TO SOLVE THE MAXIMUM INDEPENDENT SET PROBLEM

A NEW HEURISTIC ALGORITHM

Onur Ugurlu
Department of Mathematics, Ege University, 35100, Bornova, Izmir, Turkey
onur__ugurlu@hotmail.com

Abstract

The Maximum Independent Set Problem is a classic graph optimization NPhard problem. Given a graph $G=(V, E)$, the independent set problem is that of finding a maximum-cardinality subset S of V such that no two vertices in S are adjacent. In this paper, the maximum independent set problem is discussed and a new heuristic algorithm is proposed to solve this problem. The performance of the algorithm has been tested on DIMACS benchmark instances and compared with the literature works. The experimental results show that the proposed approach can yield good solutions.

Key Words - maximum independent set problem, heuristics algorithms, optimization, NP-hard problems.

1. INTRODUCTION

An independent set in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a subset $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ such that, for all $\mathrm{u}, \mathrm{v} \in \mathrm{V}^{\prime}$, the edge (u, v) is not in $E[1]$. The maximum independent set problem calls for finding the independent set of maximum cardinality. The maximum independent set is a classic one in computer science and graph theory and is known to be NP-hard [1]. The maximum independent set problem has many important applications, including combinatorial auctions, graph coloring, coding theory, geometric tiling, fault diagnosis, pattern recognition, scheduling, computer vision, molecular biology, and more recently its application in bioinformatics have become important [2].

In solving the maximum independent set problem, we also have a solution for two other important graph problems: The minimum vertex cover problem and the maximal clique problem [1].

A vertex cover of an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a subset $\mathrm{V}^{*} \subseteq \mathrm{~V}$ such that if $(u, v) \in E$, then $u \in V^{*}$ or $v \in V^{*}$ (or both). That is, each vertex "covers" its incident edges, and a vertex cover for G is a set of vertices that covers all the edges in E . The size of a vertex cover is the number of vertices in it [3].

The clique in an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and subset is $\mathrm{V}^{*} \subseteq \mathrm{~V}$, a subset $\mathrm{V}^{*} \subseteq \mathrm{~V}$ of vertices, each pair of which is connected by an edge in E . In other words, a clique is a complete subgraph of G [3].

The following relationship of independent sets, cliques, and vertex covers are easy to verify [1].

The Lemma: For any graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and subset $\mathrm{V}^{*} \subseteq \mathrm{~V}$, the following statements are equivalent:

- V^{*} is a vertex cover for G .
- $\mathrm{V}-\mathrm{V}^{*}$ is an independent set for G .
- $V-V^{*}$ is a clique in the complement G^{C} of G, where $G^{C}=\left(V, E^{C}\right)$ with $E^{C}=\{(u, v): u, v \in V$ and $(u, v) \notin E\}$.

Consequently, one can obtain a solution of the minimum vertex cover problem by taking the complement of the solution to the maximum independent set problem. A solution to the maximum clique problem is obtained by applying the maximum independent set heuristic to $\mathrm{G}^{\mathrm{C}}=\left(\mathrm{V}, \mathrm{E}^{\mathrm{C}}\right)[1]$.

(a)

(b)

(c)

Figure 1. The relationship of independent set, clique, and vertex cover; a) Mininum vertex cover of G. b) Maximum independent of for G. c) Maximum clique of G^{C}.

A large number of exact, approximate, heuristic and metaheuristic algorithms have been proposed for the independent set problem. Some of these algorithms may be found in Balas and Yu (1986); Barbosa and Campos (2008); Bron and Kerbosch (1973); Busygin et al. (2002); Carraghan and Pardalos (1990); Boppana and Halldorsson (1992); Loukakis and Tsouros (1982); Gibbons et al. (1991); and a complete survey of all algorithms related to this problem may be found in Pardalos and Xue (1994).

In this paper, a new heuristic algorithm called Disassemble Algorithm (DA) is presented to find the maximum independent set of the graph. The proposed algorithm has been tested on the DIMACS benchmark instances and compared with other existing algorithm. The experimental results show that the proposed algorithm yields better solutions.

The paper is organized as follows: Section II outlines the proposed algorithm and its complexities. In Section III, computational efficiency of the proposed algorithm is discussed, and the proposed algorithm is compared with two other heuristics on the DIMACS benchmark instances. Section IV summarizes and concludes the paper.

2. BASIC DEFINITION, ALGORITHM AND COMPUTATIONAL COMPLEXITY

2.1 Basic Definition

Neighborhood of a vertex: Let $G=(V, E)$ be an undirected graph. Then for each $v \in V$, the neighborhood of v is defined by $N(v)=\{u \in V \mid u$ is adjacent to $v\}$.

Degree of vertex: The degree of vertex $v \in \mathrm{~V}$ is denoted by $\mathrm{d}(\mathrm{v})$ and is defined by the number of neighbors of v .

2.2 . The Disassemble Algorithm (DA)

The algorithm is designed to find the largest independent set of a graph. Algorithm starts selecting one initial vertex and tries to add its neighbors to independent set. If the neighbor vertex does not make the solution unfeasible, the vertex is added to the solution. After updating the adjacency matrix of graph by deleting all edges which are adjacent to vertex in solution and its neighbor, algorithm finds the vertex which has the maximum degree and tries to add its neighbor to solution alike. This procedure continuous until all vertices degrees become zero. After finding an initial solution, the algorithm search for the vertex that does not make solution unfeasible when added to it. If there is no vertex to add the solution, algorithm tries to create addible vertex by shifting the vertices that are in the solution. The pseudo-code of the disassemble algorithm is given below.

Input: $\mathrm{G}(\mathrm{V}, \mathrm{E})$.
Output: A maximal independent set I* and its cardinality α.

1. $\mathrm{I} * \leftarrow 0$
2. for $\mathrm{i}=1$ to n begin
3. update the adjacency matrix
4. add neighbors of v_{i} to I_{i} which do not make I_{i} unfeasible
5. do
6. Find the maximum degree vertex v_{m}
7. add neighbors of v_{m} to I_{i} which do not make I_{i} unfeasible
8. delete all edges which are adjacent to vertices in I_{i} and their all neighbors
9. while ($\mathrm{E} \neq \phi$)
10. If v_{k} is not in I_{i} and all vertices in $\mathrm{N}\left(\mathrm{v}_{\mathrm{k}}\right)$ are not in I_{i} as well then add v_{k} to I_{i}
11. if v_{m} is not in I_{i} and only one neighbor v_{n} in I_{i} then remove v_{n} from I_{i}, add v_{m} to I_{i} and go to step 11
12. if $I_{i}>I^{*}$ then $I^{*}=I_{i}$ and $\alpha=\left|I_{i}\right|$
13. end
14. end.

Figure 1. The pseudo-code of the proposed algorithm.

2.3.Computational Complexity

The worst case complexity of the proposed algorithm can be obtained as follows: Assume that there are n vertices and the maximum independent sets cardinality p, after select an initial vertex and control its neighbors, picking the vertex which has maximum degree requires $\mathrm{O}\left(n^{2}\right)$. Controlling the neighbors of the selected vertex to add solution requires $\mathrm{O}(p)$. Use all vertices as initial vertex require $\mathrm{O}(n)$. So the overall running time of the procedure of DA can be deduced as follows: $\mathrm{O}\left(n\left(n^{2} \cdot p\right)\right)=\mathrm{O}\left(p \cdot n^{3}\right)$.

The results of numerical experiments with the algorithm are reported in the next part of the paper.

3. EXPERIMENTAL RESULTS

This section presents results of computational experiments for the proposed heuristic. The algorithm has been tested on the complement graphs of DIMACS clique instances [13]. The heuristic has been compared with continuous based heuristic [4] (CBH) and heuristic based on optimization of a quadratic over a Sphere [5] (QSH). The comparison of the algorithm with previous work is summarized in table 1,2 and 3.

In table 1,2 and 3, the first four columns represent the name of the instance, number of its vertices, its density and cardinality of maximum independent set, respectively. This information is available from the DIMACS web site. The densities are specified for the original (maximum clique) instances and the last there column denotes CBH, QSH and the proposed algorithm DA, correspondingly.

In table 4, the performance of DA, CBH and QSH are compared, respectively. In each row of the table, first column contains a name of the family of graphs, where each family consists of a group of graphs with the same letter names. The second column represents the number of instances from each family for which CBH found the best solution. Similarly, the next two columns represent QSH found the best solution and DA found the best solution, respectively.

Table 1. The simulation results for DIMACS bencmark graphs

Graph Name	$\|\mathbf{V}\|$	Density	$\boldsymbol{\alpha}(\mathbf{G})$	CBH	QSH	DA
brock200_1	200	0.745	21	20	21	20
brock200_2	200	0.496	12	12	12	10
brock200_3	200	0.605	15	14	15	13
brock200_4	200	0.658	17	16	17	12
brock400_1	400	0.748	27	23	27	24
brock400_2	400	0.749	29	24	29	25
brock400_3	400	0.748	31	23	31	31
brock400_4	400	0.749	33	24	33	24
brock800_1	800	0.649	23	20	17	20
brock800_2	800	0.651	24	19	24	20
brock800_3	800	0.649	25	20	25	20
brock800_4	800	0.650	26	19	26	20

Table 2. The simulation results for DIMACS bencmark graphs

Graph Name	$\|\mathbf{V}\|$	Density	$\boldsymbol{\alpha}(\mathbf{G})$	CBH	QSH	DA
c-fat200-1	200	0.077	12	12	12	12
c-fat200-2	200	0.163	24	24	24	24
c-fat200-5	200	0.426	58	58	58	58
c-fat500-1	500	0.036	14	14	14	14
c-fat500-2	500	0.374	26	26	26	26

c-fat500-5	500	0.073	64	64	64	64
c-fat500-10	500	0.186	126	126	126	126
hamming6-2	64	0.905	32	32	32	32
hamming6-4	64	0.349	4	4	4	4
hamming8-2	256	0.969	128	128	128	128
hamming8-4	256	0.639	16	16	16	16
johnson8-2-4	28	0.556	4	4	4	4
johnson8-4-4	70	0.768	14	14	14	14
johnson16-2-4	120	0.765	8	8	8	8
johnson32-2-4	496	0.879	16	16	16	16
keller4	171	0.649	11	10	11	11
keller5	776	0.751	27	21	24	26
MANN_a 9	45	0.927	16	16	16	16
MANN_a27	378	0.990	126	121	125	126
p_hat300-1	300	0.244	8	8	7	8
p_hat300-2	300	0.489	25	25	24	16
p_hat300-3	300	0.744	36	36	33	11
p_hat500-1	500	0.253	9	9	9	9
p_hat500-2	500	0.505	36	35	33	36
p_hat500-3	500	0.752	50	49	46	50
p_hat700-1	700	0.249	11	11	8	10
p_hat700-2	700	0.498	44	44	42	44
p_hat700-3	700	0.748	62	60	59	62
san200_0.7_1	200	0.700	30	15	30	17
san200_0.7_2	200	0.700	18	12	18	18
san200_0.9_1	200	0.900	70	46	70	70
san200_0.9_2	200	0.900	60	36	60	60
san200_0.9_3	200	0.900	44	30	35	44
san400_0.5_1	400	0.500	13	8	9	8
san400_0.7_1	400	0.700	40	20	40	21
san400_0.7_2	400	0.700	30	15	30	30
san400_0.7_3	400	0.700	22	14	16	22
san400_0.9_1	400	0.900	100	50	100	100

Table 3. The simulation results for DIMACS bencmark graphs

Graph Name	$\|\mathbf{V}\|$	Density	$\boldsymbol{\alpha}(\mathbf{G})$	CBH	QSH	DA
sanr200_0.7	200	0.700	18	18	15	18
sanr200_0.9	200	0.900	42	41	37	42
sanr400_0.5	400	0.500	13	12	11	12
sanr400_0.7	400	0.700	21	20	18	21

As one can see, DA performed better than CBH and QSH on four families (MANN a, p-hat, keller, sanr) and did worse than QSH on two (brock, san). The proposed algorithm found the optimal solution 38 of 54 instances whereas QSH found 36 and CBH found 24. The results of numerical experiments show that DA can yield good solutions inasmuch as to CBH and QSH.

Table 4. Comparison of the results on benchmark instances.

Graphs Family Name	CBH	QSH	DA
brock	1	11	2
c-fat	7	7	7
hamming	4	4	4
johnson	4	4	4
keller	0	1	2
MANN_a	1	1	2
p-hat	6	1	8
san	0	8	7
sanr	2	0	4
	25	37	40

4. CONCLUSION

In this work, a new heuristic algorithm for the maximum independent set problem is presented. The implementations of the algorithm were coded in C++ language and the performance of the proposed algorithm is tested on DIMACS instances. The computational experiments show that DA can yield good solutions as much as the existing heuristics in the literature.

5. REFERENCES

1. M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the theory NP-completeness, San Francisco: Freeman, 1979.
2. S. Balaji, V. Swaminathan, K. Kannan, Simple Algorithm to Optimize Maximum Independent Set, Advanced Modeling and Optimization 12(1), 2010.
3. T. H. Cormen, C. E. Lieserson, R. L. Rivest and C. Stein, Introduction to Algorithms, Second Edition, The MIT Press, 2001.
4. L. E. Gibbons, D. W. Hearn and P. M. Pardalos, A Continuous Based Heuristic for the Maximum Clique Problem, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26, 103-124, 1994.
5. S. Busgin, S. Butenko and P. M. Pardalos, A Heuristic for the Maximum Independent Set Problem Based on Optimization of a Quadratic Over a Sphere, Journal of Combinatorial Optimization 6, 287-297, 2002.
6. E. Loukakis and C. Tsouros, Determining the Number of Internal Stability of a Graph, Journal of Computational Mathematics 11, 232-248, 1982.
7. R. Carraghan and P. M. Pardalos, An Exact Algorithm for the Maximum Clique Problem, Operation Research Letter 9, 375-38, 1990.
8. P. M. Pardalos and J. Xue, The Maximum Clique Problem, Journal of Global Optimization 4, 301-328, 1994.
9. V. C. Barbosa and L. C. D. Campos, A Novel Evolutionary Formulation of the Independent Set Problem, 2008.
10. R. Boppana and M. M. Halldorsson, Approximating Maximum Independent Set by Excluding Subgraphs, Bit Numerical Mathematics 32, 180-196, 1992.
11. E. Balas and C. S. Yu, Finding the Maximum Clique in an Arbitrary Graph, SIAM Journal on Computing 15, 1054-1068, 1986.
12. C. Bron and J. Kerbosch, Finding All Cliques of an Undirected Graph, Communications of the ACM 16, 575-577, 1973.
13. DIMACS clique benchmarks, Benchmark instances made available by electronic transfer at dimacs.rutgers.edu, Rutgers Univ., Piscataway. NJ. 1993.
