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Abstract- In this study a full factorial design (FFD) based desirability function 

approach (DFA) was used to the modeling of determined quality criteria of C 40/50 

(C50). A FFD based DFA was also applied to determine optimal mixture proportions of 

C50. The mixture proportion modeled by using FFD was determined as the function of 

variables such as water to binder materials ratio, coarse aggregate (II) to total aggregate 

ratio, the percentage of superplasticizer content and fly ash amount. The properties of 

C50 were identified as that the slump flow and 28
th

 day compressive strength. The 

model results were tested with experimental runs. The results showed that the 

determined regression meta-models were useful for prediction of properties of C50 with 

the mixture parameters. The results also showed that the FFD based DFA are effective 

in solving the mixture proportions optimization problem.  
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1. INTRODUCTION 

 

The optimization of a Ready Mixed Concrete (RMC) mixture for determination 

of the desired quality is an important issue in the field of material and design 

engineering [1, 2]. In literature several optimization and modelling methods have been 

proposed on investigating the optimal mixture proportions for many concrete types. For 

investigating the effects of parameters on concrete, design of experiment is commonly 

used in literature. Some of those, Sonebi [3] modeled mix proportion parameters of 

underwater composite cement grouts using a factorial design. Muthukumar et al. [4] 

optimized the mechanical properties of polymer concrete and recommended the mix-

designed based on design of experiment. Özbay et al. [5] investigated the mix 

proportions of high strength self compacting concrete by using Taguchi method. Correia 

et al. [6] assessed of the recycling potential of fresh concrete waste using a factorial 

design of experiments. Correia et al. [7] practiced a Factorial design used to model the 

compressive strength of mortars containing recycled rubber. Santilli et al. [8] applied a 

factorial design study to determine the significant parameters of fresh concrete lateral 

pressure and initial rate of pressure decay. Alqadi et al. [9] developed a self compacting 

concrete using contrast constant factorial design. 
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Multiple response problems include three stages: data gathering, modeling and 

optimization [10]. In optimization phase; FFD is widely practiced with DFA. Some 

examples of these applications can be given as followings. Paterakis et al. [11] 

evaluated and optimized some pellets characteristics using a 3
3
 factorial design and 

desirability function. Mukherjee and Ray [12] applied an optimal process design of two-

stage multiple responses grinding processes using desirability functions and 

metaheuristic technique. Gottipati and Mishra [13] optimized the process of adsorption 

of Cr (VI) on activated carbons prepared from plant precursors by a two-level full 

factorial design. 

 

Within the scope of this study, it is desired to obtain optimal mixture proportions 

of C50 in Turkey. First of all, the criteria of determining the quality of the concrete, 

factors and levels that affect these performance criteria were identified to obtain optimal 

mixture proportions. A 2
4
 full factorial design with two replicates was used for the 

optimization of dual responses such as slump flow and 28
th

 day compressive strength. 

An analysis of variance (ANOVA) test was used to find out the significance and 

percentage contribution of each parameter [14]. The mathematical model of quality 

criteria has been developed using regression analysis as a function of the water to binder 

materials ratio, coarse aggregate (II) to total aggregate ratio, the percentage of super 

plasticizer content and fly ash amount. DFA approach was applied to determine optimal 

mixture proportions of C50.  

 

2. MATERIALS AND METHODS 

 

2.1. Materials 

 The cement used in this research for the normal weight concrete is a CEM I 42.5 

R has a specific gravity of 3.15 and weighs 350 kg. Fly ash used in this research with a 

specific gravity of 2.46 weighs 80 kg. Chemical composition of the binder materials is 

given in Table 1. Crushed and which has particle size smaller than 4 mm (I) was used as 

the fine aggregate. The fine aggregate ratio was fixed at 50 % in all experiments. 

Aggregate number (II) with a size between 4mm to 11.2 mm and aggregate number (III) 

with a size between 11.2 mm to 22.4 mm were used as coarse aggregate in the concrete 

mixtures. The fine and coarse aggregates have specific gravities of 2.75 and 2.77 and 

mean water absorptions of 1.5% and 0.9 %, respectively. Superplasticizer content is 

defined as the ratio of superplasticizer amount of 100 kg cement. 

 
Table 1. Chemical composition of cement and fly ash 

Chemical analysis CEM I 42.5 R (%) FLY ASH (%) 

CaO 66.25 4.76 

SiO2 21.79 56.21 

Al2O3 5.98 23.1 

Fe2O3 2.51 6.51 

SO3 1.54 0.73 

MgO 1.15 2.11 

K2O 0.61 2.53 

Na2O 0.15 0.27 

Cl 0.0071 0.0018 

Loss of ignition 3.71 2.24 
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A polycarboxylic type superplasticizer (SP) was used in all concrete mixtures and 

physical properties of SP are given in Table 2. 
 

Table 2. Properties of the SP at 20
0
C 

Properties Superplasticizer 

Chemical description  Polycarboxylic type polymer 

Color Brown 

Specific gravity (kg/L) 1.08 - 1.14 

Chlorin content % (EN 480-10)  < 0.1  

 

2.2. Proposed multi-response optimization and modeling framework 
Optimization of the mixture parameters is aimed to increase the performance and 

productivity of ready-mixed concrete plant. There are 6 flow steps in performance 

optimization of ready-mixed concrete plant. This flow diagram is given in Figure 1. 

Also, FFD used in this study provides possibility of creating a model. Models which 

may be created give us the ability to predict responses for mixture parameters and two 

quality characteristics. Modeling and optimization of mixture proportions plays an 

important role on providing competitive advantage and customer satisfaction.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Proposed performance optimization framework 

 

2.3. Determining criteria and constraints of optimization and modeling  

Two quality characteristics were determined for C50 in the Ready-Mixed 

concrete plant (Table 3). The viscosity of produced concrete was evaluated through the 

slump flow test according to TS EN 12350/2 (Turkish standard) [15]. Slump flow range 

can be 10–220 mm for C50. Slump flow test is a kind of simple and fast implementation 

experiment both in laboratory and field [16]. The two performance criteria were 

identified respectively as the slump flow and 28
th

 day compressive strength. Higher 

slump flow value gives higher workability of concrete. Therefore, the first criterion 

having effects on concrete quality is the slump flow value which should be maximized. 

For each concrete mixes, the compressive strength was determined on three 15 cm 
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cubes for 28 days according to TS EN 12390/3 [17]. Each compressive strength 

experiment was an average of three 150 mm cube specimens. This criterion provides 

information about concrete durability [5, 18].  

 
Table 3. Quality characteristic and their weights 

Quality 

Characteristic 

Symbol Description Type of 

concrete test 

Target 

values 

Weights 

1 Y1 Slump flow (cm) 

 

Fresh 

concrete test 

Larger is 

better 

1 

2 

 

Y2 Compressive 

strength (N/mm
2
)  

28 days 

Hardened 

concrete test 

Larger is 

better 

1 

 

The mixtures were prepared approximately in 4 min using a rotating planetary 

mixer. The total aggregate mixture weight is 1901 kg/m
3
. The measured concrete 

temperature varies between 10C
0
 and 16C

0
. 

 

2.4. Determination of factors and their levels 

Four factors that each has two control levels affects these performance criteria are 

identified. Water to binder materials ratio, coarse aggregate (II) to total aggregate ratio, 

the percentage of superplasticizer content and fly ash amount were identified as two 

level factors. These factors are symbolized X1, X2, X3 and X4 respectively (Table 4).  

 
Table 4. Levels of factors that affect quality characteristic  

Factors Description Bounds  

-1(coded values) 1(coded values) 

First bound Second bound 

X1 Water to binder materials ratio   0.48 0,52 

X2 Coarse aggregate (II) to total aggregate ratio 0.28 0.32 

X3 Superplasticizer content (kg/m
3
) 1.00 1.20 

X4 Fly ash amount (kg/m
3
) 60 80 

 

2.5. Full factorial design and desirability function 

Experimental design is a statistical methodology used to analyze the effect of 

several factors simultaneously. It makes changes to the independent factors (input) to 

determine their effect on the dependent response (output). It not only determines the 

significant factors that affect the response, but also how these factors affect the response 

[19, 20].  

 

The polynomial regression model which can be considered for the three input 

factors is given in Eq. (1) [19]. In addition to the main effects of the three factors, 

interactions among the factors were also included in the regression, as shown in Eq. (1) 

[20]: 
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Where in eq.1 Y is the predicted response, β0 defines the offset term, βi is the 

linear effect of factor i, βij is the two-factor interaction effect between factors i and j and 

β123 represents the three-factor interaction effect. 

 

The desirability function approach transforms an estimated response (e.g., the ith 

estimated response ŷi) into a scale-free value, called a desirability (denoted as di for ŷi). 

It is a value between 0 and 1, and increases as the corresponding response value 

becomes more desirable. The overall desirability D, another value between 0 and 1, is 

defined by combining the individual desirability values (i.e., di’s). Then, the optimal 

setting is determined by maximizing D [21]. In optimization study, different desirability 

functions are used depending on the selected criteria (maximum, minimum, target value 

assignment or have a certain range) for each response [22]. The desirability function for 

a larger-the-better (LB) - type response is defined as [23]. 
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where di(ŷi(x)) is the desirability function of ŷi(x), Li is the lower bounds on the 

response,  Ti is the desired target of the i
th

 response, where Li ≤ Ti and si is the 

parameters that determine the shape of di(ŷi(x)): if si = 1, the shape is linear; if si > 1, 

convex; and if 0 < si < 1, concave. Derringer (1994) proposed a weighted geometric 

mean as a strategy to aggregate the individual  di’s:  

 

   i
nddddD 

1

321
1111                                                                                      (3) 

 

where νi is the relative weight of the ith response [3, 24]. 

 

3. RESULTS 

 

 In Table 5, columns 2–5 represent the four control factors and their levels. In 

this study, a full factorial design (2
4
) was used to implement the experiments and results 

are given in Table 5. 
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Table 5. Findings were obtained in all experiments 
Exp. 

No 

FFD ( 24) 

uncoded variables 

Y1 

mm 

Y1 

mm 
  

Y2 

(N/mm2) 
  

Y2 

 (N/mm2) 
  

X1 X2 X3 X4 Replicate 1 Replicate 2 Replicate 1 Replicate 2 

1 0.48 0.28 1.0 60 90 100 54.3 54.1 

2 0.52 0.28 1.0 60 170 160 52.2 52.0 

3 0.48 0.32 1.0 60 70 80 54.0 53.8 

4 0.52 0.32 1.0 60 150 150 53.2 53.0 

5 0.48 0.28 1.2 60 110 110 53.0 53.0 

6 0.52 0.28 1.2 60 200 180 51.0 51.3 

7 0.48 0.32 1.2 60 100 100 51.7 51.4 

8 0.52 0.32 1.2 60 180 170 51.1 51.5 

9 0.48 0.28 1.0 80 100 110 54.5 54.3 

10 0.52 0.28 1.0 80 190 190 52.5 52.5 

11 0.48 0.32 1.0 80 80 90 54.3 54.6 

12 0.52 0.32 1.0 80 170 170 53.8 53.8 

13 0.48 0.28 1.2 80 130 130 53.4 53.2 

14 0.52 0.28 1.2 80 240 220 51.4 51.2 

15 0.48 0.32 1.2 80 120 120 52.0 52.1 

16 0.52 0.32 1.2 80 230 210 51.5 51.1 

 

3.1. Development of the regression meta-models 

Relations among factors and regression equalities were determined by 

polynomial regression analysis and degree of accuracy by determination coefficient 

(R
2
). MINITAB

®
 Statistical Program Package (version 15.1.1) was used for the data 

analysis. Regression models obtained with MINITAB
®
 were given in eq. (4) and eq. (5). 

Estimated effects and coefficients for all criteria were given in Table 6 and 7. 

 
)4(**75.3**375.4*875.11*15*5.7*875.41375.144 434143211 XXXXXXXXY 

 
)5(***12.0**29.0**34.0*18.0*84.0*64.07.52 43132214312 XXXXXXXXXXY 

 

The experimental results are analyzed by ANOVA (ANalysis Of VAriance) 

procedures. The ANOVA table gives a summary of the main effects and interactions 

(Tables 6 and 7). MINITAB
®
 15 displays both the sequential sums of squares (Seq SS) 

and adjusted sums of squares (AdjSS) [19]. Table 6 and 7 shows the p-values associated 

with each individual model term. The ‘Term’ column in Table 6 presents the main 

effects and all interactions. The second and third column displays the main effects and 

coefficients of the terms. The fifth and sixth columns display the t-ratios and p-values. 

The rows of all significant factors are shown in bold in Table 6 and 7 (p<0.05). The p-

values lead to following conclusions: (1) Two-way interaction X1*X4 (p=0.005) and 

X3*X4 (p=0.012) for slump flow and X1*X2 (p=0.000) and X2*X3 (p=0.000) for 28
th

 

day compressive strength is statistically significant, others are not. (2) Main factors X1, 

X3, X4 (p=0.000) are statistically significant for two criteria; X3, is only statistically 

significant for slump flow [20]. 
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Table 6. Estimated effects and coefficients for modeling slump flow in coded values 

Term Effect Coefficient SE Coef t P value 

Constant  144.375 1.326 108.89 0.000 

X1 83.750 41.875 1.326 31.58 0.000 

X2 -15.00 -7.500 1.326 -5.66 0.000 

X3 30,00 15.000 1.326 11.31 0.000 

X4 23.750 11.875 1.326 8.96 0.000 

X1*X2 -0.000 -0.000 1.326 -0.00 1.000 

X1*X3 5.000 2.500 1.326 1.89 0.078 

X1*X4 8.750 4.375 1.326 3.30 0.005 

X2 *X3 3.750 1.875 1.326 1.41 0.176 

X2 *X4 0.000 0.000 1.326 0.00 1.000 

X3 *X4 7.500 3.750 1.326 2.83 0.012 

X1 *X2 *X3 -1.250 -0.625 1.326 -0.47 0.644 

X1 *X2 *X4 -0.000 -0.000 1.326 -0.00 1.000 

X1 *X3 *X4 2.500 1.250 1.326 0.94 0.360 

X2 *X3 *X4 1.250 0.625 1.326 0.47 0.644 

X1 *X2 *X3*X4 1.250 0.625 1.326 0.47 0.644 

 
Table 7. Estimated effects and coefficients for modeling 28th day compressive strength in coded values 

Term Effect Coefficient SE Coef t P value 

Constant  52.7125 0.02932 1798.13 0.000 

X1 -1.2875 -0.6437 0.02932 -21.96 0.000 

X2 -0.0625 -0.0313 0.02932 -1.07 0.302 

X3 -1.6875 -0.8437 0.02932 -28.78 0.000 

X4 0.3500 0.1750 0.02932 5.97 0.000 

X1*X2 0.675 0.3375 0.02932 11.51 0.000 

X1*X3 0.0750 0.0375 0.02932 1.28 0.219 

X1*X4 -0.0375 -0.0188 0.02932 -0.64 0.531 

X2 *X3 -0.5750 -0.2875 0.02932 -9.81 0.000 

X2 *X4 0.0875 0.0437 0.02932 1.49 0.155 

X3 *X4 -0.1125 -0.0562 0.02932 -1.92 0.073 

X1 *X2 *X3 0.0375 0.0188 0.02932 0.64 0.531 

X1 *X2 *X4 -0.0500 -0.0250 0.02932 -0.85 0.406 

X1 *X3 *X4 -0.1250 -0.0625 0.02932 -2.13 0.049 

X2 *X3 *X4 -0.0750 -0.0375 0.02932 -1.28 0.219 

X1 *X2 *X3*X4 -0.0375 -0.0187 0.02932 -0.64 0.531 

 

 

3.2. Validation of meta-models 

 

The real data of responses versus the predicted responses are given in Figure 2 

as the observed and predicted values respectively. The model explains that the 

experimental range was studied sufficiently. The fitted regression equation shows a 

good fit to the model [25]. 
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Figure 2. Observed values versus predicted values for criteria 

 

3.3. Optimization using desirability function approach 

 

Individual desirability values, the overall desirability D and predicted value were 

calculated by MINITAB and given in Figure 3. The factors obtained at the maximum 

points of Y1 and Y2 (target: 150 mm and 53 N/mm
2
, respectively) were calculated as 

X1=0.5090, X2=0.3123, X3=1.0012 and X4=80 which are known as estimated condition 

(Figure 3). 

 

 
 

Figure 3. Optimization plot 

 

3.4. Verification of optimal parameters 

Validation experiments were applied at the estimated condition. The results 

illustrate that the experimental results are close to the estimated results (Table 8). The 

accuracy of the results can be taken as a proof for the validity of the estimated models.  

 

Table 8. Test results for the verification of the results of FFD based DFA 

Number Responses 
Predicted 

values 

Verification 

experiment 

1 Y1 150.7522 150 

2 Y2 53.7812 54.0 

 



 

 

338                                  B. Şimşek, Y. T. İç and E. H.Şimşek 
 

4. CONCLUDING REMARKS 

  

In this study, the optimization and the modeling of mixture proportions of C50 

were performed by using a FFD based DFA. RMC consists of many conflicting factors; 

it is critical to use a systematic methodology for determining optimal mixes and 

modeling quality characteristics of C50 under a set of parameters that make up the 

concrete. For this reason, a FFD based DFA was used in this study to investigate 

ranking of the conflicting factor levels and best possible mix proportions of C50. The 

results showed that the proposed methodology is effective in solving the mixture 

proportions optimization problem. Also, it can be seen from the results of produced 

concrete samples, that they satisfied the expected properties of C50. Therefore, this 

study provides a tool for improvement of system performance for the organizations that 

have RMC. Outcomes were shared with the Concrete Manufacturer Company and more 

studies have been initiated to increase the system performance.  
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