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Abstract- In this paper, we consider the Müntz-Legendre polynomial solutions of the 

linear delay Fredholm integro-differential equations and residual correction. Firstly, the 

linear delay Fredholm integro-differential equations are transformed into a system of 

linear algebraic equations by using by the matrix operations of the Müntz-Legendre 

polynomials and the collocation points. When this system is solved, the Müntz-

Legendre polynomial solution is obtained. Then, an error estimation is presented by 

means of the residual function and the Müntz-Legendre polynomial solutions are 

improved by the residual correction method. The technique is illustrated by studying the 

problem for an example. The obtained results show that error estimation and the 

residual correction method is very effective. 

 

Key Words- Linear delay Fredholm integro-differential equation, Müntz-Legendre 

polynomials, collocation method, residual function. 

 

1. INTRODUCTION 

 

In this study, for the linear delay Fredholm integro-differential equations [1,7] 
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under the boundary conditions 
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the approximate solution based on the Müntz-Legendre polynomials will be obtained in 

the form 
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Here, (0) ( ) ( )y x y x  is the unknown function,  ( )kP x  and ( )g x   are the functions 

defined on interval 0 1x   and jka , jkb ,  j  k  , s  are real constants, na  

( 0,1,2,..., )n N   is the unknown Müntz-Legendre coefficients; N  is any positive 
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integer and ( )nL x , ( 0,1,2,...)n   denote the Müntz-Legendre polynomials [6] defined 

by  

         
1

( ) ( 1) ,
N

N j j

n

j n

N j N n
L x x

N n N j





    
    

   
  ,K n N  0 1x  .                      (4) 

Also, an error problem is constructed by the residual error function and the Müntz-

Legendre polynomials of this problem are computed and thus the error function is 

estimated by these solutions. And then, the approximate solutions are improved by 

summing the Müntz-Legendre polynomial solutions and the estimated error function 

[4]. 

 

2. FUNDAMENTAL MATRIX RELATIONS 

 

Let us consider the equation (1) and find the matrix forms of each term in the 

equation. For this purpose let us write the matrix form of the differential part on the left 

hand side of the equation. First we can write the approximate solution (3) in the matrix 

form [5] as,  

 ( ) ( )y x x L A                                                                                                            (5) 

where  

  0 1( ) ( ) ( ) ... ( )Nx L x L x L xL and  0 1 ...
T

Na a aA . 

Here, the matrix ( )xL  can be written as 

 ( ) ( ) Tx xL X F                                                                                                           (6) 

so that ( ) 1 ... Nx x x   X  and  
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By putting Eq.(6) into Eq.(5), we have the matrix form 

 ( ) ( ) Ty x x X F A .                                                                                                      (7) 

The k th-order derivative of Eq.(7) is given by  

 ( ) ( ) ( )k k Ty x x X B F A                                                                                                (8) 

where 
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By placing jx x    in Eq. (8), we obtain the matrix form 

 ( ) ( ) ( ) ( )k k T

j jy x x   X B B F A                                                                            (9) 

where 
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. 

 Now let us construct the matrix form of the integral part on the right hand side of 

the equation. The kernel function ( , )sK x t   can be approximated by the truncated Taylor 

series [2] and the truncated Müntz-Legendre series 
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We write the expressions in (10) in the form  
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By writing the matrix forms (9) and (13) into the integral part in the equation, we have 

the matrix relation we have  
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We put the matrix form (6) into the equation (14) we have the matrix relation, 
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Finally we can obtain the matrix relations for conditions by means of the relation (8) 
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3. METHOD OF SOLUTION 

 

We are now ready to construct the fundamental matrix equation [8,9] for the Eq.(1). For 

this purpose we substitute the relations (9) and (14) into the Eq.(1) and thus we obtain 

the matrix equation 
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The collocation points defined by  
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Briefly, Eq.(16) can be written in the form  

       WA G  or [ ; ]W G ; 
0 0

( )
m m
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k k L s

k s


 

 W = P XB B F XF K Q .                             (17) 

Here, Eq.(17) corresponds to a system of ( 1)N   linear algebraic equations with the 

unknown Müntz-Legendre coefficients 0 1, ,..., Na a a . 

By using the relation (8), the matrix form of the conditions (2) becomes 

 [ ]i iU A  or [ , ]i iU , 0,1,..., 1i m                                                                   (18) 

where  

  
1
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0

[ ... ] (0) (1) [ ], 0,1,..., 1
m
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To obtain the solution of Eq. (1) under the conditions (2), by replacing the last m  rows 

of matrix (17) by the m  row matrices (18) we have the new augmented matrix  

 WA G  or  ; 
 W G . 

If rank rank [ ; ] 1N  W W G  , the unknown coefficients matrix A  becomes   

 1( )A W G . 

Thus, the Müntz-Legendre coefficients matrix A  is uniquely determined. Finally, by 

substituting the determined coefficients 0 1, , , Na a a  into Eq.(3),  we get the Müntz-

Legendre polynomial solution  
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N n n

n

y x a L x


 .                                                                                                (19) 

 

4.  ERROR ESTIMATION AND IMPROVED APPROXIMATE SOLUTIONS 

 

In this section, we develop an error estimation for the Müntz-Legendre approximate 

solution for the problem by means of the residual correction method [10,11] and we 

improve the approximate solution (19) by using this error estimation. The residual error 

estimation was presented for the Bessel approximate solutions of the system of the 

linear multi-pantograph equations [12]. For the problem (1)-(2), we modify the error 

estimation considered in [10-12].    

 Let us call ( ) ( ) ( )NN x y x y xe    as the error function of the Müntz-Legendre 

approximation ( )Ny x  to ( )y x , where ( )y x  is the exact solution of problem (1)-(2). 

Hence, ( )Ny x  satisfies the following problem: 
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can be obtained by substituting ( )Ny x  into the Eq. (1) and in here ( )NR x  is the residual 

function associated with ( )Ny x . 

By using the method defined in Section 3, we purpose to find an approximation 
, ( )N M xe  

to the ( )N xe .  

 Subtracting (20) and (21) from (1) and (2), respectively, the error function ( )N xe  

satisfy the equation 

 

1

( ) ( )

=0 =00

( ) ( ) ( , ) ( ) = ( ) 0 , 1
m m

k s

k N k s N s N

k s

P x e x K x t e x dt R x x t       
                  

(22) 

with the homogeneous conditions 

  
1

( ) ( )

=0

(0) (1) = 0,  = 0,1,..., 1
m

k k

jk N jk N

k

a e b e j m


  .                                                      (23) 

Solving the error problem (22)-(23) by our method, we obtain the approximation 
, ( )N M xe  

to ( )N xe .  

Consequently, we have the improved approximate solution  

 , ,( ) ( ) ( )N M N N My x y x e x  .       

Note that if the exact solution of the problem is not known, then we can estimate the 

error function by 
, ( )N M xe . 

 

5. NUMERICAL APPLICATION 

 

In this section, we consider a problem to demonstrate the effectiveness of the method, 

the error estimation and the residual correction. 

 

Example.  Now, let us solve linear delay Fredholm integro-differential equation 
1 1

(4) (2) (1) (2)

0 0

( ) ( 1) ( 0.5) ( ) cos( ) ( 1) sin( ) ( 0.5) ,   0 , 1y x y x xy x g x x t y t dt x t y t dt x t               (24) 

under the initial conditions (0) 0y  , (1) (0) 1y  , (2) (0) 0y  , (3) (0) 1y   . Here, 

1 1 1 1
( ) sin( ) sin( 1) sin( 1/ 2) sin(1) cos(1) sin(3) sin(1/ 2)

4 2 4 4
g x x x x x x x x x        

1 1
cos(1/ 2) sin(3 / 2)

2 4
x x  . For this problem,   0 1 4 04,  0.5,  1,  0,   ,m P x         

1 4 1 21,   1,   1,  0.5,  P P        ( , ) cos( )K x t x t  and 2( , ) sin( )K x t x t . 

We note that the exact solution of the problem is ( ) sin( )y x x .  
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Table 1. Numerical results of the error functions for  5,8N   and 7,9M    of Eq. (24) 
 Actual absolute errors Estimated absolute errors  Corrected absolute errors 

ix  
5( )ie x  8( )ie x  ( )

5,7 i
xe  ( )

8,9 i
xe    ( )

5,7 i
xE   ( )

8,9 i
xE  

0 1.2406e-015 2.2329e-015 1.7745e-019 6.2660e-019  1.2408e-015 2.2323e-015 

0.2 1.2020e-005 9.2512e-007 1.2815e-005 1.3853e-006  7.9556e-007 4.6017e-007 

0.4 1.6817e-004 1.9010e-005 1.8080e-004 2.4918e-005  1.2634e-005 5.9080e-006 

0.6 7.2667e-004 1.1940e-004 7.9102e-004 1.4216e-004  6.4355e-005 2.2757e-005 

0.8 1.8910e-003 4.5459e-004 2.0979e-003 5.0473e-004  2.0684e-004 5.0138e-005 

1 3.5897e-003 1.3046e-003 4.1067e-003 1.3761e-003  5.1705e-004 7.1436e-005 

 

For ( , ) (5,7)N M   and ( , ) (8,9)N M  , we solve the above problem. In Table 1, we 

give the absolute errors (actual, estimation and correction) of this problem. 

 

 
Figure 1-(a). Comparison of the actual absolute error function 5( )e x  and the estimated 

absolute error function 5,7 ( )e x  for ( , ) (5, 7)N M  . 
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Figure 1-(b). Comparison of the actual absolute error function 5( )e x  of the approximate 

solution  5( )y x  and the actual absolute error function 5,7 ( )E x  of the improved 

approximate solution  5,7 ( )y x  for ( , ) (5, 7)N M  . 

 
Figure 1-(c). Comparison of the actual absolute error function 8( )e x  and the estimated 

absolute error function 8,9 ( )e x  for ( , ) (8,9)N M  . 
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Figure 1-(d). Comparison of the actual absolute error function 8( )e x  of the approximate 

solution  8( )y x  and the actual absolute error function 8,9 ( )E x  of the improved 

approximate solution  8,9 ( )y x  for ( , ) (8,9)N M  . 

 

6. CONCLUSIONS 

 

In this paper, we presented the Müntz-Legendre collocation scheme of the linear delay 

Fredholm integro-differential equations. In addition, we constructed an error problem 

by means of the residual error function and this problem is solved by Müntz-Legendre 

collocation scheme. Hence, the Müntz-Legendre polynomial solution of this error 

problem is an approximation for the actual error function. Finally, by summing the 

estimated error function and Müntz-Legendre polynomial solution, the corrected 

approximate solution is obtained. We gave the application of our works for an example. 

In this application, we observed from example that actual and estimated errors are very 

close and the improvement is quite effective. Therefore, we note that the error 

estimation can be used for measurement of the reliability of the considered problem, 

when an exact solution of any problem is not available.  
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