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Abstract-The new perturbation iteration method developed by Pakdemirli and co-

workers are reviewed. First, applications of the method to algebraic equations are 

discussed and some new root-finding algorithms developed by this method are given. 

Next, the applications of the new method to first order, second order and systems of first 

order ordinary differential equations are discussed. Three sample problems are selected. 

Results are compared with analytical solutions, solutions by other methods and 

numerical solutions. The new perturbation iteration method is an effective method that 

does not require small parameter assumption as in classical perturbation methods.  
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1. INTRODUCTION 

 

 Perturbation methods have been effectively used for over a century in 

construction of approximate solutions of algebraic equations, differential equations, 

integro-differential equations. The solutions obtained by this method opened a new era 

in understanding the physics of many applied problems. The method and its variants are 

subject to development even today by the researchers.  

 One major limitation of the perturbation methods is the requirement of a small 

parameter. The small parameter may appear as an original physical parameter of the 

equation or can be introduced as an artificial parameter. This small parameter 

assumption restricts the range of validity of the results. For nonlinear problems, the 

solutions are valid for weakly nonlinear cases.  

 In a recent effort to overcome the major limitation of small parameter 

assumption, Pakdemirli and co-workers developed a new perturbation-iteration 

algorithm. The method was originally developed for algebraic equations and then 

generalized to differential equations. The pioneering work on algebraic equations was 

due to Pakdemirli and Boyacı [1] where they obtained some well-known root finding 

algorithms as well as new ones using the new systematic approach. Single point 

iteration algorithms up to third order derivatives were presented in that study. Fourth 

order derivative algorithms [2] as well as fifth order derivative algorithms [3] followed 

that study.  

 With an inspiration from the work on algebraic equations, the systematic 

approach of combining perturbations and iterations was applied to ordinary differential 

equations also. Pakdemirli et al. [4] derived the perturbation-iteration algorithms for 

first order differential equations. The new method was applied to Bratu-type second 

order equations by Aksoy and Pakdemirli [5].  The algorithms developed were tested 
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with success on some nonlinear heat equations also [6]. The most recent studies include 

the analysis of Fredholm and Volterra integral equations [7] and ordinary differential 

equation systems [8] by the developed method. In the mentioned work [4-8], the 

perturbation-iteration solutions were contrasted with exact solutions, if available, 

solutions obtained by other methods such as variational iteration method and with 

numerical solutions. The convergence of the iterations to real solutions were discussed 

and shown in detail. It seems that the method can be effectively applied to many 

physical problems yielding satisfactory results.  

 

2. ALGEBRAIC EQUATIONS 

 

In this section, a brief summary of the results in [1-3] will be given. For the roots of 

the nonlinear equation 

  f(x) = 0               (1) 

one may assume a perturbation expansion of the below form with n correction terms  

x = x0 + x1 + 2
x2+….+n

xn              (2) 

Inserting (2) into (1) and expanding in a Taylor series up to m’th order derivative terms 

yields 
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Note that since n terms in the perturbation expansion and m’th order derivatives in the 

Taylor series are considered, the perturbation iteration algorithm developed will be 

named PIA(n,m). n should always be less than or equal to m, otherwise, the unknowns 

(correction terms in the perturbation expansion) cannot be determined. Equation (3) 

should be grouped with respect to the same orders of ε, then separated and solved for 

the unknown correction terms. Substituting back the correction terms into (2) yields an 

iteration algorithm for solution of (1). Note that separations may not be unique and there 

may be more than one way of separation of (3). Leaving the details of the algebra to [1-

3], some final results are given below 
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Note that PIA(1,1) algorithm is the well-known Newton Raphson method. For n=m, the 

algorithms were given in the literature which were derived by some other methods [9]. 

To the best of the authors’ knowledge, the algorithms PIA(2,3), PIA(2,4), PIA(3,4) 

were not reported in other studies before [1-3].PIA(1,2) can be derived by purely 

geometrical considerations. In geometric derivation of Newton-Raphson method, 

tangent lines are employed to converge to the root. Similarly, if tangent parabolas are 

used, PIA(1,2) algorithm may also be developed. For convergence and performance of 

the algorithms, as well as some comparisons with the equivalent ones derived by 

Adomian decomposition method, see detailed discussions in [1-3]. If m is fixed, n=m 

algorithms usually perform better than n<m algorithms. As the number m increases for 

PIA(m,m) algorithms, the convergence is usually faster. However, the gain does not 

compensate for the algebraic complexity after m=4. Therefore PIA(3,3) or at most 

PIA(4,4) may be optimal for finding roots.  

 

3. FIRST ORDER DIFFERENTIAL EQUATIONS 

 

 For first order differential equations, results of [4] will be briefly discussed. 

Results of PIA(1,1) and PIA(1,2) algorithms will be presented.  

 

3.1.  PIA(1,1) Algorithm 

Consider the general first order differential equation 

0),,( uuF                          (13) 

with u=u(t) and  the perturbation parameter. Only one correction term is taken in the 

perturbation expansion 

 cuuu 01                        (14) 

Upon substitution of (14) into (13) and expanding in a Taylor series with first 

derivatives only yields 

0)0,,()0,,()0,,()0,,( 00000000    uuFuuuFuuuFuuF cucu
  (15) 

where subscripts denote differentiation with respect to the variable. Note that, in our 

method, the function and its derivatives are considered to be independent variables. 

Reorganizing the equation  
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and keeping in mind that all derivatives are evaluated at =0, it is readily observed that 

the above equation is a variable coefficient first order differential equation whose 

solution is  
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Substitution of (17) into (14) and constructing the iteration scheme yields 
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Example Problem 1 

 Consider the differential equation with the condition  

0εuu 2    u(0)=1                       (19) 

for which the exact solution is  

εt1

1
u


                         (20) 

Equation (18) reduces to  

...2,1,0)( 2

1   ndtucu nnn                        (21) 

In applying the iteration formula, an initial guess satisfying the initial condition should 

be selected and at each step cn coefficients have to be determined from the initial 

condition. Selecting  

u0=1                         (22) 

and using the formula, the approximate solutions at each step are 

tu 11                          (23) 
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Although, iterations up to u7 are calculated, they are not given here for brevity. In fact, 

using a symbolic manipulation algorithm, iterations can be calculated up to any 

arbitrary order. In Figure 1, exact solution and Taylor series solution with 30 terms is 

given for =2. It is also shown how the successive iterations converge to the exact 

solution. An excellent match is observed for 7
th

 iteration in the range considered. Note 

that using regular perturbation analysis, the Taylor series solution is retrieved. This 

means that with 7 terms in the perturbation-iteration, much better solution can be 

obtained than the 30 term regular perturbation expansion.    
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Figure 1. Comparison of PIA(1,1) solutions and Taylor series solution (30 terms) 

with exact solution (=2, Example Problem 1) 

 

3.2. PIA(1,2) Algorithm 

 

As in the previous case, again only one correction term in the perturbation 

expansion is taken 

 cuuu 01                                   (26) 

which upon substitution into (13) and expanding in a Taylor series up to second order 

derivatives yields after arrangement 
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After solving uc from above, the iteration scheme is constructed as below 

ncnn uuu )(1   n=0,1,2…                                (28) 

Note that, as mentioned before all functions and derivatives are evaluated at =0. Since, 

the equation is nonlinear in uc, a general solution cannot be given as in the previous 

case.  

 

Example Problem 1 

 Consider the same example as in the previous section  

0εuu 2    u(0)=1                       (29) 

Then (27) takes the simplified form  

2)(2)( n
n
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u
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


                       (30) 

For the initial assumed function, one may take   

10 u                          (31) 

Substituting this function to (30) yields        
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1)(2)( 00  cc uu                         (32) 

Solving (32), substituting into (28) and applying the initial condition yields   

)1(
2

1
1 2

1   teu 
                       (33) 

This solution is substituted into (30) 
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Since the equation to be solved is a variable coefficient equation which is involved, the 

function in the parentheses of second term is approximated as 1 for simplicity. Solving 

(34), substituting into the iteration expansion and applying the boundary condition 

yields 
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A further iteration yields  
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Using a symbolic manipulation program, up to 7
th

 order iterations are calculated. Since 

the solutions are very complicated, they are not presented here. Again the seventh 

iteration compares well with the exact solution whereas the 30 term Taylor expansion 

which would be obtained by a regular perturbation expansion of 30 correction terms 

explode and do not represent the real solution after t0.2 (See Figure 2).      

 
Figure 2. Comparison of PIA(1,2) solutions and Taylor series solutions (30 terms) 

with exact solution (=4, Example Problem 1) 

 

For more examples and detailed discussions on first order equations, see [4, 6]. 
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4. SECOND ORDER DIFFERENTIAL EQUATIONS 

 

 In this section, a brief summary and some results of [6] are given. A general 

second order differential equation can be written as follows 

0,u,εu,uF(  )               (37) 

withu=u(y) and ε is the perturbation parameter. Development of PIA(1,2) algorithm 

will be displayed only. Taking one correction term in the perturbation expansion 

ncn1n )(uεuu                (38) 

substituting into (37), expanding in a Taylor series up to second order derivatives,from 

which after reorganization, the determining equation for the correction is obtained 
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Note that, as mentioned before all functions and derivatives are evaluated at ε =0. It is 

readily observed that the above equation is a variable coefficient nonlinear second order 

differential equation. With the aid of (39) and (38), an iterative scheme is constructed 

for the specific equation under consideration. 

 

Example Problem 2 
Consider the dimensionless nonlinear boundary value problem describing temperature 

distribution in a uniformly thick rectangular fin with radiation to free space [10] 

1u(1)0,(0)u0uε
dy

ud 4

2

2

            (40) 

where ε is our dimensionless radiation parameter. Second iteration analytical solutions 

will be given by PIA(1,2) and variational iteration methods. 

 

 4.1. PIA(1,2) Algorithm 

Equation (39) for the above equation takes the following simple form 
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Initial function satisfying the boundary conditions exactly and the equation 

approximately is 

1u0                 (42) 

The first iteration solution is then obtained by first substituting 0u into (41) and then the 

result for 0c )(u  into equation (38) 
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Since the iteration equation for the second step is a variable coefficient equation, for 

simplicity the function 3

1u in the second term of equation (41) is approximated as 3

0u . 

Using equation (43), (41) and (38) and applying the boundary conditions yields 

])ε2y)Sinh[(8ε4440y]ε2y)Sinh[(8ε4440]ε2y)Sinh[(4ε16680y

]ε2y)Sinh[(4ε7800]εSinh[2yε24480y]ε2y)4Sinh[(ε16680y

]ε2y)4Sinh[(ε7800]ε2y)8Sinh[(ε4440y]ε2y)8Sinh[(ε4440

]ε8y)2Cosh[(2]ε6y)45Cosh[(4]ε4y)540Cosh[(6]ε4y)Cosh[(21660

]ε2y)81843Cosh[(]ε2y)(411795Cosh[]ε90Cosh[6y]ε2y20160Cosh[

]ε2y)4(11795Cosh[]ε2y)81843Cosh[(]ε4y)540Cosh[(6

]ε4y)Cosh[(21660]ε6y)Cosh[(445]ε8y)2Cosh[(2]ε02430Cosh[1

]ε615390Cosh[]ε234200Cosh[(
491520

]ε[2Sech

]ε4Cosh[2

y]εCosh[2

4

3
u

5

2

















 

(44) 

Note that after a few iterations, algebraically involved equations appear. Symbolic 

manipulation programs are necessary for successive calculations. 

 

 4.2. Variational Iteration Method  

Tari [11] have already treated the same problem with variational iteration method. The 

first iteration they found was  

ε2
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The second iteration was  
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PIA(1,2) and VIM solutions are compared with the numerical solutions. As can be seen 

from Figure 3, PIA(1,2) solution much better agrees with the numerical solution.  
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Figure 3. Comparison of two iteration solutions of PIA(1,2) and VIM with numerical solution. 

( ε =0.5,Example Problem 2) 

 

For more examples and detailed discussions, see [5, 6]. 

 

5. SYSTEMS OF FIRST ORDER DIFFERENTIAL EQUATIONS 

 

In this section, a brief summary of [8] will be given. The perturbation-iteration 

algorithm PIA(1,m) is constructedfirst by taking one correction term in the perturbation 

expansion and correction terms of m’th order derivatives in the Taylor Series expansion.  

Consider the following system of first order differential equations 

  0,,, tuuF jkk  Kk ,,2,1   Kj ,,2,1            (47) 

where K represents the number of differential equations in the system and the number of 

dependent variables. K=1 for a single equation. In the open form, the system of 

equations is 

 𝐹1 = 𝐹1 𝑢 1, 𝑢1 , 𝑢2, … 𝑢𝐾 , 𝜀, 𝑡 = 0 

 𝐹2 = 𝐹2 𝑢 2, 𝑢1, 𝑢2 , … 𝑢𝐾 , 𝜀, 𝑡 = 0           (48) 

  .                                 . 

 𝐹𝐾 = 𝐹𝐾 𝑢 𝐾 , 𝑢1, 𝑢2, … 𝑢𝐾 , 𝜀, 𝑡 = 0 
Assume an approximate solution of the system 

c

nknknk uuu ,,1,                  (49) 

with one correction term in the perturbation expansion. The subscript n represents the 

n’th iteration over this approximate solution. The system can be approximated with a 

Taylor series expansion in the neighborhood of ε=0 
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  k=1,2,…,K             (50) 

where 
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is defined for the n+1’th iterative equation  

  0,,, 1,1,  tuuF njnkk               (52) 

Substituting (51) into (50), one obtains an iteration equation 
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which is a first order differential equation and can be solved for the correction terms 
c

nku , . Then using (49), the n+1’th iteration solution can be found. Iterations are 

terminated after a successful approximation is obtained.  

 Note that for a more general algorithm, n correction terms instead of one can be 

taken in expansion (49) which would then be a PIA(n,m) algorithm. The algorithm can 

also be generalized to a differential equation system having arbitrary order of 

derivatives.  

Applications of the theory developed will be outlined in this section. 

          

Example Problem 3 

Two coupled equation system will now be considered. Solutions will be obtained by 

PIA(1,1) algorithm.The coupled system is 

2

2212

2

211 10001002

uuuu

uuu








            (54) 

with the initial conditions  

1)0(,1)0( 21  uu              (55) 

for which exact solutions are available  
teu 2

1

 ,  teu 2             (56) 

An artificial perturbation parameter is inserted as below 
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For (57), equation (53) reduces to  
2

,2,1,1,1,1 10001002  1002 nnn

c

n

c

n uuuuu             (58) 
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c

n

c

n uuuuuu             (59) 

If the initial trial functions are taken as  

10,1 u                (60) 

10,2 u               (61) 

thesuccessive iterations are  
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These results are identical with the results of thevariational iteration method given in 

[12]. For more worked examples, see [8].  

 

6. CONCLUDING REMARKS 

 

 Based on the reviewed work [1-8], the following conclusions can be stated 

1) The systematic development of PIA(n,m) algorithms (n≤m) yield infinitely 

many root finding algorithms for algebraic equations, some of which do not 

exist in the literature.  

2) n=m yields the best algorithms and there is no gain in taking n greater than 3 or 

at most 4.  

3) For differential equations, usually PIA(1,1) and PIA(1,2) algorithms are 

employed because the iteration equations to be solved introduces much 

complexity for higher order terms.  

4) PIA(1,1) may yield identical results with the variational iteration method and the 

solutions are usually in the polynomial form.  

5) PIA(1,2) produces better results compared to PIA(1,1) and the convergence to 

the real solution is faster. Successive iteration solutions are in functional form.  

6) Perturbation iteration algorithms do not require small parameter assumption as 

in classical perturbation approach and therefore extends the range of validity of 

results.  
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