Pareto-Koopmans efficiency 

[5]. 

 If both idle variables are found to be is
 = 0 and rs = 0, that decision making unit 

is deemed to be efficient according to the additive model. If any one or both of the slack 

variables are not zero, it is stated that the total of the values of the non-zero ones defines 

the amount of inefficiency in inputs and outputs. 

 In brief, the additive model is a model which is based on the variable return-to-

scale, and which associates data envelopment with inefficiency analysis of Charnes-

Cooper. 
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4. CHANCE CONSTRAINED MODEL DERIVED FROM BCC-ADDITIVE 

 

 The main critics about DEA are that the inputs and the outputs are assumed to be 

deterministic in this method. An efficient DMU can be inefficient in case of the 

presence of a random variable. Studies on CCDEA have been started and continuing in 

order to eliminate the problems arising because of randomness.  

 The chance constrained programming models have first been introduced by 

Charnes et al. [9]. The first CCDEA model was developed by Land et al. [10]. Sengupta 

[11-13], Land et al. [14], Land et al. [15], Olesen and Petersen [16], Olesen and 

Petersen [17], Cooper et al. [18], Li [19] etc. have conducted studies on CCDEA. The 

LLT model was developed by Land et al. [14], and the OP model was developed by 

Olesen and Petersen [16]. Regarding all the studies performed, the BCC-Additive model 

has been shifted from being deterministic to chance constrained in this paper. 

 Hereafter, the CCBCC-Additive model derived from BCC-Additive model is 

illustrated. The covariance between inputs and outputs is ignored.  
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  = [ j ] is the weighted column vector determining the best application of the 

evaluated DMU. 1- α shows the probability of observed outputs not to be higher than 

the maximum output, or observed inputs not to be less than the minimum input. 

 Land et al. [14] assumes that inputs and outputs are random, and outputs show 

cumulative normal distribution depending on the inputs in order to reach CCDEA. The 

following transformations occur when the output constraint is considered in model 2: 
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u  will also have the same distribution with y . 
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As normal distribution is symmetrical, it becomes 
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  is the standard normal distribution function. 
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 Different envelopments of the data are obtained through assigning different 

values between 0 and 1 for α. 
1( ) u    in Eqn. 8 becomes Eqn. 9 in chance constrained DEA model. 
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 Regarding the assumption by Land et al. (1993) in order to reach CCCDEA 

model, ,cov( ) 0i j ijy y   . Then 2 2

j  . 

At the end, Eqn. 10 is achieved; 
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The following transformations are realized in input constraint as it is in output 

constraint. 
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v  has the same distribution with x . 
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Then; 
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And as normal distribution has symmetrical features, Eqn. 15 is reached. 
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Different envelopments of the data are obtained through assigning different values 

between 0 and 1 for α. 
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Then the input constraint in chance constrained DEA will have the form in Eqn. 19. 
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At the end Eqn. 20 will be reached. 
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Eqn. 21 shows the deterministic equation of the model derived from the BCC-Additive 

model using formulations between Eqn. 4  and Eqn. 20  
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   is the standard normal distribution function and  1  denotes the values 

from “standard normal cumulative probability” table. 
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 The operator σ is the standard deviation.  1

i
 is equal to 0 in case 0,50i  . 

This independence assumption gives rise to the diagonal matrix with zero off-diagonal 

elements [14]. 

 For the level of α other than 0.50, the effect of the chance constraint moves the 

envelope. That is, it does not lie within the constraint belonging to the valid subset (in 

the envelop), but is located at a certain distance from these points. Chance constraints 

do not provide confidence intervals around the mean.   can be set at different levels 

(0.01, 0.05, etc.). 

 Another information obtained in CCDEA models, in contrast to other methods, 

is the level of output buffer and input buffer pertaining to DMUs which were found to 

be inefficient.  

 In other words, it guarantees that the possibility of observed outputs exceeding 

best outputs is equal to or lower than a threshold level [20]. 

 The stochastic structure of the CCDEA model allows setting a more flexible 

production frontier when compared to DEA. On the other hand, the findings obtained 

through both methods follow a matching path. The CCDEA structure described above 

can be applied to all DEA approaches. 

 

5. DETERMINATION OF INPUT AND OUTPUT VARIABLES 

 

 In the study the micro-data compiled by TurkStat from enterprises belonging to 

the sub-sector of “Manufacture of Basic Iron and Steel and of Ferro-Alloys” (NACE 

Rev. 1.1
1
 - 27.10) under the “Primary metal industry” sector (NACE Rev. 1.1 - 27) 

through the “Structural Business Statistics Enterprise Survey” are considered. The data 

refers to 2004 as it is the last available and published data by TurkStat. The inputs and 

the outputs depending on the available data are as follows: 

 Inputs (in Turkish Lira – TL) 

 Manufacture costs: Value of equipment, raw and auxiliary materials purchased 

to be used in production of goods and services 

 Employment costs: Total personnel cost divided by the number of employees 

 Other costs: Value of goods purchased to be sold without further processing, 

rent expenditure of the enterprise, rent expenditure of machinery and equipment, 

payments made to subcontracted firms, financial expenditures 

 Energy costs: Purchase of electricity, expenditure of fuels (heat, steam, hot 

water, natural gas) used during the production process 

 Outputs (in Turkish Lira – TL) 

 Production revenues: Income from sales of manufacturing industry’s production 

 Other revenues: Income from wholesale trade, retail trade, service activities, rent 

income, financial income  

 The value of the exports: Export value of goods 

                                                 

1
 NACE Rev.1.1: Statistical Classification of Economic Activities in the European Community, Revision 

1.1 
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6. APPLICATION 

 

 Firstly, the deterministic analysis using Eqn. (1) was performed considering the 

data pertaining to inputs and outputs. Then, a new analysis was performed using Eqn. 

(21) for α=0.05 in order to make it possible to apply chance constrained DEA model. 

 54 firms meeting the DEA requirements for the sector were covered in the 

analysis. The data obtained was analyzed using the program LINGO 11. 

 

Table 1. Summary statistics per Input and Output variables concerning 54 DMUs 

VARIABLES (in TL) Std. Dev. Mean Min. Max. 

Manufacture Costs 274567018 199354647 1046262 1433535208 

Employment Costs 10247 16922 5232 50398 

Other Costs 66722064 37718679 83554 430050793 

Energy Costs 31806986 17968766 22103 150073357 

Production Revenues 502909093 299999017 2392067 3060606277 

Other Revenues 38594206 25620039 44402 153839171 

The Value of the Exports 166088319 99561207 15572 655721043 

  

 As observed in Table 1, the variable values consist of quite high values. A 

separate model for each DMU was established and 54 models for deterministic DEA 

and one distinct   (alpha) level were processed for solving, and the obtained efficiency 

levels are shown as Objective Value in Table 2. 

 

Table 2. Objective values for deterministic DEA and CCDEA for 0.05   

D
M

U
s Objective Value 

D
M

U
s Objective Value 

D
M

U
s Objective Value 

Deterministic 
Stochastic 

α=0.05 
Deterministic 

Stochastic 

α=0.05 
Deterministic 

Stochastic 

α=0.05 

1   0  0  19                                                             0  0  37  0  0 

2  6.1458 807.9341  20  0  0  38  8.9286  1.0000 

3  16.3768 561.5519  21  0  0  39  33.5587  5.0000 

4  0  0  22  0  0  40  25.7650  1.0000 

5  147.3814  2.0000  23  5.5813 512.4047  41  0  0 

6  0  0  24  0  0  42  0  0 

7  15.3646  73.8221  25  805.3638  0  43  0  0 

8  0    0  26  32.6126  1.0000  44  0  0 

9  0  0  27  9.9581 347.3217  45  0  0 

10  0  0  28  4.6202  7.0000  46  1635.4305  1.0000 

11   0   0   29  473.3923  0  47  3.71906  0 

12  0  0  30  0  0 48  24.7622  0 
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Table 2. (continued) Objective values for deterministic DEA and CCDEA for 0.05   

13  41.3350  103.8449 31  4.7068  2.0000 49  0  0 

14  0  0 32  0  0 50  0  0 

15  0  0 33  0  0 51  0  0 

16  94.4264  168.2929 34  0  0 52  0  0 

17  9.7345  5.0000 35  0  0 53  0  0 

18  11.0523  231.0081 36  7.4046  841.4472 54  0  0 

 

 

Table 2 can be summarized as Table 3. 

 

Table 3. The number of efficient DMUs 

α level The Number of Efficient DMUs 

Deterministic 32 

α=0.05 36 

  

 32 DMUs are efficient in deterministic DEA where the number of efficient 

DMUs tend to increase in stochastic process for α=0.05. As it is seen from Table 3, 36 

DMUs are efficient in CCDEA. 

 Table 4 shows the number of inefficient DMUs in terms of variables for 

deterministic DEA and CCDEA for α=0.05. 

 

Table 4. Number of inefficient DMUs by variable 

 Input variables Output Variables 
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Deterministic 

5 12 7 5 17 12 18 

 α=0.05 1 16 8 15 15 2 8 

 

Table 4 shows that in deterministic analysis only 5 DMUs have excess 

manufacture costs, 7 have excess other costs, and 5 have excess energy costs. 

Employment costs is the variable that creates the most inefficiency with 12 DMUs 

among input variables. The output variables indicate that a lot of DMUs are inefficient. 

In terms of the input variables of CCDEA only 1 DMU has excess manufacture 

costs, 16 have excess employment costs, 7 have excess other costs, and 15 have excess 

energy costs. The output variables of the CCDEA shows that 15 DMUs have excess 
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production revenues, 2 DMUs have excess other revenues, and 8 DMUs have excess 

value of exports.  

When CCDEA and deterministic DEA results are compared it is observed that 

number of inefficient DMUs in input variables increase except manufacture cost, 

whereas number of inefficient DMUs in output variables decrease. Especially the 

inefficiency in other revenues and the value of exports variables are reduced drastically.  

 

7. CONCLUSION 

 

 Compared with the deterministic process, number of inefficient DMUs decrease 

in all output variables when α=0,05 although inefficient DMUs differ in input variables. 

The reduction in the number of inefficient outputs effect the result in a pozitive way 

despite inefficiency in input variables increase in the results of CCDEA. 

 The number of efficient DMUs increase from 32 to 36 when CCDEA (α=0,05) is 

compared to deterministic analysis as it is observed from Table 3. 32 efficient DMUs in 

deterministic analysis conserve their efficiency, and 4 more DMUs become efficient in 

CCDEA when α=0,05 as it can be concluded from Table 2. The increase in the number 

of efficient DMUs is mainly due to the reduction in the number of inefficient output 

variables. As a conclusion it can be said that the inefficient DMUs are so close to the 

efficiency frontier, so that 5% increase in outputs and 5% decrease in inputs will lead to 

efficiency. 

The efficient DMUs determined by considering deterministic analysis show   

constrained BCC-additive model should be performed in the efficiency analysis for 

comparing the efficiencies of DMUs within the sector and developing production plans 

for the future as the inputs and outputs may change together.  
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