

Mathematical and Computational Applications, Vol. 18, No. 3, pp. 176-197, 2013

SOFT COMPUTING METHODS IN BIOINFORMATICS: A

COMPREHENSIVE REVIEW

Bekir KARLIK

Selçuk University, Department of Computer Engineering, Konya, Turkey

bkarlik@selcuk.edu.tr

Abstract- Applications of genomic and proteomic, epigenetic, pharmacogenomics, and

systems biology have shown increased a lot, resulting in an explosion in the amount of

highly dimensional and complicated data being generated. The data of bioinformatics

fields are always with high-dimension and small samples. Genome-wide investigations

generate in large numbers of data and there is a need for soft computing methods

(SCMs) such as artificial neural networks, fuzzy systems, evolutionary algorithms,

metaheuristic and swarm intelligence algorithms, statistical model algorithms etc. that

can deal with this amount of data. The use of soft computing methods has been

increased to a variety of bioinformatics applications. It is used to inquire the underlying

mechanisms and interactions between biological molecules in a lot of diseases, and it is

a main tool in any biological (or biomarker) discovery process. The aim of this article is

to introduce soft computing methods for bioinformatics. These methods present

supervised or unsupervised classification, clustering and statistical or stochastic

heuristics models for knowledge discovery. In this article, the current problems and the

prospects of SCMs in the application of bioinformatics is also discussed.

Key Words- Soft computing, bioinformatics, computational methods, algorithms

1. INTRODUCTION

 Bioinformatics research, develop, and apply computational approaches for

analyzing, and thus expanding, the use of biological, behavioral, and medical data.

There are many biological domains of bioinformatics where SCMs are applied for

knowledge extraction of biological and medical problems of from data. These problems

can be classified into six different domains: genomics, proteomics, microarrays, systems

biology, evolution and text mining [1].

 Genomics domain is one of the most important domains in bioinformatics which

discipline in genetics applications recombinant DNA, DNA sequencing methods, and to

sequence, assemble, and analyze the function and structure of genomes. Genomics data

requires pre-processing in order to acquire useful information. As a first step, from

genome sequences, it is possible to extract the location and structure of the genes.

Sequence information can be used for gene function and RNA secondary structure

prediction [2,3].

 Proteomic domain is an essential application of SCMs for protein structure

prediction. Proteins are very complicated macromolecules with thousands of atoms and

bounds. For this reason, the number of possible structures consists of very big data

 Soft Computing Methods in Bioinformatics 177

which makes protein structure prediction a very complicated combinatorial problem

where complex optimization methods such as SCMs are required [1].

 Genomic and proteomic data analysis is essential tools for understanding the

underlying factors that are included in human illness problems [4]. Applications of

genomic and proteomic technologies have seen a high increase, resulting in a huge

amount of multi dimensional and complicated data being created [5,6]. This is due to

their ability to get over with multi dimensional complicated datasets such as those

developed by protein mass spectrometry and DNA microarray experiments. As such,

artificial neural networks have been applied to diagnosis of illness problems and

authentication of biomarkers. Feature selection is used along with classifier architecture

to avoid over-fitting, to create more efficient classifier and to supply more insights into

the underlying causal relationships [7].

 Microarray domain is the management of complicated experimental data for

application of computational methods in biology. Complicated experimental data causes

of two types of problems. The first one is data need to pre-processing, i.e. modified to

be suitably used by SCMs. The second is the analysis of the data which depends on

what we search for. The most well known applications are on pattern recognition,

classification and genetic network in the case of the microarray data [1].

 Systems biology domain is another important domain of biology that

incorporates with the soft computing methods. Systems biology is the work of systems

of biological components, which might be molecules, cells, organisms or entire species.

It is very complicated to model the life processes that take place inside the cell. Thus,

SCMs are extremely helpful when modeling biological networks especially genetic

networks, signal transduction networks and metabolic pathways [8].

 Evolution domain, especially phylogenetic tree reconstruction can also take

advantage of SCMs. Phylogenetic trees (or evolutionary tree) is a schematic

representations of organisms‟ evolution demonstration the inferred evolutionary

relationships a variety biological species (or other entities) based upon similarities and

differences in their physical and genetic features. There are many different reasons

behind the alignment of biological sequences. Biological sequence alignment helps to

discover functional and structural similarity of sequences. Scientists work with these

aligned sequences to constitute phylogenetic trees, characterize protein families, and

estimate protein structure [9-10]. Generally, they were constituted belonging to different

features such as morphological features, metabolic features, etc. but, nowadays, with the

great amount of genome sequences available, phylogenetic tree construction algorithms

are based on the comparison between different genomes. This comparison is made by

means of multiple sequence alignment, where optimization methods are very useful.

 Text mining domain is a side effect of the application of SCMs for

bioinformatics because of the increasing amount of data. This allows for a new source

of valuable information which is required for the knowledge extraction. Thus, text

mining is becoming more and more interesting in computational biology, and it is being

applied in functional annotation, cellular location estimation and protein interaction

analysis [11].

 Bioinformatics is a discipline that built upon the fields of computer and

information sciences. It relies mainly upon strategies to achieve, store, organize,

archive, analysis, and visualize data. Bioinformatics (or computational biology)

178 B. Karlık

encompasses the development and application of data-analytical and theoretical

methods, mathematical modeling and computational simulation techniques to the study

of biological, medical, and behavioral systems. SCMs are well-suited for many

bioinformatics problems including gene selection, clustering and classification, signal

processing and image analysis in bioinformatics works, supervised or unsupervised

classification with multi-dimensional input variables is frequently encountered. Thus,

SCMs are able to get over with multi dimensional complicated datasets [12]. SCMs are

used to solve other bioinformatics problems. SCMs can be divided into two class as

supervised and unsupervised learning rules. Unsupervised or clustering techniques is

used to group similar genomic or proteomic profiles and therefore is elucidate

relationships within sample groups. These techniques is also assigned biomarkers to

sub-groups based on their expression profiles across patient samples. Although

clustering is useful for exploratory analysis, it is delimited due to its inability to

incorporate expert knowledge. Furthermore, classification and feature ranking are

supervised, knowledge-based soft computing methods that estimate the distribution of

biological expression data and, in doing so, can extract important information about

these experiments. Classification is closely coupled with feature ranking, which is a

main data reduction technique that uses to estimate classification error or other

statistical tests to score features [13]. Figure 1 shows that Classification of the topics

where soft computing methods are applied [1].

Figure 1. Classification of the topics where soft computing methods

 Soft Computing Methods in Bioinformatics 179

This article is organized as follows: The first section is an introduction to the literature

of previous researches. The second section presents SCMs and gives some brief

information for different types of well known algorithms of SCMs. The third section

discusses the applications of SCMs on some bioinformatics problems. This section is

also defined literature studies on bioinformatics. Final section explains the conclusions

of this revision on SCMs in bioinformatics.

2. SOFT COMPUTING METHODS

Soft computing methods (SCMs) consist in programming computers to optimize a

performance criterion by using example data or past experience. Basically, soft

computing is not a homogeneous body of concepts and methods. Rather, it is a

partnership of distinct techniques that in one way or another conform to its guiding

principle. At this point, the aim of soft computing is to utilize the tolerance for

imprecision and uncertainty to achieve tractability, robustness and low solutions cost.

SCMs deal with imprecision, uncertainty, partial truth, and approximation to achieve

practicability, robustness and low solution cost [14]. It must be noticed that the

efficiency of the learning and inference algorithms, as well as their space and time

complexity and their transparency and interpretability, can be as important as their

learning accuracy [15]. The well known SCMs are: Artificial neural networks, Fuzzy

systems, Bayesian network, Evolutionary algorithms, Genetic algorithms,

Metaheuristic and Swarm Intelligence (such as Ant colony optimization, Bees

algorithms, Bat algorithm, Cuckoo search, Harmony search, Firefly algorithm, Artificial

immune systems, Particle swarm optimization etc), and Chaos theory. Generally

speaking, SCMs resemble biological processes more closely than traditional methods,

which are largely based on formal logical systems, such as sentential logic and predicate

logic, or rely heavily on computer-aided numerical analysis (as in finite element

analysis). SCMs are intended to complement each other. Unlike hard computing

schemes, which strive for exactness and full truth, SCMs exploit the given tolerance of

imprecision, partial truth, and uncertainty for a particular problem. Another common

contrast comes from the observation that inductive reasoning plays a larger role in soft

computing than in hard computing.

 2.1. Artificial Neural Networks

 Artificial Neural Networks (ANN) is an information processing model,

implemented in hardware or software that is modeled after biological process of the

brain studied. Artificial neural network has ability to derive meaning from imprecise or

complicated data to extract patterns and to detect trends that are not easily to recognize

by humans or other computer techniques [16-17]. ANN has been mainly used to

examine the complicated relationships between input and output variables in many

scientific and technological areas including biomedical and bioinformatics [18-19].

Some well-known ANN algorithms such as Back-Propagation (BP), Radial Based

Function (RBF), and Support Vector Machines (SVM) are mostly used to solve

bioinformatics problems.

180 B. Karlık

The algorithm of Back-propagation used generalized delta learning rule is an iterative

gradient algorithm designed to minimize the root mean square error between the actual

output of a multilayered feed-forward ANN and a desired output. Each layer is fully

connected to the previous layer, and has no other connection. The algorithm of Back-

propagation classifier can be described as [20];

 Initialization: Set all the weights and biases to small real random values.

 Presentation of input and desired outputs: Present the input vector x(1),

x(2),…,x(N) and corresponding desired response d(1),d(2),…,d(N), one pair at a

time, where N is the number of training patterns.

 Calculation of actual outputs: Use Equation given below to calculate the output

signals

MNyyy ,...,, 21)(
1

1

)1()1()1(









MN

j

M
i

M
j

M
iji bxwy  , 1,...,1  MNi

 Adaptation of weights (wij) and biases (bi):

)().(.)(
)1()1(

nnxnw
l

ij
l

ij


 

)(.)(
)1()1(

nnb
l

i
l

i


 

where

 





















k

l
kki

l
i

ii
l

il
i M l nwnet

M lnydnet
n

 1),(.)(

 ,)()(
)()()1(

)1(

)1(






in which xj(n)= output of node j at iteration n, l is layer, k is the number of nodes of

output of neural network, M is output layer, φ is activation function [21]. Sigmoid and

hyperbolic tangent activation functions are more effective than the other activation

functions [22]. The learning rate is indicated by μ. It may be noted here that a large

value of the learning rate may cause to faster convergence but may also result in

oscillation.

 Radial basis function (RBF) neural network is based on supervised learning.

RBF‟s are embedded in a two layer neural network, where each hidden layer

implements a radial activated function. The output layer realize a weighted sum of

outputs of hidden layer. All hidden nodes simultaneously receive the n-dimensional

real valued input vector X. The output of hidden-layer,
jZ is obtained by closeness of

the input X to an n-dimensional parameter vector
j associated with the jth hidden

layer. The response characteristics of the jth hidden layer (j = 1, 2, , J) is assumed as

)||||(
2

jjj xKZ 

where K is a strictly positive radials symmetric function (kernel) with a unique

maximum at its „centre‟
j and which drops off very fast to zero away from the

centre. j is the width of the receptive field in the input space from layer j [23]. This

 Soft Computing Methods in Bioinformatics 181

means that
jZ has an perceptible value only when the distance |||| jx  is smaller

than the width j .Given an input vector X, the output of the RBF network is the L-

dimensional activity vector Y, whose lth component (l = 1, 2 L) is given by,





j

j

jljl xZwxY
1

)()(

Support Vector Machines (SVM) is specifically used to solve a binary classification

problem in a supervised manner and the learning problem is formulated as a quadratic

optimization problem where the error surface is free of any local minimum and has

global optimum [24]. SVM is to build an optimal separating hyper plane in such a way

that the margin of separation between two classes is maximized. SVM accomplish this

desirable property on the basis of the principle of structural risk minimization. To

realize the SVM based classifiers for linearly separable patterns, let us consider a

training set indicated by {(xj,yj)} (j=1,..., N), where xj is the n-dimensional input feature

vector and yj indicates the desired (or target) output. The input patterns indicated by the

desired output yj = 1 constitute the positive group and the desired output yj = -1

constitute the negative group [25].

Now suppose we have a machine whose task it is to learn the mapping xj yj. The

machine is defined by a set of possible mappings xf(x;), where the functions f(x;)

themselves are sorted by the adjustable parameters . The machine is assumed to be

deterministic: for a given input x, and selection of , it will always give the same output

f(x;). A particular selection of  creates what we will call “trained machine.” Thus, for

example, an ANN with fixed structure, with  corresponding to the weights and biases,

is a learning machine in this sense. The expectation of the test error for a trained

machine is therefore:

),(),(
2

1
)(yxdPxfyR   

Note that, when a density p(x; y) exists, dP(x;y) can be written p(x;y)dxdy. This is a

nice way of writing the true mean error, but unless we have an estimate of what P(x; y)

is, it is not very useful. The quantity R() is named the expected risk, or just the risk.

Here we will call it as the actual risk, to emphasize that it is the quantity that we are

interested in. The “empirical risk” Remp() is defined to be just the measured mean error

rate on the training set (for a fixed, finite number of observations):





l

j

jj xfy
l

mp
1

),(
2

1
)(Re 

Note that no probability distribution appears here. Remp() is a fixed number for a

particular choice of  and for a particular training set fxi; yig. The quantity 1/2yi - f(xi,

 is called the loss. For the case described here, it can only take the values 0 and 1.

Now choose some η such that 0 ≤ η ≤1. Then for losses taking these values, with

probability 1- η, the following bound holds)[26]:

182 B. Karlık

)
)4/log()1)/2(log(

()(Re)(
l

hlh
mpR







where h is a non-negative integer called the Vapnik Chervonenkis dimension, and is a

measure of the notion of capacity mentioned above. In the following we will call the

right hand side of the last equation as risk bound [27].

 2.2. Fuzzy Systems

 The Fuzzy system model is the knowledge-based model with linguistic rules.

Fuzzy sets are described for all input and output variables and the set of rules. Fuzzy

logic ensures the means to process this knowledge and compute output values for given

input data. The main problem of this approach is to find a suitable set of linguistic rules

that define the system to be modeled [28]. Fuzzy systems is represented in the form of

if-then rules or fuzzy conditional statements as in the expression of the form IF A

THEN B, where A and B are labels of the fuzzy sets. The set of rules should be

complete and provide an answer for every input value.

 Fuzzy systems consist of three steps as the fuzzification, fuzzy inference and the

defuzzification. The fuzzification module pre-processes the input values submitted to

the fuzzy expert system. The inference engine uses the results of the fuzzification

module and accesses the fuzzy rules in the fuzzy rule base to infer what intermediate

and output values to produce. Fuzzification is the transformation of numerical variables

into linguistic variables and the corresponding allocation of the grade of membership

(changing between 0 and 1) to the different membership functions [29]. The linguistic

combination of the traits is achieved in the fuzzy inference system (FIS). There are two

types of FIS models; Mamdani FIS model and Sugeno FIS model. Here we have only

described Mamdani FIS model. The rules used are resulted from human knowledge and

have the form: if condition, then conclusion. The degree to which each part of the

condition has been fulfilled for each rule is known by the belonging grades of

membership. The final output of the fuzzy system is provided by the defuzzification

module. Through the calculation of the centre of gravity of these areas, the fuzzy values

are converted back in order to resolve a single output value from the set. The centroid

technique is used for defuzzification. The centroid of composed shape is computed by,

 Z = [μc(z)zδz]/[μc(z)δz]

where z is the consequent variable and μc(z) is the function of the composed form [30].

 Fuzzy c-means (FCM) clustering algorithm is often used as an initial step for the

fuzzy systems to find membership values of each training data vector in each cluster.

These membership values are assumed to represent best partitions of the given dataset

[31]. Formally, clustering an unlabeled data X = {x1, x2, . . . , xN} ⊂ Rh, where N

represents the number of data vectors and h the dimension of each data vector, is the

assignment of c partition labels to the vectors in X. c-partition of X constitutes sets of

(cN){uik} membership values that can be arranged as a (c × N) matrix U = [uik]. The

problem of fuzzy clustering is to find the optimum membership matrix U. The most

often used function for fuzzy clustering is the weighted within-groups sum of squared

 Soft Computing Methods in Bioinformatics 183

errors Jm, which is used to describe the following constrained optimization problem

[32]:

 
 


N

k

c

i
Aik

m

ikm vxuXVUj
1 1

2
)(),,(min

where

V ={v1, v2, . . . , vc} is the vector of (unknown) cluster centers, and ǁxǁA=(x
T
Ax)

1/2
 an

inner product norm. A is an h × h positive definite matrix, which specifies the form of

the clusters. The matrix A is generally selected as the identity matrix, leading to

Euclidean distance and, consequently, to spherical clusters. Fuzzy partitions are

implement using the FCM algorithm through an iterative optimization of considering

the following steps [33]:

 Choose the number of clusters (c), weighting exponent (m), iteration limit (iter),

termination criterion (_>0), and norm for error ǁVt − Vt−1ǁ.

 Guess initial position of cluster centers: V0 = {v1,0, v2,0, . . . , vc,0} ⊂ R
ch

.

 Iterate for t = 1 iter, calculate

and

 IF error=ǁVt − Vt−1ǁ≤ , THEN stop, and put (Uf, Vf) = (Ut, Vt) for NEXT t.

There is some special model to find the optimum number of clusters model such as the

fuzzy function cluster validity index [34].

 2.3. Statistical Model Algorithms

 Different statistical classification algorithms can also use to solve bioinformatics

problems such as K- Nearest Neighbors and Naïve Bayes.

 K Nearest Neighbor (K-NN) is an simple non parametric algorithm which is a

method for classifying cases based on their similarity to other cases. Similar cases are

near each other and dissimilar cases are distant from each other. Thus, the distance

between two cases is a measure of their dissimilarity. Training a nearest neighbor model

involves computing the distances between cases based upon their values in the feature

set. The nearest neighbors to a given case have the smallest distances from that case.

The distance is calculated using one of the following measures[35]:

 Euclidean Distance

 Minkowski Distance

 Mahalanobis Distance

Simple K-NN algorithm consists of following steps:

184 B. Karlık

 For each training example <x,f(x)>, add the example to the list of training

examples,

 Given a query instance xq ¨ Given a query instance x to be classified, q to be

classified, Let x1, x2….xk denote the k instances from training examples that

are nearest to xq. Then, return the class that represents the maximum of the k

instances.

A Naïve Bayes classifier is a simple but effective probabilistic classifier based on

applying Bayes' theorem with strong (naive) independence assumptions. A more

descriptive term for the underlying probability model would be independent feature

model. According to the precise nature of the probability model, Naïve Bayes classifiers

is trained efficiently in a supervised learning setting. In numerous applications,

parameter estimation for Naïve Bayes uses the technique of maximum likelihood. In

spite of their naive design and apparently over-simplified assumptions, Naïve Bayes

classifiers often work much better in many complex real-world situations than one

might expect[36]. Note that the naive Bayes classifier assumes the conditional

independence of features. This assumption however does not hold in most cases.

Despite this apparent violation of the assumption, the naive Bayes classifier exhibits

good performance for various natural language processing tasks. An advantage of Naïve

Bayes classifier is that it needs to less training data to estimate the parameters (means

and variances of the variables) necessary for classification [37]. Naïve Bayes classifier

combines this model with a decision rule. One common rule is to pick the hypothesis

that is most probable; this is known as the maximum a posteriori decision rule. The

corresponding classifier is the function classify defined as follows[36]:





n

i

iiCn cCfFpcCpffclassify
1

1)|()(maxarg),...,(

 2.3. Metaheuristic and swarm intelligence algorithms

 Recently, well-known modern heuristic algorithms such as Genetic Algorithm

(GA), Differential Evolution (DE), Particle Swarm Optimization (PSO), Artificial Bee

Colony (ABC), and Ant Colony Optimization (ACO) are used on bioinformatics

problems.

Genetic Algorithm (GA) is good candidates for this task since GA is most useful in

multiclass, high-dimensionality problems where heuristic knowledge is sparse or

incomplete. Holland [38] defined a methodology for studying natural adaptive systems

and designing artificial adaptive systems. It is now often used as an optimization

technique, based on an analogy to the process of natural selection in biology. A GA

approach needs to a population of chromosomes representing a combination of features

from the solution set, and needs to a cost function (called an valuation or fitness

function). This function computes the fitness of each chromosome. The algorithm

manipulates a finite set of chromosomes (the population), based loosely on the

mechanism of evolution. In each generation, chromosomes are subjected to certain

operators, such as crossover, inversion and mutation, which are analogous to processes

which consists of in natural reproduction. Crossover of two chromosomes produces a

http://en.wikipedia.org/wiki/Classifier
http://en.wikipedia.org/w/index.php?title=Decision_rule&action=edit

 Soft Computing Methods in Bioinformatics 185

pair of offspring chromosomes which are synthesis of the traits of their parents[39]. The

Basic Genetic Algorithm consists of following steps:

 1. Generate random population of n chromosomes ,

 2. Evaluate the fitness f(x) of each chromosome x in the population,

 3. Generate a new population by repeating following steps till the new

 population is complete;

 Select two parent chromosomes from a population depending on

their fitness

 With a crossover probability cross over the parents to form a new

offspring. If no crossover was performed, offspring is an exact

copy of parents

 With a mutation probability mutate new offspring at each locus

 Place new offspring in a new population,

 4. Use new generated population for a further run of algorithm,

 5. If the end condition is satisfied, stop, and return the best solution in current

 population,

 6. Go to step 2

Differential Evolution (DE) is a population-based search strategy very similar to

standard evolutionary algorithms. The major difference is in the reproduction step

where offspring is created from three parents using an arithmetic cross-over operator.

DE is described for floating-point representations of individuals. DE does not use of a

mutation operator that is related some probability distribution function, but introduces a

new arithmetic operator which depends on the differences between randomly selected

pairs of individuals [40]. For each parent, xi(t), of generation t, an offspring, x′i(t) is

generated in the following way: Randomly select three individuals from the current

population, namely xi1(t), xi2(t), and xi3(t), with i1 ≠ i2 ≠ i3 ≠ iψ and i1, i2, i3..., U(1,…, s),

where s is the population size. Select a random number rψ˜�U(1,…, Nd), where Ndψ is

the number of genes of a single chromosome. Then, for all genes jψ= 1, ψNd, if U(0,ψ1)

< ψPr, or if jψ = r, let;

x′i,j(t)= xi3,j(t)+[xi1(t) – xi2(t)] otherwise, let: x′i,j(t)= xi,j(t).

Here, Prψ is the probability of reproduction (with Prψ∈[0ψ1]), γψ is a scaling factor

with γ ∈ (0ψ∞), and x′i,j(t) and xi,j(t) indicate respectively the jth genes (or parameter) of

the offspring and the parent. Thus, each offspring consists of a linear combination of

three randomly chosen individuals when U(0,ψ1) < ψ Pr; otherwise the offspring

inherits directly from the parent. Even when Prψ= 0, at least one of the parameters of the

offspring will differ from the parent [41].

Particle swarm optimization (PSO) is an optimization technique which has been

developed being inspired by the social behaviors of swarms like bird flocking or fish

schooling by Kennedy and Eberhart [42]. In PSO method, each potential solution is

referred as a particle and each particle has positions (xi;j) and velocities (vi;j) in a j-

dimensional feature space [43]. The solution set which consists of the particles is called

186 B. Karlık

as swarm. At the beginning of the algorithm, each particle is generated by taking

random values from the solution space. The success of each particle is determined

employing a fitness function. Through the iteration process, the best instance of each

particle and the swarm is kept as local bests (Pbesti;j) and global best (Gbesti;j)

respectively. The velocity and position of each particle is updated utilizing these

equations[44];

vi;j(t+1) = wvi;j(t) +c1R1(pbesti;j – xi;j(t)) + c2R2(gbesti;j – xi;j(t))

xi;j(t + 1) = xi;j(t) + vi;j(t + 1)

where i is the index of the particle, j is the index of the position in particle, t shows the

iteration number, vi;j(t) is the velocity of the ith particle in the swarm on jth index of the

position in the particle and xi;j(t) is the position. R1 and R2 are the random numbers

uniformly distributed between 0 and 1. c1 and c2 are the acceleration numbers and

default values are 2 and w is the inertial weight. The original procedure for

implementing PSO is as follows [45]:

 1. Generate each particle randomly within the j-dimensional feature space.

 2. Evaluate the success of each particle using the tness function.

 3. If the success of the current particle is better than the success of Pbesti;j

 then determine Pbesti;j as the current particle.

 4. If the success of the current particle is better than the success of Gbesti;j

 then determine Gbesti;j as the current particle.

 5. Update the velocity and position of the particle using equations given above.

 6. Repeat the steps from 2 to 5 until the stopping criteria or maximum iteration is

 reached.

Artificial Bee Colony (ABC) algorithm has been presented by Karaboga for optimizing

numerical problems. The algorithm simulates the intelligent foraging behavior of honey

bee swarms. It is a very simple but efficient, robust and population based stochastic

optimization algorithm. In ABC algorithm, the colony of artificial bees includes three

groups of bees: employed bees, onlookers and scouts. A bee waiting on the dance area

for making a decision to select a food source is named onlooker and one going to the

food source visited by it before is called employed bee. The other kind of bee is scout

bee that carries out random search for discovering new sources. Pseudo-code of the

ABC algorithm is [46]:

 Load training samples,

 Generate the initial population zi, (i=1...SN),

 Evaluate the fitness (fi) of the population,

 Set cycle to 1,

 repeat

 For each employed bee{

Produce new solution vi by using (vij = zij + ij(zij − zkj)

Compute the value fi

 Soft Computing Methods in Bioinformatics 187

Apply greedy selection process}

 Compute the probability values pi for the solutions (zi) by (pi)

 For each onlooker bee{

Select a solution zi depending on pi

Produce new solution vi

Calculate the value fi

Apply greedy selection process}

 If there is an abandoned solution for the scout

then replace it with a new solution which will be randomly produced by

 Memorize the best solution so far

 cycle=cycle+1

 until cycle=MCN

Ant Colony Optimization (ACO) agents mimic the foraging behavior of their biological

counterparts in finding the shortest-path to the food source. The first algorithm

following the principles of the ACO metaheuristic is the Ant System, where ants

iteratively construct solutions and add pheromone to the paths corresponding to these

solutions[47-48]. Path selection is a stochastic procedure based on two parameters, the

pheromone and heuristic values. The pheromone value gives an pointing of the number

of ants that select the trail recently, while the heuristic value is a problem dependent

quality measure. When an ant arrives a decision point, it is more likely to select the trail

with the higher pheromone and heuristic values. Once the ant reaches at its destination,

the solution corresponding to the ant‟s followed path is evaluated and the pheromone

value of the path is increased accordingly. In addition to, evaporation admits of the

pheromone level of all trails to diminish gradually. Therefore, trails that are not

reinforced gradually lose pheromone and will in turn have a lower probability of being

chosen by subsequent ants. ACO algorithm consists of the specification of the following

aspects [49];

 An environment that indicates the problem domain in such a way that it lends

itself to incrementally building a solution to the problem.

 A problem dependent heuristic evaluation function, which ensures a quality

measurement for the different solution components.

 A pheromone updating rule, which bring in account the evaporation and

reinforcement of the trails.

 A probabilistic transition rule based on the value of the heuristic function and on

the strength of the pheromone trail that determines the path taken by the ants.

 A clear specification of when the algorithm converges to a solution.

188 B. Karlık

There are some more algorithms which are used to solve bioinformatics problems such

as Hidden Markov Model, Decision Trees, Stochastic Optimization, Dynamic

Programming, Stochastic Context Free Grammars, Multiple Kernel Learning, Max-

Margin Structured Output Learning, Needleman-Wunsch algorithm, Instance-based

learning, Case Based Reasoning, and Self Organizing Feature Maps (SOM), Principal

Component Analysis, Independent Component Analysis etc. Some type of inductive

learning, Evolutionary programming and combinational (or hybrid) models can be used

to solve the same problems.

3. SCMs in BIOINFORMATICS

 3.1 SCMs applications on Sequence alignment
 Sequence alignment is a common task in bioinformatics. It plays an essential

role in detecting regions of significant similarity among a collection of primary

sequences of nucleic acids or proteins. If they are highly similar, then they have similar

3D structures or share similar functions. Given a family S = (S1,..., SN) of N sequences,

the problem can formally be represented as a set of sequences, and each sequence has its

own length. The characters of sequences are defined over an alphabet Σ including a gap

symbol denoted by „–‟, which is a molecular biology term, indel (insertion or deletion).

The indels indicate that some parts of a sequence are inserted or deleted. The sequence

is either a DNA, ribonucleic acid (RNA), or amino acid (protein) sequence. The

nucleotide bases are adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U).

The alphabet is {A, C, G, T} and {A, C, G, U} for DNA and RNA, respectively. The

sequence alignment problem has two computational approaches: local alignment and

global alignment. Global alignment is used Needleman-Wunch algorithms. Local

alignment is used Smith-Waterman algorithms. In global alignment, sequences are

aligned as a whole, whereas in local sequence alignment, similarities detected locally

between sequences are aligned [50]. Assume that 2 DNA sequences are given as S1 =

{GCTGAACG} and S2 = {CTATAATC} with lengths |S1| and |S2|, respectively. This

pair of sequences can be aligned as shown in Figure 2.

An alignment without gaps: GCTGAACG

 CTATAATC

An alignment with gaps: GCTGA--A--CG

 --CT--ATAATC

Figure 2. Sequence alignment of 2 DNA sequences

Gap is sequence of g missing characters inserted in a string to achieve alignment. Gaps

are assigned with two kinds of negative scores: Gap-open penalty: negative score

associated with the initiation of a gap (i.e., with the first missing character), and Gap-

extension penalty: negative score associated with each additional missing character.

For reasons of computational complexity, sequence alignment is divided into two

categories:

 Soft Computing Methods in Bioinformatics 189

 Pairwise alignment (i.e., the alignment of two sequences).

 Multiple-sequence alignment (i.e., the alignment of three or more sequences).

Pairwise alignment problems have exact solutions by using dynamic programming.

Multiple-sequence alignment problems have approximate (heuristic) solutions. The

function of sum-of-pairs is the most popular scoring method for evaluation of the

quality of the alignment. The goal of general multiple sequence alignment algorithms is

to find out the alignment with the highest sum-of-pairs [50]. There are numerous

existing methods for sequence alignment. The efficiency of an alignment is assessed by

the application of SCMs.

Table 1 summarizes some applications of sequence alignment with their used SCMs

chronologically (from 1993 to 2011). In this table, the first column describes the authors

and the second column describes the soft computing methods that were used. According

to Table 1, we can say that metaheuristic and swarm intelligence algorithms are more

useful than the other soft computing algorithms for Sequence alignment.

Table 1. Soft Computing methods applied for sequence alignment problem

Authors Used Method Year Ref.
Ishikawa et al. Simulated Annealing 1993 51

Kim et al. Simulated Aannealing 1994 52

Wayama et al. Genetic Algorithm 1995 53

Notredame and Higgins Genetic Algorithm 1996 54

Zhang and Wong Genetic Algorithm 1997 55

Krogh Hidden Markov Model 1998 56

Chellapilla and Fogel Evolutionary Programming 1999 57

Maniezzo and Carbonaro Ant Colony Algorithm 2000 58

Keith et al. Simulated Annealing 2002 59

Moss and Johnson Ant Colony Algorithm 2003 60

Shyu et al Genetic Algorithm 2004 61

Hernandez-Guia Simulated Annealing 2005 62

Karpenko et al. Ant Colony Algorithm 2005 63

Horng et al. Genetic Algorithm 2005 64

Ge and Liang
Hidden Markov Model and

Particle Swarm Optimization
2005 65

Omar et al. Optimization algorithm 2005 66

Chen et al. Ant Colony Algorithm 2006 67

Rodriguez et al. Particle Swarm Optimization 2007 68

Lee et al.
Genetic Algorithm and

Ant Colony Algorithm
2008 69

Juang and Su
Dynamic Programming and

Particle Swarm Optimization
2008 70

Chen et al. Ant Colony Algorithm 2008 71

Xu and Y. Chen Particle Swarm Optimization 2009 72

Mikami and J. Shi Ant Colony Algorithm 2009 73

Chen et al.
Dispersion Graph and

Ant Colony Algorithm
2009 84

Lei et al. Particle Swarm Optimization 2009 75

Bucak and Uslan Stochastic Optimization 2011 76

190 B. Karlık

 3.2. SCMs application on single nucleotide polymorphism problem
 Single Nucleotide Polymorphism (SNPs) are simply sequence variations

between individuals at a particular point in the genome. Genetic variants mostly consist

of SNPs, and human genome is estimated to include around 10 million SNPs [77-78].

Most of these genome-wide association (GWA) studies are aimed to determine genetic

variants possibly related to complex diseases. Since SNPs are single-base pair changes,

the smallest unit of genetic variation, they are present in very small segments of DNA

and are more likely to survive severe environmental degradation than any other form of

genetic variation. In this regard, it is generally preferred to use SNPs in GWA studies

which are used soft computing methods [79]. The number of individuals and SNPs are

quite effective on the statistical significance of a GWA study. However, it is still very

expensive and time-consuming to genotype all the SNPs in a large population found in

the candidate area for large-scale GWA studies [80].

 SNPs found on chromosome set is called a haplotype. High-given methods, each

allele are not capable of distinguishing the source chromosome. Position of the two

alleles of a SNP is usually only take care of such methods. This is the source of alleles

chromosomes identifiable. This combined with the target locus allele genotype is called

knowledge. In a healthy state of being of an individual or the individual's phenotype of

the patient is called. Figure 3 describes all haplotype, genotype, and phenotype [81].

Figure 3. Description of haplotypes, genotypes, and phenotypes

According to the approach used to measure the haplotype tag SNPs knowledge of the

methods used for the selection are divided into four groups:

 Methods based on differences in haplotype

 Methods based on correlation coefficient between SNPs

 Methods based on the relationship between phenotype

 Tagged with estimation methods based on SNP

 Soft Computing Methods in Bioinformatics 191

There are different SCMs applied on SNPs in recent years. These methods are based on

the fact that human genome can be divided into discrete blocks, and small sets of

common haplotypes in each block are shared by a specific population. Table 2

summarizes some applications on SNPs with their used SCMs chronologically.

Table 2. Soft Computing methods applied for single nucleotide polymorphism

Authors Used Method Year Ref.
Tomida et al. Back-Propagation 2002 82

Ritchie et al.
Back-Propagation and

Genetic Algorithm
2003 83

Ao et al.
Hierarchical Clustering and

Graph Methods
2004 84

Tomita et al. Back-Propagation 2004 85

Lin and R. Altman Principle Component Analysis 2004 86

Lin et al. Back-Propagation 2006 87

Lee et al. Bayesian Networks 2006 88

Curtis Back-Propagation 2007 89

Yang et al. Particle Swarm Optimization 2008 90

Sun and Kardia Back-Propagation 2008 91

Yang and Zhang
Back-Propagation and

Genetic Algorithm
2008 92

Petrovski et al. K-Nearest Neighbour 2009 93

Mahdevar et al. Genetic Algorithm 2010 94

Chuang et al.
Genetic Algorithm and

K-Nearest Neighbour
2010 95

Lin and Leu
Particle Swarm Optimization and

Support Vector Machines
2010 96

Nahlawi and P. Mousavi Independent Component Analysis 2010 97

Ilhan and Tezel
Genetic Algorithm,

Support Vector Machines
2011 98

Shi et al. Back-Propagation 2012 99

Karlik and Oztoprak Back-Propagation 2012 100

Karlik and Oztoprak Naïve Bayes 2012 101

Ilhan and Tezel

Genetic Algorithm,

Particle Swarm Optimization,

Support Vector Machines

2013 102

According to Table 2, we can say that Artificial Neural Networks (ANN) algorithms are

more useful than the other soft computing techniques for single nucleotide

polymorphism.

4. CONCLUSIONS

 According to this review article we can say that there is a wide area to develop

new methods which might share the advantages of SCMs analysis in terms of

implementing a parsimonious approach to detect the patterns of multi-marker genotypes

which can be observed when an associated susceptibility locus is present.

Bioinformatics data needs to be invested in collecting samples of cases and controls and

192 B. Karlık

obtaining genotypes it seems sensible to argue that considerable effort should be

expended on ensuring that methods of analysis applied to the data obtained are as

effective as possible.

 I can advice the close collaboration between biologists and bioinformaticians are

to make available user-friendly software packages that can be used jointly by

researchers with expertise in experimental biology and researchers with expertise in

computer science. Because, soft computing methods may not be interpretable by a

biologist. For example, a question that requires multiple processors to answer might

need the assistance of someone with expertise in parallel computing. To be intuitive to a

biologist, the software needs to be easy to use and needs to provide output that is visual

and easy to navigate. As a result, we can say that if biologists want to solve

bioinformatics problems more easily, they have to collaborate with computer scientist

who have experienced on soft computing methods. This collaboration provides to solve

complex bioinformatics problems. Future bioinformatics databases and analysis tools

that successfully integrate with their collaborations which will prove to be the most

useful for biological and biomedical discovery.

5. REFERENCES

1. P. Larranaga, B. Calvo, R. Santana, et al., Machine learning in bioinformatics,

Briefings in Bioinformatics 7(1), 86–112, 2006.

2. R. J. Carter, I. Dubchak, S. R. Holbrook, A computational approach to identify genes

for functional RNAs in genomic sequence, Nucleic Acids Research 29(19), 3928–3938,

2001.

3. C. Mathe, M. F. Sagot, T. Schlex, et al., Current methods of gene prediction, their

strengths and weaknesses, Nucleic Acids Research 30(19), 4103–4117, 2002.

4. S. Aerts, P. Van Loo, Y. Moreau, et al., A genetic algorithm for the detection of new

cis-regulatory modules in sets of coregulated genes, Bioinformatics 20(12), 1974–1976,

2004.

5. J. H. Phan, C. F. Quo, M. D. Wang, Functional genomics and proteomics in the

clinical neurosciences: data mining and bioinformatics, Prog. in Brain Research 158,

83–108, 2006.

6. L. J. Lancashire, C. Lemetre, G. R. Ball, An introduction to artificial neural networks

in bioinformatics- application to complex microarray and mass spectrometry datasets in

cancer studies, Briefings in Bioinformatics 10(3), 315–329, 2009.

7. S. Ma and J. Huang, Penalized feature selection and classification in bioinformatics,

Briefings in Bioinformatics 9(5), 392-403, 2008.

8. Bower JM, Bolouri H (eds). Computational Modeling of Genetic and Biochemical

Networks, MIT Press, March 2004.

9. I. Ö. Bucak and V. Uslan, An analysis of sequence alignment: heuristic algorithms,

Conf. Proc. IEEE Eng Med Biol Soc., 1824–1827, 2010.

10. V. Uslan and İ. Ö. Bucak, Microarray Image Segmentation Using Clustering

Methods, Mathematical and Computational Applications 15(2), 240–247, 2010.

11. M. Krallinger, R. A. Erhardt, A. Valencia, Text-mining approaches in molecular

biology and biomedicine, Drug Discovery Today 10(6), 439–45, 2005.

http://pubget.com/search?q=latest%3AInternational+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society.+Proceedings&from=21096142

 Soft Computing Methods in Bioinformatics 193

12. J. T. L. Wang, M. J. Zaki, H.T.T. Toivonen HTT, et al., Data Mining in

Bioinformatics, Springer-Verlag, 2004.

13. P. Baldi & S. Brunak, Bioinformatics. The Machine Learning Approach, MIT Press,

2001.

14. A. Tettamanzi and M. Tomassini, Soft Computing:Integrating Evolutionary, Neural,

and Fuzzy Systems, Springer-Verlag, 2011.

15. P. Baldi P, S. Brunak, Y. Chauvin Y, et al. Assessing the accuracy of prediction

algorithms for classification: an overview, Bioinformatics 16, 412–424, 2000.

16. H. White, Learning in Artificial Neural Networks: A statistical perspective, Neural

Computation 1, 425-464, 1989.

17. R. P. Lippmann, An Introduction to Computing with Neural Networks, IEEE

Acoustics 4, 4-22, 1987.

18- H.R. Öz, B. Karlık, C.A. Evrensel, Application of Artificial Neural Networks

Method in Mucus Clearance in Pulmonary Airways, International Journal of Natural

and Engineering Sciences 3(2), 28-31, May, 2009.

19. U. Seiffert, L.C. Jain, P. Schweizer, Bioinformatics Using Computational

Intelligence Paradigms, Springer-Verlag, 2005.

20. O. Karan, C. Bayraktar, H. Gümüşkaya, B. Karlık, Diagnosing Diabetes Using

Neural Networks on Small Mobile Devices, Expert Systems with Applications 39, 54-

60, 2012.

21. Y. Özbay, R. Pektatlı, B. B. Karlık, A Fuzzy Clustering Neural Network

Architecture for Classification of ECG Arrhythmias, Computers in Biology and

Medicine 36, 376–388, 2006.

22- B. Karlık and A.V. Olgaç, Performance Analysis of Various Activation Functions

in Generalized MLP Architectures of Neural Networks, International Journal of

Artificial Intelligence and Expert Systems 1(4), 111-122, 2011.

23. C. Bayraktar, B. Karlık, F. Demirezen, Automatic Diagnosis of Otitis Media

Diseases Using Wavelet Based Artificial Neural Networks, 1
st
 Inter. Symposium on

Computing in Science & Engineering Bioengineering Congress, 3-5 June, 2010,

Kuşadası, Turkey.

24. R. K. Begg, M. Palaniswami, B. Owen, Support vector machines for automated gait

classification, IEEE Transactions on Biomedical Engineering 52(5), 828–838, 2005.

25. S. Chandaka, A. Chatterjee, S. Munshi, Cross-correlation aided support vector

machine classifier for classification of EEG signals, Expert Systems with Applications

36, 1329–1336, 2009.

26. C. J. C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,

Data Mining and Knowledge Discovery 2, 121–167, 1998.

27. V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York,

1995.

28. S. Tasdemir, A. Urkmez, S. Inal. Determination of body measurements on the

holstein cows using digital image analysis and estimation of live weight with regression

analysis, Computers and Electronics in Agriculture 76, 189–197, 2011.

29. S. Tasdemir, A. Urkmez, S. Inal, A fuzzy rule-based system for predicting the live

weight of Holstein cows whose body dimensions were determined by image analysis,

Turkish Journal of Electrical Engineering & Computer Sciences 19(4), 689–703, 2011.

194 B. Karlık

30. J.-S. R Jang, C. T. Sun, E. Mizutani, Neuro-fuzzy and Soft Computing: A

Computational Approach to Learning and Machine Intelligence, Prentice-Hall, NJ,

1997.

31. J. C. Bezdek, R. Ehrlich, W. Full, FCM: fuzzy c-means algorithm. Computers and

Geosciences 10(2–3), 191–203, 1984.

32. R.K. De, J. Basak, S.K. Pal, Unsupervised feature extraction using neuro-fuzzy

approach, Fuzzy Sets and Systems 126, 277-291, 2002.

33. J. S. R. Jang, C. T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing, Prentice-

Hall, Englewood Cliffs, NJ, USA, 1997.

34. A. Celikyilmaz and I. B. Turksen, Validation criteria for enhanced fuzzy clustering,

Pattern Recognition Letters 29, 97–108, 2007.

35. R.O. Duda, P.H. Hart, D.G. Stork, Pattern classification and scene analysis, John

Wiley & Son, N.Y, 2012.

36. B. Karlık, Hepatitis Disease Diagnosis Using Backpropagation and the Naïve Bayes

Classifiers, BURCH Journal of Science and Technology 1(1), 49–62, 2011.

37. B. Karlık and E. Öztoprak, Personalized Cancer Treatment by Using Naïve Bayes

Classifier, International Journal of Machine Learning and Computing 2(3), 339–344,

2012.

38. J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan

Press, Ann Arbor, 1975.

39. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,

NY, Addison Wesley, 1989.

40. M. Omran, A. Engelbrecht and A. Salman, Differential evolution methods for

unsupervised image classification, In Proceedings of the IEEE Congress on

Evolutionary Computation (CEC2005) 2, 966-973, September, 2005.

41. M. G. H. Omran, A. P. Engelbrecht, A. Salman, Particle swarm optimization

method for image clustering, Inter. Journal of Pattern Recognition and Artificial

Intelligence 19(3), 297–322, 2005.

42. J. Kennedy and R. C. Eberhart, Particle swarm optimization, Proc. of IEEE

International Conference on Neural Networks, Piscataway, NJ, 4, 1942–1948, 1995.

43. R. C. Eberhart, A discrete binary version of the particle swarm algorithm, Proc. of

Conference Systems Man Cybernetics, Piscataway, NJ, 4104–4108, 1997.

44. I. Babaoglu, O. Fındık, et al. A novel hybrid classification method with particle

swarm optimization and k-nearest neighbor algorithm for diagnosis of coronary artery

disease using exercise stress test data, International Journal of Innovative Computing,

Information and Control 8(5B), 1349-4198, May 2012.

45. Y. Shi, Particle swarm optimization, IEEE Neural Networks Society, 8-13, 2007.

46. D. Karaboga and C. Ozturk, A novel clustering approach: Artificial Bee Colony

(ABC) algorithm, Applied Soft Computing 11, 652–657, 2011.

47. M. Dorigo and L. M. Gambardella, Ant colony system: A cooperative learning

approach to the traveling salesman problem, IEEE Transactions on Evolutionary

Computation 1(1), 53–66, Apr. 1997.

48. R. Montemanni, L. M. Gambardella, et al. Ant colony system for a dynamic vehicle

routing problem, Journal of Combinatorial Optimization 10(4), 327–343, 2005.

49. D. Martens, M. De Backer, et al. Classification With Ant Colony Optimization,

IEEE Transactions on Evolutionary Computation 11(5), 651–665, October 2007.

 Soft Computing Methods in Bioinformatics 195

50. M. S. Rosenberg, Sequence alignment: methods, models, concepts, and strategies,

University of California Press, 2009.

51. M. Ishikawa, T. Toya, et al. Multiple sequence alignment by parallel simulated

annealing, Computer Applications in the Biosciences 9, 267–273, 1993.

52. J. Kim, S. Pramanik, M.J. Chung, Multiple sequence alignment using simulated

annealing, Computer Applications in the Biosciences 10, 419–426, 1994.

53. M. Wayama, K. Takahashi, T. Shimizu, An approach to amino acid sequence

alignment using a genetic algorithm, Genome Informatics 6, 122–123, 1995.

54. C. Notredame and D.G. Higgins, SAGA: sequence alignment by genetic algorithm,

Nucleic Acids Research 24, 1515–1524, 1996.

55. C. Zhang and A.K. Wong, A genetic algorithm for multiple molecular sequence

alignment, Computer Applications in the Biosciences 13, 565–581, 1997.

56. A. Krogh, An introduction to hidden markov models for biological sequences, In: S.

L. Salzberg, D. B. Searls and S. Kasif. Computational Methods in Molecular Biology,

Elsevier, 45–63, 1998.

57. K. Chellapilla and G.B. Fogel, Multiple sequence alignment using evolutionary

programming, in: Proc. of the IEEE Congress on Evolutionary Comp. 1, 445–452,

1999.

58. V. Maniezzo and A. Carbonaro, An ANTS heuristic for the frequency assignment

problem, Future Generation Computer Systems 16(8), 927–935, 2000.

59. J. M. Keith, P. Adams, et al. A simulated annealing algorithm for finding consensus

sequences, Bioinformatics 18, 1494–499, 2002.

60. J. D. Moss and C.G. Johnson, An ant colony algorithm for multiple sequence

alignment in bioinformatics, Artificial Neural Networks and Genetic Algorithms 182–

186, Springer, 2003.

61. C. Shyu, L. Sheneman, J. A. Foster, Multiple sequence alignment with evolutionary

computation, Genetic Programming and Evolvable Machines 5, 121–144, 2004.

62. M. Hernandez-Guia, R. Mulet, S. Rodriguez-Perez, Simulated annealing algorithm

for the multiple sequence alignment problem: the approach of polymers in a random

medium, Physical review. E, Statistical, nonlinear, and soft matter physics 72, 031915

(epub), 2005.

63. O. Karpenko, J. Shi, Y. Dai, Prediction of MHC class II binders using the ant colony

search strategy, Artificial Intelligence in Medicine 35, 147–156, 2005.

64. J. T. Horng, L.C. Wu, C.M. Lin, B.H. Yang, A genetic algorithm for multiple

sequence alignment, Soft Computing 9, 407–420, 2005.

65. H. W. Ge, Y.C. Liang, A hidden Markov model and immune particle swarm

optimization-based algorithm for multiple sequence alignment, Proc. Advances in

Artificial Intelligence, 756–765, 2005.

66. M. F. Omar, R.A. Salam, R. Abdullah, N.A. Rashid, Multiple sequence alignment

using optimization algorithms, International Journal of Computational Intelligence 1,

81–89, 2005.

67. Y. Chen, Y. Pan, J. Chen, et al. Multiple Sequence Alignment by Ant Colony

Optimization and Divide-and-Conquer, V.N. Alexandrov et al. (Eds.): ICCS 2006, Part

II, LNCS 3992, 646 – 653, Springer-Verlag Berlin Heidelberg 2006.

68. P.F. Rodriguez, L.F. Nino, O.M. Alonso, Multiple sequence alignment using swarm

intelligence, International Journal of Computational Intelligence Research, 2007.

196 B. Karlık

69. Z. Y. Lee, S. F. Su, C. C. Chuang, K. H. Liu, Genetic algorithm with ant colony

optimization (GA-ACO) for multiple sequence alignment, Applied Soft Computing 8,

55–78, 2008.

70. W. S. Juang and S. F. Su, Multiple sequence alignment using modified dynamic

programming and particle swarm optimization, Journal of the Chinese Institute of

Engineers 31, 659–673, 2008.

71. W. Chen, B. Liao, W. Zhu, H. Liu, Q. Zeng, An ant colony pairwise alignment

based on the dot plots, Journal of Computational Chemistry 30, 93–97, 2008.

72. F. Xu and Y. Chen, A method for multiple sequence alignment based on particle

swarm optimization, 5th Int. Conf. on Intelligent Computing 5755, 965–973, Springer,

2009.

73. A. Mikami and J. Shi, A modified algorithm for sequence alignment using ant

colony system, IPSJ Transactions on Bioinformatics 2, 63–73, 2009.

74. W. Chen, B. Liao, W. Zhu, X. Xiang, Multiple sequence alignment algorithm based

on a dispersion graph and ant colony algorithm, Journal of Computational Chemistry

30, 2031–2038, 2009.

75. X. J. Lei, J. J. Sun, Q. Z. Ma, Multiple sequence alignment based on chaotic PSO,

in: Proc. of the Comp. Intelligence and Intelligent Systems 51, 351–360, Springer,

2009.

76. I. Ö. Bucak and V. Uslan, Sequence alignment from the perspective of stochastic

optimization: a survey, Turkish Journal of Electrical Engineering & Computer Sciences

19(1), 157–173, 2011.

77. L. Kruglyak and D.A. Nickerson, Variation is the spice of life, Nature Genetics

27(3), 234–236, 2001.

78. R. Sachidanandam, D. Weissman, et al. A map of human genome sequence

variation containing 1.42 million single nucleotide polymorphisms, Nature 409, 928–

933, 2001.

79. B.V. Halldorsson, V. Bafna, et al. A survey of computational methods for

determining haplotyes, Lecture Notes in Computer Science 2983, 26–47, 2004.

80. K. Irizarry, V. Kustanovich, et al., Genome-wide analysis of single-nucleotide

polymorphisms in human expressed sequences, Nature Genetics 26, 233–236, 2000.

81. D. Crawford and D.A. Nickerson, Definition and clinical importance of haplotypes,

Annual Review of Medicine 56(1), 303–320, 2005.

82. S. Tomida, T. Hanai, et al. Artificial neural network predictive model for allergic

disease using single nucleotide polymorphisms data, Journal of Bioscience and

Bioengineering 93(5), 470–478, 2002.

83. M.D. Ritchie, B.C. White, et al. Optimization of neural network architecture using

genetic programming improves detection and modeling of gene-gene interactions in

studies of human diseases, BMC Bioinformatics 4, 28, 2003.

84. S.I. Ao, K. Yip, et al. CLUSTAG: hierarchical clustering and graph methods for

selecting tag SNPs, Bioinformatics 21(8), 1735–1736, 2004.

85. Y. Tomita, S. Tomida, et al. Artificial neural network approach for selection of

susceptible single nucleotide polymorphisms and construction of prediction model on

childhood allergic asthma, BMC Bioinformatics 1(5), 120, 2004

86. Z. Lin and R. Altman, Finding haplotype tagging SNP by use of principle

component analysis (PCA), Am. J. Hum. Genetics 75(5), 850–861, 2004.

http://mistug.tubitak.gov.tr/bdyim/toc.php?dergi=elk&yilsayi=2011/2

 Soft Computing Methods in Bioinformatics 197

87. E. Lin, Y. Hwang, et al. An artificial neural network approach to the drug efficacy

of interferon treatments, Pharmacogenomics 7(7), 1017–1024, 2006.

88. P.H. Lee and H. Shatkay, BNTagger: improved tagging SNP selection using

Bayesian networks, Bioinformatics 22(14), 211–219, 2006.

89. D. Curtis, Comparison of artificial neural network analysis with other multimarker

methods for detecting genetic association, BMC Genetics 8, 49, 2007.

90. C. Y. Yang, C. H. Hou, L. Y. Chuang, Improved tag SNP selection using binary

particle swarm optimization, In. Proc. of IEEE congress on evolutionary computation

(CEC 2008), 854–60, 2008.

91. Y. V. Sun and S. L. Kardia, Imputing missing genotypic data of single-nucleotide

polymorphisms using neural networks, European Journal of Human Genetics 16(4),

487–495, 2008.

92. P. Yang and Z. Zhang, A Hybrid Approach to Selecting Susceptible Single

Nucleotide Polymorphisms for Complex Disease Analysis, in Proc. of Inter. Conf. on

BioMedical Engineering and Informatics, 214–218, 2008.

93. S. Petrovski, C.E. Szoeke, et al., Multi-SNP pharmacogenomic classifier is superior

to single-SNP models for predicting drug outcome in complex diseases, Pharmacogenet

Genomics 19(2), 147–152 2009.

94. G. Mahdevar, J. Zahiri, et al., Tag SNP selection via a genetic algorithm, Journal of

Biomedical Informatics 43(5), 800–804, 2010.

95. L.Y. Chuang, C.H. Hou, C.Y. Yang, A novel prediction method for tag SNP

selection using genetic algorithm based on KNN, International Journal of Chemical

and Biological Engineering 3(1), 12–17, 2010.

96. M.H. Lin and C.L. Leu, A hybrid PSO–SVM approach for haplotype tagging SNP

selection problem, International Journal of Computer Science and Information Security

8(6), 60–65, 2010.

97. L.I. Nahlawi and P. Mousavi, Single nucleotide polymorphism selection using

independent component analysis, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2010:6186-9,

2010.

98. I. Ilhan, Y.E. Göktepe, S. Kahramanlı, Tag SNP selection using GA–SVM

approach, In. Proc. of the IADIS European conference on data mining 27–34, 2011.

99. H. Shi, Y. Lu, J. Du, et al. Application of back propagation artificial neural network

on genetic variants in adiponectin ADIPOQ, peroxisome proliferator-activated receptor-

γ, and retinoid X receptor-α genes and type 2 diabetes risk in a Chinese Han population,

Diabetes Technology & Therapeutics 14(3), 293-300, 2012.

100. B. Karlık and E. Öztoprak, ANN Based Application of Pharmacogenetics to

Personalized Cancer Treatment, in Proc. ICMLC 2012, March, 25, 2012.

101. B. Karlık and E. Öztoprak, Personalized Cancer Treatment by Using Naïve Bayes

Classifier, International Journal of Machine Learning and Computing 2(3), 339-344,

2012.

102. İ. İlhan and G. Tezel, A genetic algorithm–support vector machine method with

parameter optimization for selecting the tag SNPs, Journal of Biomedical Informatics

46, 328–340, 2013.

