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Abstract- Applications of genomic and proteomic, epigenetic, pharmacogenomics, and 

systems biology have shown increased a lot, resulting in an explosion in the amount of 

highly dimensional and complicated data being generated. The data of bioinformatics 

fields are always with high-dimension and small samples. Genome-wide investigations 

generate in large numbers of data and there is a need for soft computing methods 

(SCMs) such as artificial neural networks, fuzzy systems, evolutionary algorithms, 

metaheuristic and swarm intelligence algorithms, statistical model algorithms etc. that 

can deal with this amount of data. The use of soft computing methods has been 

increased to a variety of bioinformatics applications. It is used to inquire the underlying 

mechanisms and interactions between biological molecules in a lot of diseases, and it is 

a main tool in any biological (or biomarker) discovery process. The aim of this article is 

to introduce soft computing methods for bioinformatics. These methods present 

supervised or unsupervised classification, clustering and statistical or stochastic 

heuristics models for knowledge discovery. In this article, the current problems and the 

prospects of SCMs in the application of bioinformatics is also discussed. 
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1. INTRODUCTION 

 

 Bioinformatics research, develop, and apply computational approaches for 

analyzing, and thus expanding, the use of biological, behavioral, and medical data. 

There are many biological domains of bioinformatics where SCMs are applied for 

knowledge extraction of biological and medical problems of from data. These problems 

can be classified into six different domains: genomics, proteomics, microarrays, systems 

biology, evolution and text mining [1].  

 Genomics domain is one of the most important domains in bioinformatics which 

discipline in genetics applications recombinant DNA, DNA sequencing methods, and to 

sequence, assemble, and analyze the function and structure of genomes. Genomics data 

requires pre-processing in order to acquire useful information. As a first step, from 

genome sequences, it is possible to extract the location and structure of the genes. 

Sequence information can be used for gene function and RNA secondary structure 

prediction [2,3]. 

 Proteomic domain is an essential application of SCMs for protein structure 

prediction. Proteins are very complicated macromolecules with thousands of atoms and 

bounds. For this reason, the number of possible structures consists of very big data 
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which makes protein structure prediction a very complicated combinatorial problem 

where complex optimization methods such as SCMs are required [1]. 

 Genomic and proteomic data analysis is essential tools for understanding the 

underlying factors that are included in human illness problems [4]. Applications of 

genomic and proteomic technologies have seen a high increase, resulting in a huge 

amount of multi dimensional and complicated data being created [5,6]. This is due to 

their ability to get over with multi dimensional complicated datasets such as those 

developed by protein mass spectrometry and DNA microarray experiments. As such, 

artificial neural networks have been applied to diagnosis of illness problems and 

authentication of biomarkers. Feature selection is used along with classifier architecture 

to avoid over-fitting, to create more efficient classifier and to supply more insights into 

the underlying causal relationships [7].  

 Microarray domain is the management of complicated experimental data for 

application of computational methods in biology. Complicated experimental data causes 

of two types of problems. The first one is data need to pre-processing, i.e. modified to 

be suitably used by SCMs. The second is the analysis of the data which depends on 

what we search for. The most well known applications are on pattern recognition, 

classification and genetic network in the case of the microarray data [1]. 

 Systems biology domain is another important domain of biology that 

incorporates with the soft computing methods. Systems biology is the work of systems 

of biological components, which might be molecules, cells, organisms or entire species. 

It is very complicated to model the life processes that take place inside the cell. Thus, 

SCMs are extremely helpful when modeling biological networks especially genetic 

networks, signal transduction networks and metabolic pathways [8]. 

 Evolution domain, especially phylogenetic tree reconstruction can also take 

advantage of SCMs. Phylogenetic trees (or evolutionary tree) is a schematic 

representations of organisms‟ evolution  demonstration the inferred evolutionary 

relationships a variety biological species (or other entities) based upon similarities and 

differences in their physical and genetic features. There are many different reasons 

behind the alignment of biological sequences. Biological sequence alignment helps to 

discover functional and structural similarity of sequences. Scientists work with these 

aligned sequences to constitute phylogenetic trees, characterize protein families, and 

estimate protein structure [9-10]. Generally, they were constituted belonging to different 

features such as morphological features, metabolic features, etc. but, nowadays, with the 

great amount of genome sequences available, phylogenetic tree construction algorithms 

are based on the comparison between different genomes. This comparison is made by 

means of multiple sequence alignment, where optimization methods are very useful.  

 Text mining domain is a side effect of the application of SCMs for 

bioinformatics because of the increasing amount of data. This allows for a new source 

of valuable information which is required for the knowledge extraction. Thus, text 

mining is becoming more and more interesting in computational biology, and it is being 

applied in functional annotation, cellular location estimation and protein interaction 

analysis [11].  

 Bioinformatics is a discipline that built upon the fields of computer and 

information sciences. It relies mainly upon strategies to achieve, store, organize, 

archive, analysis, and visualize data. Bioinformatics (or computational biology) 
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encompasses the development and application of data-analytical and theoretical 

methods, mathematical modeling and computational simulation techniques to the study 

of biological, medical, and behavioral systems. SCMs are well-suited for many 

bioinformatics problems including gene selection, clustering and classification, signal 

processing and image analysis in bioinformatics works, supervised or unsupervised 

classification with multi-dimensional input variables is frequently encountered. Thus, 

SCMs are able to get over with multi dimensional complicated datasets [12]. SCMs are 

used to solve other bioinformatics problems. SCMs can be divided into two class as 

supervised and unsupervised learning rules. Unsupervised or clustering techniques is 

used to group similar genomic or proteomic profiles and therefore is elucidate 

relationships within sample groups. These techniques is also assigned biomarkers to 

sub-groups based on their expression profiles across patient samples. Although 

clustering is useful for exploratory analysis, it is delimited due to its inability to 

incorporate expert knowledge. Furthermore, classification and feature ranking are 

supervised, knowledge-based soft computing methods that estimate the distribution of 

biological expression data and, in doing so, can extract important information about 

these experiments. Classification is closely coupled with feature ranking, which is a 

main data reduction technique that uses to estimate classification error or other 

statistical tests to score features [13]. Figure 1 shows that Classification of the topics 

where soft computing methods are applied [1]. 

 

 
Figure 1. Classification of the topics where soft computing methods 
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This article is organized as follows: The first section is an introduction to the literature 

of previous researches. The second section presents SCMs and gives some brief 

information for different types of well known algorithms of SCMs. The third section 

discusses the applications of SCMs on some bioinformatics problems. This section is 

also defined literature studies on bioinformatics. Final section explains the conclusions 

of this revision on SCMs in bioinformatics. 

 

2. SOFT COMPUTING METHODS 
 

Soft computing methods (SCMs) consist in programming computers to optimize a 

performance criterion by using example data or past experience. Basically, soft 

computing is not a homogeneous body of concepts and methods. Rather, it is a 

partnership of distinct techniques that in one way or another conform to its guiding 

principle. At this point, the aim of soft computing is to utilize the tolerance for 

imprecision and uncertainty to achieve tractability, robustness and low solutions cost. 

SCMs deal with imprecision, uncertainty, partial truth, and approximation to achieve 

practicability, robustness and low solution cost [14]. It must be noticed that the 

efficiency of the learning and inference algorithms, as well as their space and time 

complexity and their transparency and interpretability, can be as important as their 

learning accuracy [15]. The well known SCMs are: Artificial neural networks, Fuzzy 

systems, Bayesian network, Evolutionary algorithms, Genetic algorithms, 

Metaheuristic and Swarm Intelligence (such as Ant colony optimization, Bees 

algorithms, Bat algorithm, Cuckoo search, Harmony search, Firefly algorithm, Artificial 

immune systems, Particle swarm optimization etc), and Chaos theory. Generally 

speaking, SCMs resemble biological processes more closely than traditional methods, 

which are largely based on formal logical systems, such as sentential logic and predicate 

logic, or rely heavily on computer-aided numerical analysis (as in finite element 

analysis). SCMs are intended to complement each other. Unlike hard computing 

schemes, which strive for exactness and full truth, SCMs exploit the given tolerance of 

imprecision, partial truth, and uncertainty for a particular problem. Another common 

contrast comes from the observation that inductive reasoning plays a larger role in soft 

computing than in hard computing. 

 

 2.1. Artificial Neural Networks 

 Artificial Neural Networks (ANN) is an information processing model, 

implemented in hardware or software that is modeled after biological process of the 

brain studied. Artificial neural network has ability to derive meaning from imprecise or 

complicated data to extract patterns and to detect trends that are not easily to recognize 

by humans or other computer techniques [16-17]. ANN has been mainly used to 

examine the complicated relationships between input and output variables in many 

scientific and technological areas including biomedical and bioinformatics [18-19]. 

Some well-known ANN algorithms such as Back-Propagation (BP), Radial Based 

Function (RBF), and Support Vector Machines (SVM) are mostly used to solve 

bioinformatics problems.  
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The algorithm of Back-propagation used generalized delta learning rule is an iterative 

gradient algorithm designed to minimize the root mean square error between the actual 

output of a multilayered feed-forward ANN and a desired output. Each layer is fully 

connected to the previous layer, and has no other connection. The algorithm of Back-

propagation classifier can be described as [20];  

 Initialization: Set all the weights and biases to small real random values. 

 Presentation of input and desired outputs: Present the input vector x(1), 

x(2),…,x(N) and corresponding desired response d(1),d(2),…,d(N), one pair at a 

time, where N is the number of training patterns. 

 Calculation of actual outputs: Use Equation given below to calculate the output 

signals 
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in which xj(n)= output of node j at iteration n, l is layer, k is the number of nodes of 

output of neural network, M is  output layer, φ is activation function [21]. Sigmoid and 

hyperbolic tangent activation functions are more effective than the other activation 

functions [22]. The learning rate is indicated by μ. It may be noted here that a large 

value of the learning rate may cause to faster convergence but may also result in 

oscillation. 

 Radial basis function (RBF) neural network is based on supervised learning. 

RBF‟s are embedded in a two layer neural network, where each hidden layer 

implements a radial activated function. The output layer realize a weighted sum of 

outputs of hidden layer.  All hidden nodes simultaneously receive the n-dimensional 

real valued input vector X. The output of hidden-layer, 
jZ  is obtained by closeness of 

the input X to an n-dimensional parameter vector 
j associated with the jth hidden 

layer. The response characteristics of the jth hidden layer ( j = 1, 2, , J) is assumed as 

)||||(
2

jjj xKZ   

 

where K is a strictly positive radials symmetric function (kernel) with a unique 

maximum at its „centre‟ 
j and which drops off very fast to zero away from the 

centre. j is the width of the receptive field in the input space from layer j [23]. This 
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means that  
jZ  has an perceptible value only when the distance |||| jx   is smaller 

than the width j .Given an input vector X, the output of the RBF network is the L-

dimensional activity vector Y, whose lth component (l = 1, 2 L) is given by, 
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Support Vector Machines (SVM) is specifically used to solve a binary classification 

problem in a supervised manner and the learning problem is formulated as a quadratic 

optimization problem where the error surface is free of any local minimum and has 

global optimum [24]. SVM is to build an optimal separating hyper plane in such a way 

that the margin of separation between two classes is maximized. SVM accomplish this 

desirable property on the basis of the principle of structural risk minimization. To 

realize the SVM based classifiers for linearly separable patterns, let us consider a 

training set indicated by {(xj,yj)} (j=1,..., N), where xj is the n-dimensional input feature 

vector and yj indicates the desired (or target) output. The input patterns indicated by the 

desired output yj = 1 constitute the positive group and the desired output yj = -1 

constitute the negative group [25].  

 

Now suppose we have a machine whose task it is to learn the mapping xj yj. The 

machine is defined by a set of possible mappings xf(x;), where the functions f(x;) 

themselves are sorted by the adjustable parameters . The machine is assumed to be 

deterministic: for a given input x, and selection of , it will always give the same output 

f(x;). A particular selection of  creates what we will call “trained machine.” Thus, for 

example, an ANN with fixed structure, with  corresponding to the weights and biases, 

is a learning machine in this sense. The expectation of the test error for a trained 

machine is therefore: 
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Note that, when a density p(x; y) exists, dP(x;y) can be written p(x;y)dxdy. This is a 

nice way of writing the true mean error, but unless we have an estimate of what P(x; y) 

is, it is not very useful. The quantity R() is named the expected risk, or just the risk. 

Here we will call it as the actual risk, to emphasize that it is the quantity that we are 

interested in. The “empirical risk” Remp() is defined to be just the measured mean error 

rate on the training set (for a fixed, finite number of observations): 
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Note that no probability distribution appears here. Remp() is a fixed number for a 

particular choice of  and for a particular training set fxi; yig. The quantity 1/2yi - f(xi, 

 is called the loss. For the case described here, it can only take the values 0 and 1. 

Now choose some η such that 0 ≤ η ≤1. Then for losses taking these values, with 

probability 1- η, the following bound holds)[26]: 
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where h is a non-negative integer called the Vapnik Chervonenkis dimension, and is a 

measure of the notion of capacity mentioned above. In the following we will call the 

right hand side of the last equation as risk bound [27]. 

 

 2.2. Fuzzy Systems 

 The Fuzzy system model is the knowledge-based model with linguistic rules. 

Fuzzy sets are described for all input and output variables and the set of rules. Fuzzy 

logic ensures the means to process this knowledge and compute output values for given 

input data. The main problem of this approach is to find a suitable set of linguistic rules 

that define the system to be modeled [28]. Fuzzy systems is represented in the form of 

if-then rules or fuzzy conditional statements as in the expression of the form IF A 

THEN B, where A and B are labels of the fuzzy sets. The set of rules should be 

complete and provide an answer for every input value.  

 Fuzzy systems consist of three steps as the fuzzification, fuzzy inference and the 

defuzzification. The fuzzification module pre-processes the input values submitted to 

the fuzzy expert system. The inference engine uses the results of the fuzzification 

module and accesses the fuzzy rules in the fuzzy rule base to infer what intermediate 

and output values to produce. Fuzzification is the transformation of numerical variables 

into linguistic variables and the corresponding allocation of the grade of membership 

(changing between 0 and 1) to the different membership functions [29]. The linguistic 

combination of the traits is achieved in the fuzzy inference system (FIS). There are two 

types of FIS models; Mamdani FIS model and Sugeno FIS model. Here we have only 

described Mamdani FIS model. The rules used are resulted from human knowledge and 

have the form: if condition, then conclusion. The degree to which each part of the 

condition has been fulfilled for each rule is known by the belonging grades of 

membership. The final output of the fuzzy system is provided by the defuzzification 

module. Through the calculation of the centre of gravity of these areas, the fuzzy values 

are converted back in order to resolve a single output value from the set. The centroid 

technique is used for defuzzification. The centroid of composed shape is computed by, 

 

      Z = [μc(z)zδz]/[μc(z)δz] 

 

where z is the consequent variable and  μc(z) is the function of the composed form [30]. 

 

 Fuzzy c-means (FCM) clustering algorithm is often used as an initial step for the 

fuzzy systems to find membership values of each training data vector in each cluster. 

These membership values are assumed to represent best partitions of the given dataset 

[31]. Formally, clustering an unlabeled data X = {x1, x2, . . . , xN} ⊂ Rh, where N 

represents the number of data vectors and h the dimension of each data vector, is the 

assignment of c partition labels to the vectors in X. c-partition of X constitutes sets of 

(cN){uik} membership values that can be arranged as a (c × N) matrix U = [uik]. The 

problem of fuzzy clustering is to find the optimum membership matrix U. The most 

often used function for fuzzy clustering is the weighted within-groups sum of squared 
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errors Jm, which is used to describe the following constrained optimization problem 

[32]: 
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V ={v1, v2, . . . , vc} is the vector of (unknown) cluster centers, and ǁxǁA=(x
T
Ax)

1/2
 an 

inner product norm. A is an h × h positive definite matrix, which specifies the form of 

the clusters. The matrix A is generally selected as the identity matrix, leading to 

Euclidean distance and, consequently, to spherical clusters. Fuzzy partitions are 

implement using the FCM algorithm through an iterative optimization of considering 

the following steps [33]: 

 Choose the number of clusters (c), weighting exponent (m), iteration limit (iter), 

termination criterion (_>0), and norm for error ǁVt − Vt−1ǁ. 

 Guess initial position of cluster centers: V0 = {v1,0, v2,0, . . . , vc,0} ⊂ R
ch

. 

 Iterate for t = 1 iter, calculate 

and  

 

 IF error=ǁVt − Vt−1ǁ≤ , THEN stop, and put (Uf, Vf) = (Ut, Vt) for NEXT t. 

 

There is some special model to find the optimum number of clusters model such as the 

fuzzy function cluster validity index [34]. 

 

 2.3. Statistical Model Algorithms 

 Different statistical classification algorithms can also use to solve bioinformatics 

problems such as K- Nearest Neighbors and Naïve Bayes.   

 K Nearest Neighbor (K-NN) is an simple non parametric algorithm which is a 

method for classifying cases based on their similarity to other cases. Similar cases are 

near each other and dissimilar cases are distant from each other. Thus, the distance 

between two cases is a measure of their dissimilarity. Training a nearest neighbor model 

involves computing the distances between cases based upon their values in the feature 

set. The nearest neighbors to a given case have the smallest distances from that case. 

The distance is calculated using one of the following measures[35]: 

 Euclidean Distance 

 Minkowski Distance 

 Mahalanobis Distance 

 

Simple K-NN algorithm consists of following steps: 
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 For each training example <x,f(x)>, add the example to the list of training 

examples, 

 Given a query instance xq ¨ Given a query instance x to be classified, q to be 

classified, Let x1, x2….xk denote the k instances from training examples that 

are nearest to xq. Then, return the class that represents the maximum of the k 

instances. 

 

A Naïve Bayes classifier is a simple but effective probabilistic classifier based on 

applying Bayes' theorem with strong (naive) independence assumptions. A more 

descriptive term for the underlying probability model would be independent feature 

model. According to the precise nature of the probability model, Naïve Bayes classifiers 

is trained efficiently in a supervised learning setting. In numerous applications, 

parameter estimation for Naïve Bayes uses the technique of maximum likelihood. In 

spite of their naive design and apparently over-simplified assumptions, Naïve Bayes 

classifiers often work much better in many complex real-world situations than one 

might expect[36]. Note that the naive Bayes classifier assumes the conditional 

independence of features. This assumption however does not hold in most cases. 

Despite this apparent violation of the assumption, the naive Bayes classifier exhibits 

good performance for various natural language processing tasks. An advantage of Naïve 

Bayes classifier is that it needs to less training data to estimate the parameters (means 

and variances of the variables) necessary for classification [37]. Naïve Bayes classifier 

combines this model with a decision rule. One common rule is to pick the hypothesis 

that is most probable; this is known as the maximum a posteriori decision rule. The 

corresponding classifier is the function classify defined as follows[36]: 





n

i

iiCn cCfFpcCpffclassify
1

1 )|()(maxarg),...,(  

 

 2.3. Metaheuristic and swarm intelligence algorithms 

 Recently, well-known modern heuristic algorithms such as Genetic Algorithm 

(GA), Differential Evolution (DE), Particle Swarm Optimization (PSO), Artificial Bee 

Colony (ABC), and Ant Colony Optimization (ACO) are used on bioinformatics 

problems. 

 

Genetic Algorithm (GA) is good candidates for this task since GA is most useful in 

multiclass, high-dimensionality problems where heuristic knowledge is sparse or 

incomplete. Holland [38] defined a methodology for studying natural adaptive systems 

and designing artificial adaptive systems. It is now often used as an optimization 

technique, based on an analogy to the process of natural selection in biology. A GA 

approach needs to a population of chromosomes representing a combination of features 

from the solution set, and needs to a cost function (called an valuation or fitness 

function). This function computes the fitness of each chromosome. The algorithm 

manipulates a finite set of chromosomes (the population), based loosely on the 

mechanism of evolution. In each generation, chromosomes are subjected to certain 

operators, such as crossover, inversion and mutation, which are analogous to processes 

which consists of in natural reproduction. Crossover of two chromosomes produces a 

http://en.wikipedia.org/wiki/Classifier
http://en.wikipedia.org/w/index.php?title=Decision_rule&action=edit
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pair of offspring chromosomes which are synthesis of the traits of their parents[39]. The 

Basic Genetic Algorithm consists of following steps: 

 

 1. Generate random population of n chromosomes , 

 2. Evaluate the fitness f(x) of each chromosome x in the population, 

 3. Generate a new population by repeating following steps till the new   

     population is complete; 

 Select two parent chromosomes from a population depending on 

their fitness  

 With a crossover probability cross over the parents to form a new 

offspring. If no crossover was performed, offspring is an exact 

copy of parents 

 With a mutation probability mutate new offspring at each locus  

 Place new offspring in a new population, 

 4. Use new generated population for a further run of algorithm, 

 5. If the end condition is satisfied, stop, and return the best solution in current  

               population, 

 6. Go to step 2 

 

Differential Evolution (DE) is a population-based search strategy very similar to 

standard evolutionary algorithms. The major difference is in the reproduction step 

where offspring is created from three parents using an arithmetic cross-over operator. 

DE is described for floating-point representations of individuals. DE does not use of a 

mutation operator that is related some probability distribution function, but introduces a 

new arithmetic operator which depends on the differences between randomly selected 

pairs of individuals [40]. For each parent, xi(t), of generation t, an offspring, x′i(t) is 

generated in the following way: Randomly select three individuals from the current 

population, namely xi1(t), xi2(t),  and xi3(t), with i1 ≠ i2 ≠ i3 ≠ iψ and i1, i2, i3..., U(1,…, s), 

where s is the population size. Select a random number rψ˜�U(1,…, Nd), where Ndψ is 

the number of genes of a single chromosome. Then, for all genes jψ= 1, ψNd, if U(0,ψ1) 

< ψPr, or if jψ = r, let; 

 

x′i,j(t)= xi3,j(t)+[ xi1(t) – xi2(t)] otherwise, let: x′i,j(t)= xi,j(t). 

 

Here, Prψ is the probability of reproduction (with Prψ∈[0ψ1]), γψ is a scaling factor 

with γ ∈ (0ψ∞), and x′i,j(t) and xi,j(t) indicate respectively the jth genes (or parameter) of 

the offspring and the parent. Thus, each offspring consists of a linear combination of 

three randomly chosen individuals when U(0,ψ1) < ψ Pr; otherwise the offspring 

inherits directly from the parent. Even when Prψ= 0, at least one of the parameters of the 

offspring will differ from the parent [41]. 

 

Particle swarm optimization (PSO) is an optimization technique which has been 

developed being inspired by the social behaviors of swarms like bird flocking or fish 

schooling by Kennedy and Eberhart [42]. In PSO method, each potential solution is 

referred as a particle and each particle has positions (xi;j) and velocities (vi;j) in a j-

dimensional feature space [43]. The solution set which consists of the particles is called 
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as swarm. At the beginning of the algorithm, each particle is generated by taking 

random values from the solution space. The success of each particle is determined 

employing a fitness function. Through the iteration process, the best instance of each 

particle and the swarm is kept as local bests (Pbesti;j) and global best (Gbesti;j ) 

respectively. The velocity and position of each particle is updated utilizing these 

equations[44]; 

 

vi;j(t+1) = wvi;j(t) +c1R1(pbesti;j – xi;j(t)) + c2R2(gbesti;j – xi;j(t)) 

 

xi;j(t + 1) = xi;j(t) + vi;j(t + 1) 

 

where i is the index of the particle, j is the index of the position in particle, t shows the 

iteration number, vi;j(t) is the velocity of the ith particle in the swarm on jth index of the 

position in the particle and xi;j(t) is the position. R1 and R2 are the random numbers 

uniformly distributed between 0 and 1. c1 and c2 are the acceleration numbers and 

default values are 2 and w is the inertial weight. The original procedure for 

implementing PSO is as follows [45]: 

 

 1. Generate each particle randomly within the j-dimensional feature space. 

 2. Evaluate the success of each particle using the tness function. 

 3. If the success of the current particle is better than the success of Pbesti;j  

                then determine Pbesti;j as the current particle. 

 4. If the success of the current particle is better than the success of Gbesti;j  

                then determine Gbesti;j as the current particle. 

 5. Update the velocity and position of the particle using equations given above. 

 6. Repeat the steps from 2 to 5 until the stopping criteria or maximum iteration is  

                reached. 

 

Artificial Bee Colony (ABC) algorithm has been presented by Karaboga for optimizing 

numerical problems. The algorithm simulates the intelligent foraging behavior of honey 

bee swarms. It is a very simple but efficient, robust and population based stochastic 

optimization algorithm. In ABC algorithm, the colony of artificial bees includes three 

groups of bees: employed bees, onlookers and scouts. A bee waiting on the dance area 

for making a decision to select a food source is named onlooker and one going to the 

food source visited by it before is called employed bee. The other kind of bee is scout 

bee that carries out random search for discovering new sources. Pseudo-code of the 

ABC algorithm is [46]: 

 

 Load training samples, 

 Generate the initial population zi, (i=1...SN), 

 Evaluate the fitness (fi) of the population, 

 Set cycle to 1, 

 repeat 

 For each employed bee{ 

Produce new solution vi by using (vij = zij + ij(zij − zkj) 

Compute the value fi 
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Apply greedy selection process} 

 Compute the probability values pi for the solutions (zi) by (pi) 

 
 For each onlooker bee{ 

Select a solution zi depending on pi 

Produce new solution vi 

Calculate the value fi  

Apply greedy selection process} 

 If there is an abandoned solution for the scout  

then replace it with a new solution which will be randomly produced by  

 
 Memorize the best solution so far 

 cycle=cycle+1 

 until cycle=MCN 

 

Ant Colony Optimization (ACO) agents mimic the foraging behavior of their biological 

counterparts in finding the shortest-path to the food source. The first algorithm 

following the principles of the ACO metaheuristic is the Ant System, where ants 

iteratively construct solutions and add pheromone to the paths corresponding to these 

solutions[47-48]. Path selection is a stochastic procedure based on two parameters, the 

pheromone and heuristic values. The pheromone value gives an pointing of the number 

of ants that select the trail recently, while the heuristic value is a problem dependent 

quality measure. When an ant arrives a decision point, it is more likely to select the trail 

with the higher pheromone and heuristic values. Once the ant reaches at its destination, 

the solution corresponding to the ant‟s followed path is evaluated and the pheromone 

value of the path is increased accordingly. In addition to, evaporation admits of the 

pheromone level of all trails to diminish gradually. Therefore, trails that are not 

reinforced gradually lose pheromone and will in turn have a lower probability of being 

chosen by subsequent ants. ACO algorithm consists of the specification of the following 

aspects [49]; 

 

 An environment that indicates the problem domain in such a way that it lends 

itself to incrementally building a solution to the problem. 

 A problem dependent heuristic evaluation function, which ensures a quality 

measurement for the different solution components. 

 A pheromone updating rule, which bring in account the evaporation and 

reinforcement of the trails. 

 A probabilistic transition rule based on the value of the heuristic function and on 

the strength of the pheromone trail that determines the path taken by the ants. 

 A clear specification of when the algorithm converges to a solution. 
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There are some more algorithms which are used to solve bioinformatics problems such 

as Hidden Markov Model, Decision Trees, Stochastic Optimization, Dynamic 

Programming, Stochastic Context Free Grammars, Multiple Kernel Learning, Max-

Margin Structured Output Learning, Needleman-Wunsch algorithm, Instance-based 

learning, Case Based Reasoning, and Self Organizing Feature Maps (SOM), Principal 

Component Analysis, Independent Component Analysis etc. Some type of inductive 

learning, Evolutionary programming and combinational (or hybrid) models can be used 

to solve the same problems. 

 

3. SCMs in BIOINFORMATICS 

 

 3.1 SCMs applications on Sequence alignment 
 Sequence alignment is a common task in bioinformatics. It plays an essential 

role in detecting regions of significant similarity among a collection of primary 

sequences of nucleic acids or proteins. If they are highly similar, then they have similar 

3D structures or share similar functions. Given a family S = (S1,..., SN) of N sequences, 

the problem can formally be represented as a set of sequences, and each sequence has its 

own length. The characters of sequences are defined over an alphabet Σ including a gap 

symbol denoted by „–‟, which is a molecular biology term, indel (insertion or deletion). 

The indels indicate that some parts of a sequence are inserted or deleted. The sequence 

is either a DNA, ribonucleic acid (RNA), or amino acid (protein) sequence. The 

nucleotide bases are adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U). 

The alphabet is {A, C, G, T} and {A, C, G, U} for DNA and RNA, respectively. The 

sequence alignment problem has two computational approaches: local alignment and 

global alignment. Global alignment is used Needleman-Wunch algorithms. Local 

alignment is used Smith-Waterman algorithms. In global alignment, sequences are 

aligned as a whole, whereas in local sequence alignment, similarities detected locally 

between sequences are aligned [50]. Assume that 2 DNA sequences are given as S1 = 

{GCTGAACG} and S2 = {CTATAATC} with lengths |S1| and |S2|, respectively. This 

pair of sequences can be aligned as shown in Figure 2. 

 

An alignment without gaps: GCTGAACG 

            CTATAATC 

 

An alignment with gaps: GCTGA--A--CG 

       --CT--ATAATC 

 

Figure 2. Sequence alignment of 2 DNA sequences 

 

Gap is sequence of g missing characters inserted in a string to achieve alignment. Gaps 

are assigned with two kinds of negative scores: Gap-open penalty: negative score 

associated with the initiation of a gap (i.e., with the first missing character), and Gap-

extension penalty: negative score associated with each additional missing character. 

 

For reasons of computational complexity, sequence alignment is divided into two 

categories:  
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 Pairwise alignment (i.e., the alignment of two sequences).  

 Multiple-sequence alignment (i.e., the alignment of three or more sequences).  

Pairwise alignment problems have exact solutions by using dynamic programming. 

Multiple-sequence alignment problems have approximate (heuristic) solutions. The 

function of sum-of-pairs is the most popular scoring method for evaluation of the 

quality of the alignment. The goal of general multiple sequence alignment algorithms is 

to find out the alignment with the highest sum-of-pairs [50]. There are numerous 

existing methods for sequence alignment. The efficiency of an alignment is assessed by 

the application of SCMs.  

Table 1 summarizes some applications of sequence alignment with their used SCMs 

chronologically (from 1993 to 2011). In this table, the first column describes the authors 

and the second column describes the soft computing methods that were used. According 

to Table 1, we can say that metaheuristic and swarm intelligence algorithms are more 

useful than the other soft computing algorithms for Sequence alignment. 

 

Table 1. Soft Computing methods applied for sequence alignment problem 

Authors Used Method Year Ref. 
Ishikawa et al. Simulated Annealing 1993 51 

Kim et al. Simulated Aannealing 1994 52 

Wayama et al. Genetic Algorithm 1995 53 

Notredame and Higgins Genetic Algorithm 1996 54 

Zhang and Wong Genetic Algorithm 1997 55 

Krogh Hidden Markov Model 1998 56 

Chellapilla and Fogel Evolutionary Programming 1999 57 

Maniezzo and  Carbonaro Ant Colony Algorithm 2000 58 

Keith et al. Simulated Annealing 2002 59 

Moss and Johnson Ant Colony Algorithm 2003 60 

Shyu et al Genetic Algorithm 2004 61 

Hernandez-Guia Simulated Annealing 2005 62 

Karpenko et al. Ant Colony Algorithm 2005 63 

Horng et al. Genetic Algorithm 2005 64 

Ge and Liang 
Hidden Markov Model and 

Particle Swarm Optimization 
2005 65 

Omar et al. Optimization algorithm 2005 66 

Chen et al. Ant Colony Algorithm 2006 67 

Rodriguez et al. Particle Swarm Optimization 2007 68 

Lee et al. 
Genetic Algorithm and 

Ant Colony Algorithm 
2008 69 

Juang and Su 
Dynamic Programming and 

Particle Swarm Optimization 
2008 70 

Chen et al. Ant Colony Algorithm 2008 71 

Xu and Y. Chen Particle Swarm Optimization 2009 72 

Mikami and J. Shi Ant Colony Algorithm 2009 73 

Chen et al. 
Dispersion Graph and 

Ant Colony Algorithm 
2009 84 

Lei et al. Particle Swarm Optimization 2009 75 

Bucak and Uslan Stochastic Optimization 2011 76 
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 3.2. SCMs application on single nucleotide polymorphism problem 
 Single Nucleotide Polymorphism (SNPs) are simply sequence variations 

between individuals at a particular point in the genome. Genetic variants mostly consist 

of SNPs, and human genome is estimated to include around 10 million SNPs [77-78]. 

Most of these genome-wide association (GWA) studies are aimed to determine genetic 

variants possibly related to complex diseases. Since SNPs are single-base pair changes, 

the smallest unit of genetic variation, they are present in very small segments of DNA 

and are more likely to survive severe environmental degradation than any other form of 

genetic variation. In this regard, it is generally preferred to use SNPs in GWA studies 

which are used soft computing methods [79]. The number of individuals and SNPs are 

quite effective on the statistical significance of a GWA study. However, it is still very 

expensive and time-consuming to genotype all the SNPs in a large population found in 

the candidate area for large-scale GWA studies [80].  

 SNPs found on chromosome set is called a haplotype. High-given methods, each 

allele are not capable of distinguishing the source chromosome. Position of the two 

alleles of a SNP is usually only take care of such methods. This is the source of alleles 

chromosomes identifiable. This combined with the target locus allele genotype is called 

knowledge. In a healthy state of being of an individual or the individual's phenotype of 

the patient is called. Figure 3 describes all haplotype, genotype, and phenotype [81]. 

 

 
Figure 3. Description of haplotypes, genotypes, and phenotypes 

 

According to the approach used to measure the haplotype tag SNPs knowledge of the 

methods used for the selection are divided into four groups: 

 Methods based on differences in haplotype 

 Methods based on correlation coefficient between SNPs 

 Methods based on the relationship between phenotype 

 Tagged with estimation methods based on SNP 



                                      

 

                                   Soft Computing Methods in Bioinformatics                              191 

 

 

There are different SCMs applied on SNPs in recent years. These methods are based on 

the fact that human genome can be divided into discrete blocks, and small sets of 

common haplotypes in each block are shared by a specific population. Table 2 

summarizes some applications on SNPs with their used SCMs chronologically. 

 

Table 2. Soft Computing methods applied for single nucleotide polymorphism 

Authors Used Method Year Ref. 
Tomida et al. Back-Propagation 2002 82 

Ritchie et al. 
Back-Propagation and  

Genetic Algorithm 
2003 83 

Ao et al. 
Hierarchical Clustering and  

Graph Methods  
2004 84 

Tomita et al. Back-Propagation 2004 85 

Lin and R. Altman Principle Component Analysis 2004 86 

Lin et al. Back-Propagation 2006 87 

Lee et al. Bayesian Networks 2006 88 

Curtis Back-Propagation 2007 89 

Yang et al. Particle Swarm Optimization 2008 90 

Sun and Kardia Back-Propagation 2008 91 

Yang and Zhang 
Back-Propagation and  

Genetic Algorithm 
2008 92 

Petrovski et al. K-Nearest Neighbour 2009 93 

Mahdevar et al. Genetic Algorithm 2010 94 

Chuang et al. 
Genetic Algorithm and 

K-Nearest Neighbour 
2010 95 

Lin and Leu 
Particle Swarm Optimization and  

Support Vector Machines 
2010 96 

Nahlawi and P. Mousavi Independent Component Analysis 2010 97 

Ilhan and Tezel 
Genetic Algorithm, 

Support Vector Machines 
2011 98 

Shi et al. Back-Propagation 2012 99 

Karlik and Oztoprak Back-Propagation 2012 100 

Karlik and Oztoprak Naïve Bayes  2012 101 

Ilhan and Tezel 

Genetic Algorithm, 

Particle Swarm Optimization,  

Support Vector Machines 

2013 102 

 

According to Table 2, we can say that Artificial Neural Networks (ANN) algorithms are 

more useful than the other soft computing techniques for single nucleotide 

polymorphism. 

 

4. CONCLUSIONS 

 

 According to this review article we can say that there is a wide area to develop 

new methods which might share the advantages of SCMs analysis in terms of 

implementing a parsimonious approach to detect the patterns of multi-marker genotypes 

which can be observed when an associated susceptibility locus is present. 

Bioinformatics data needs to be invested in collecting samples of cases and controls and 
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obtaining genotypes it seems sensible to argue that considerable effort should be 

expended on ensuring that methods of analysis applied to the data obtained are as 

effective as possible. 

 I can advice the close collaboration between biologists and bioinformaticians are 

to make available user-friendly software packages that can be used jointly by 

researchers with expertise in experimental biology and researchers with expertise in 

computer science. Because, soft computing methods may not be interpretable by a 

biologist. For example, a question that requires multiple processors to answer might 

need the assistance of someone with expertise in parallel computing. To be intuitive to a 

biologist, the software needs to be easy to use and needs to provide output that is visual 

and easy to navigate. As a result, we can say that if biologists want to solve 

bioinformatics problems more easily, they have to collaborate with computer scientist 

who have experienced on soft computing methods. This collaboration provides to solve 

complex bioinformatics problems. Future bioinformatics databases and analysis tools 

that successfully integrate with their collaborations which will prove to be the most 

useful for biological and biomedical discovery. 
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