

Mathematical and Computational Applications, Vol. 18, No. 3, pp. 495-501, 2013

A NEW HEURISTIC ALGORITHM

TO SOLVE THE MAXIMUM INDEPENDENT SET PROBLEM

Onur Ugurlu

Department of Mathematics, Ege University, 35100, Bornova, Izmir, Turkey

onur__ugurlu@hotmail.com

Abstract –The Maximum Independent Set Problem is a classic graph optimization NP-

hard problem. Given a graph G=(V,E), the independent set problem is that of finding a

maximum-cardinality subset S of V such that no two vertices in S are adjacent. In this

paper, the maximum independent set problem is discussed and a new heuristic

algorithm is proposed to solve this problem. The performance of the algorithm has been

tested on DIMACS benchmark instances and compared with the literature works. The

experimental results show that the proposed approach can yield good solutions.

Key Words – maximum independent set problem, heuristics algorithms, optimization,

NP-hard problems.

1. INTRODUCTION

An independent set in a graph G=(V,E) is a subset V'V such that, for all u, vV',

the edge (u,v) is not in E [1]. The maximum independent set problem calls for finding

the independent set of maximum cardinality. The maximum independent set is a classic

one in computer science and graph theory and is known to be NP-hard [1]. The

maximum independent set problem has many important applications, including

combinatorial auctions, graph coloring, coding theory, geometric tiling, fault diagnosis,

pattern recognition, scheduling, computer vision, molecular biology, and more recently

its application in bioinformatics have become important [2].

In solving the maximum independent set problem, we also have a solution for two

other important graph problems: The minimum vertex cover problem and the maximal

clique problem [1].

 A vertex cover of an undirected graph G=(V,E) is a subset V
*V such that if

(u,v)E, then uV
*

or vV
*
(or both). That is, each vertex “covers” its incident edges,

and a vertex cover for G is a set of vertices that covers all the edges in E. The size of a

vertex cover is the number of vertices in it [3].

The clique in an undirected graph G=(V,E) and subset is V
*V, a subset V

*V of

vertices, each pair of which is connected by an edge in E. In other words, a clique is a

complete subgraph of G [3].

The following relationship of independent sets, cliques, and vertex covers are easy

to verify [1].

The Lemma: For any graph G=(V,E) and subset V
*V, the following statements

are equivalent:

 V
*
is a vertex cover for G.

 V-V
*
 is an independent set for G.

496 O. Ugurlu

 V-V
*

is a clique in the complement G
C
 of G, where G

C
=(V,E

C
) with

E
C

= {(u,v): u, v V and (u,v) E}.

Consequently, one can obtain a solution of the minimum vertex cover problem by

taking the complement of the solution to the maximum independent set problem. A

solution to the maximum clique problem is obtained by applying the maximum

independent set heuristic to G
C
=(V,E

C
) [1].

Figure 1. The relationship of independent set, clique, and vertex cover; a) Mininum

vertex cover of G. b) Maximum independent of for G. c) Maximum clique of G
C
.

 A large number of exact, approximate, heuristic and metaheuristic algorithms have

been proposed for the independent set problem. Some of these algorithms may be found

in Balas and Yu (1986); Barbosa and Campos (2008); Bron and Kerbosch (1973);

Busygin et al. (2002); Carraghan and Pardalos (1990); Boppana and Halldorsson

(1992); Loukakis and Tsouros (1982); Gibbons et al. (1991); and a complete survey of

all algorithms related to this problem may be found in Pardalos and Xue (1994).

In this paper, a new heuristic algorithm called Disassemble Algorithm (DA) is

presented to find the maximum independent set of the graph. The proposed algorithm

has been tested on the DIMACS benchmark instances and compared with other existing

algorithm. The experimental results show that the proposed algorithm yields better

solutions.

The paper is organized as follows: Section II outlines the proposed algorithm and its

complexities. In Section III, computational efficiency of the proposed algorithm is

discussed, and the proposed algorithm is compared with two other heuristics on the

DIMACS benchmark instances. Section IV summarizes and concludes the paper.

2. BASIC DEFINITION, ALGORITHM AND COMPUTATIONAL

COMPLEXITY

2.1 Basic Definition

Neighborhood of a vertex: Let G=(V,E) be an undirected graph. Then for each vV,

the neighborhood of v is defined by N(v) = { uV | u is adjacent to v}.

Degree of vertex: The degree of vertex vV is denoted by d(v) and is defined by the

number of neighbors of v.

(a) (b) (c)

A New Heuristic Algorithm 497

2.2 . The Disassemble Algorithm (DA)

The algorithm is designed to find the largest independent set of a graph. Algorithm

starts selecting one initial vertex and tries to add its neighbors to independent set. If the

neighbor vertex does not make the solution unfeasible, the vertex is added to the

solution. After updating the adjacency matrix of graph by deleting all edges which are

adjacent to vertex in solution and its neighbor, algorithm finds the vertex which has the

maximum degree and tries to add its neighbor to solution alike. This procedure

continuous until all vertices degrees become zero. After finding an initial solution, the

algorithm search for the vertex that does not make solution unfeasible when added to it.

If there is no vertex to add the solution, algorithm tries to create addible vertex by

shifting the vertices that are in the solution. The pseudo-code of the disassemble

algorithm is given below.

Figure 1. The pseudo-code of the proposed algorithm.

2.3 . Computational Complexity

The worst case complexity of the proposed algorithm can be obtained as follows:

Assume that there are n vertices and the maximum independent sets cardinality p, after

select an initial vertex and control its neighbors, picking the vertex which has maximum

degree requires O(n
2
). Controlling the neighbors of the selected vertex to add solution

requires O(p). Use all vertices as initial vertex require O(n). So the overall running time

of the procedure of DA can be deduced as follows: O(n(n
2
.p)) = O(p.n

3
).

Input: G(V,E).

Output: A maximal independent set I* and its cardinality α.

1. I* 0

2. for i=1 to n begin

3. update the adjacency matrix

4. add neighbors of vi to Ii which do not make Ii unfeasible

5. do

6. Find the maximum degree vertex vm

7. add neighbors of vm to Ii which do not make Ii unfeasible

8. delete all edges which are adjacent to vertices in Ii and their all

neighbors

9. while (E)

10. If vk is not in Ii and all vertices in N(vk) are not in Ii as well then add vk

to Ii

11. if vm is not in Ii and only one neighbor vn in Ii then remove vn from Ii,

add vm to Ii and go to step 11

12. if Ii > I* then I*= Ii and α= | Ii |

13. end

14. end.

498 O. Ugurlu

The results of numerical experiments with the algorithm are reported in the next part

of the paper.

3. EXPERIMENTAL RESULTS

This section presents results of computational experiments for the proposed

heuristic. The algorithm has been tested on the complement graphs of DIMACS clique

instances [13]. The heuristic has been compared with continuous based heuristic [4]

(CBH) and heuristic based on optimization of a quadratic over a Sphere [5] (QSH). The

comparison of the algorithm with previous work is summarized in table 1,2 and 3.

 In table 1,2 and 3, the first four columns represent the name of the instance, number

of its vertices, its density and cardinality of maximum independent set, respectively.

This information is available from the DIMACS web site. The densities are specified

for the original (maximum clique) instances and the last there column denotes CBH,

QSH and the proposed algorithm DA, correspondingly.

In table 4, the performance of DA, CBH and QSH are compared, respectively. In

each row of the table, first column contains a name of the family of graphs, where each

family consists of a group of graphs with the same letter names. The second column

represents the number of instances from each family for which CBH found the best

solution. Similarly, the next two columns represent QSH found the best solution and

DA found the best solution, respectively.

Table 1. The simulation results for DIMACS bencmark graphs

Graph Name |V| Density α(G) CBH QSH DA

brock200_1 200 0.745 21 20 21 20

brock200_2 200 0.496 12 12 12 10

brock200_3 200 0.605 15 14 15 13

brock200_4 200 0.658 17 16 17 12

brock400_1 400 0.748 27 23 27 24

brock400_2 400 0.749 29 24 29 25

brock400_3 400 0.748 31 23 31 31

brock400_4 400 0.749 33 24 33 24

brock800_1 800 0.649 23 20 17 20

brock800_2 800 0.651 24 19 24 20

brock800_3 800 0.649 25 20 25 20

brock800_4 800 0.650 26 19 26 20

Table 2. The simulation results for DIMACS bencmark graphs

Graph Name |V| Density α(G) CBH QSH DA

c-fat200-1 200 0.077 12 12 12 12

c-fat200-2 200 0.163 24 24 24 24

c-fat200-5 200 0.426 58 58 58 58

c-fat500-1 500 0.036 14 14 14 14

c-fat500-2 500 0.374 26 26 26 26

A New Heuristic Algorithm 499

c-fat500-5 500 0.073 64 64 64 64

c-fat500-10 500 0.186 126 126 126 126

hamming6-2 64 0.905 32 32 32 32

hamming6-4 64 0.349 4 4 4 4

hamming8-2 256 0.969 128 128 128 128

hamming8-4 256 0.639 16 16 16 16

johnson8-2-4 28 0.556 4 4 4 4

johnson8-4-4 70 0.768 14 14 14 14

johnson16-2-4 120 0.765 8 8 8 8

johnson32-2-4 496 0.879 16 16 16 16

keller4 171 0.649 11 10 11 11

keller5 776 0.751 27 21 24 26

MANN_a9 45 0.927 16 16 16 16

MANN_a27 378 0.990 126 121 125 126

p_hat300-1 300 0.244 8 8 7 8

p_hat300-2 300 0.489 25 25 24 16

p_hat300-3 300 0.744 36 36 33 11

p_hat500-1 500 0.253 9 9 9 9

p_hat500-2 500 0.505 36 35 33 36

p_hat500-3 500 0.752 50 49 46 50

p_hat700-1 700 0.249 11 11 8 10

p_hat700-2 700 0.498 44 44 42 44

p_hat700-3 700 0.748 62 60 59 62

san200_0.7_1 200 0.700 30 15 30 17

san200_0.7_2 200 0.700 18 12 18 18

san200_0.9_1 200 0.900 70 46 70 70

san200_0.9_2 200 0.900 60 36 60 60

san200_0.9_3 200 0.900 44 30 35 44

san400_0.5_1 400 0.500 13 8 9 8

san400_0.7_1 400 0.700 40 20 40 21

san400_0.7_2 400 0.700 30 15 30 30

san400_0.7_3 400 0.700 22 14 16 22

san400_0.9_1 400 0.900 100 50 100 100

Table 3. The simulation results for DIMACS bencmark graphs

Graph Name |V| Density α(G) CBH QSH DA

sanr200_0.7 200 0.700 18 18 15 18

sanr200_0.9 200 0.900 42 41 37 42

sanr400_0.5 400 0.500 13 12 11 12

sanr400_0.7 400 0.700 21 20 18 21

500 O. Ugurlu

As one can see, DA performed better than CBH and QSH on four families (MANN

a, p-hat, keller, sanr) and did worse than QSH on two (brock, san). The proposed

algorithm found the optimal solution 38 of 54 instances whereas QSH found 36 and

CBH found 24. The results of numerical experiments show that DA can yield good

solutions inasmuch as to CBH and QSH.

Table 4. Comparison of the results on benchmark instances.

Graphs Family Name CBH QSH DA

brock 1 11 2

c-fat 7 7 7

hamming 4 4 4

johnson 4 4 4

keller 0 1 2

MANN_a 1 1 2

p-hat 6 1 8

san 0 8 7

sanr 2 0 4

Total 25 37 40

4. CONCLUSION

In this work, a new heuristic algorithm for the maximum independent set problem is

presented. The implementations of the algorithm were coded in C++ language and the

performance of the proposed algorithm is tested on DIMACS instances. The

computational experiments show that DA can yield good solutions as much as the

existing heuristics in the literature.

5. REFERENCES

1. M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the theory

NP–completeness, San Francisco: Freeman, 1979.

2. S. Balaji, V. Swaminathan, K. Kannan, Simple Algorithm to Optimize Maximum

Independent Set, Advanced Modeling and Optimization 12(1), 2010.

3. T. H. Cormen, C. E. Lieserson, R. L. Rivest and C. Stein, Introduction to

Algorithms, Second Edition, The MIT Press, 2001.

4. L. E. Gibbons, D. W. Hearn and P. M. Pardalos, A Continuous Based Heuristic for

the Maximum Clique Problem, DIMACS Series in Discrete Mathematics and

Theoretical Computer Science 26, 103-124, 1994.

5. S. Busgin, S. Butenko and P. M. Pardalos, A Heuristic for the Maximum

Independent Set Problem Based on Optimization of a Quadratic Over a Sphere,

Journal of Combinatorial Optimization 6, 287-297, 2002.

6. E. Loukakis and C. Tsouros, Determining the Number of Internal Stability of a

Graph, Journal of Computational Mathematics 11, 232-248, 1982.

7. R. Carraghan and P. M. Pardalos, An Exact Algorithm for the Maximum Clique

Problem, Operation Research Letter 9, 375-38, 1990.

A New Heuristic Algorithm 501

8. P. M. Pardalos and J. Xue, The Maximum Clique Problem, Journal of Global

Optimization 4, 301-328, 1994.

9. V. C. Barbosa and L. C. D. Campos, A Novel Evolutionary Formulation of the

Independent Set Problem, 2008.

10. R. Boppana and M. M. Halldorsson, Approximating Maximum Independent Set by

Excluding Subgraphs, Bit Numerical Mathematics 32, 180-196, 1992.

11. E. Balas and C. S. Yu, Finding the Maximum Clique in an Arbitrary Graph, SIAM

Journal on Computing 15, 1054-1068, 1986.

12. C. Bron and J. Kerbosch, Finding All Cliques of an Undirected Graph,

Communications of the ACM 16, 575-577, 1973.

13. DIMACS clique benchmarks, Benchmark instances made available by electronic

transfer at dimacs.rutgers.edu, Rutgers Univ., Piscataway. NJ. 1993.

