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Abstract- In this paper we introduce and study some new sequence spaces of fuzzy 

numbers defined by I-convergence using the sequences of Orlicz functions, infinite 

matrix. We study some basic topological and algebraic properties of these spaces. Also 

we investigate the relations related to these spaces. 

 

Key Words- Ideal, I -convergent, infinite matrix, Orlicz function, fuzzy number. 

 

1. INTRODUCTION 

 

The theory of sequence of fuzzy numbers was first introduced by Matloka [10]. 

Matloka introduced bounded and convergent sequence of fuzzy numbers and studied 

some of their properties and showed that every convergent sequence of fuzzy numbers 

is bounded. Nanda [12] studied the sequence of fuzzy numbers and showed that the set 

of all convergent sequence of fuzzy numbers forms a complete metric space. J. S. Kwon 

[8] introduced the definition of strongly p-Cesaro summability of sequence  of fuzzy 

numbers. Savas [17] introduced and discussed double convergent sequence of fuzzy 

numbers and showed that the set of all double convergent sequence of fuzzy numbers is 

complete. Savas [24] studied some equivalent alternative conditions for a sequence of 

fuzzy numbers to be statistically Cauchy and he continued to study the statistical 

convergence in [22, 25]. Recently, Mursaleen and Basarir [11] introduced and studied 

some new sequence space of fuzzy numbers generated by non-negative regular matrix. 

Also Savas and Mursaleen [21] defined statistically convergent and statistically Cauchy 

for double sequence of fuzzy numbers. 

 

Different classes of sequence of fuzzy real numbers have been discussed by 

Nuray and Savas [13], Altinok et al.  [1], Hazarika and Savas [2], Kumar and Kumar 

[7], Savas ( [22], [23]), Savas and Mursaleen [21], Joong-Sung [8] and many others. 

The notion of I-convergence initially introduced by Kostyrko et al. [6]. More 

investigations in this direction and more applications of ideals can be found in [18, 19, 

20, 30, 31, 32] where many important references can be found. 

 

Let X  be a non-empty set, then a family of sets XI 2 (the class of all subsets of 

X) is called an ideal if and only if for each IBA , , we have IBA   and for each 

IA  and each AB  , we have IB . A non-empty family of sets XF 2  is a filter on 

X if and only if F , for each FBA , , we have FBA   and each FA  and each 

BA , we have FB  . An ideal I is called non-trivial ideal if I  I and IX  .Clearly 
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XI 2 is a non-trivial ideal if and only if  F F( I ) X A: A I     is a filter on X. A 

non-trivial ideal XI 2 is called admissible if and only if    IXxx : . A non-trivial 

ideal I is maximal if there cannot exists any non-trivial ideal IJ  containing I as a 

subset. Further details on ideals of X2 can be found in Kostyrko et al. [22]. 

Recall in [5] that an Orlicz function M is continuous, convex, nondecreasing 

function such that M(0)=0 and M(x)>0 for x>0 and M(x)   as x  . If convexity of 

Orlicz function is replaced by M(x+y)=M(x)+M(y) then this function is called the 

modulus function and characterized by Ruckle [16]. An Orlicz function M is said to 

satisfy 2 -condition for all values of u, if there exists K>0 such that M(2u)≤KM(u), 

u≥0. 

Lindenstrauss and Tzafriri [9] studied some Orlicz type sequence spaces defined 

as follows: 
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becomes a Banach space which is called an Orlicz sequence space. The space M  is 

closely related to the space p  which is an Orlicz sequence space with M(t)= |t|
p
, for 

1≤p<∞. 

 

The following well-known inequality will be used throughout the article. Let 

p=(pk)be any sequence of positive real numbers with Hpp kkk  sup0 , D= max{1, 

2
H-1

}then 

 kkk p

k

p

k

p

kk baDba   

for all kN and ak, bkC. Also  max 1,| |kp H

ka a  for all aC. 

In the later stage different classes of Orlicz sequence spaces were introduced and 

studied by Parashar and Choudhary [14], Savas ([26]-[29]) and many others. 

 

Throughout the article w
F
 denote the class of all fuzzy real-valued sequence 

space. Also N and R denote the set of positive integers and set of real numbers 

respectively. 

 

In this paper, we study some new sequence spaces of fuzzy numbers defined by 

using I-convergence, the sequence of Orlicz functions and an infinite matrix. We 

establish inclusion relations between the sequence spaces  pMAw FI ,,)( ,  0
)( ,, pMAw FI , 

 pMAwF ,, and  pMAw FI ,,)( where p=(pk) denote the sequence of positive real 

numbers for all nN and M=(Mk) be a sequence of Orlicz functions. 
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2. DEFINITIONS AND NOTATIONS 

 

Before continuing with this paper we present a few definitions and preliminaries. 

Given any interval A, we shall denote its end points by AA,  and by D set of all 

closed bounded intervals on real line R i.e.,   AAARAD ,:  . For A, BD we define 

A≤B if and only if BA   and BA  and 

 ( , ) max ,d A B A B A B   . 

It is easy to see that d defines a Hausdorff metric on D and (D,d) is a complete 

metric space. Also ≤ partial order on D. 

A fuzzy number is a function X from R to [0, 1] which satisfying the following 

conditions (i) X is normal, i.e. there exists an x0R such that X(x0)=1; (ii) X is fuzzy 

convex, i.e. for any x,yR and [0, 1] , X(x+(1-)y)min{X(x), Y(y)}; (iii) X is upper 

semi continuous; (iv) The closure of the set {xR : X(x)>0}, denoted by X
0
 is compact. 

The properties (i) to (iv) imply that for each [0,1] , the -level set X

={xR: 

X(x)>}=





 
XX , is a non empty compact convex subset of R. Let L(R) denotes the set 

of all fuzzy numbers. Define a map RRLRLd  )()(: by ),(sup),( ]1,0[


 YXdyxd  . Puri 

and Ralescu [15] proved that  dRL ),( is a complete metric space. 

For X, YL(R), we define X≤Y if and only if 
YX   and 


YX , for each [0, 

1], we say that X<Y if X≤Y and there exist  0[0, 1] such that 00 
YX  or 00

,


YX .The 

fuzzy number X and Y are said to be incomparable if neither X≤Y nor Y≤X. 

For any X,Y,ZL(R), the linear structure of L(R) induced addition X+Y and 

scalar multiplication  X,R, in terms of  -level sets, by [X+Y]

=[X]


+[Y]


  and 

[X]

= [X]


 for each [0,1]. 

 

Proposition 1.1. If d  is a translation invariant metric on L(R) then 

(i) d (X+Z,0)≤ d (X,0)+ d (Y,0), 

(ii) d (X,0) ≤|| d (X, 0) , ||>1. 

A sequence X=(Xk) of fuzzy numbers is said to converge to a fuzzy number X0 if for 

every >0, there exists a positive integer n0 such that d (Xk,X0) < for all nn0.A 

sequence X=(Xk) of fuzzy numbers is said to be bounded if the set {Xk : kN} of fuzzy 

numbers is bounded. 

A sequence X=(Xk) of fuzzy numbers is said to be I-convergent to a fuzzy 

numberX0 if for each > 0 such that 

A={kN : d (Xk,X0) }I. 

The fuzzy number X0 is called I-limit of the sequence (Xk) of fuzzy numbers and we 

write I–lim Xk=X0. 

A sequence X=(Xk) of fuzzy numbers is said to be I-bounded if there exists M> 0such 

that 

{kN : d (Xk,0) >M}I. 

Let EF be denote the sequence space of fuzzy numbers. 
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A sequence space EF is said to be solid (or normal) if (Yk)EF whenever 

(Xk)EF and |Yk|≤|Xk| for all kN. 

A sequence space EF is said to be monotone if EF contains the canonical pre-

images of all its step spaces. 

 

Example 2.1. If we take I=If ={AN : A is a finite subset}. Then If  is a nontrivial 

admissible ideal of N and the corresponding convergence coincide with the usual 

convergence. 

 

Example 2.2. If we take I=I ={AN :(A)=0} where (A) denote the asymptotic 

density of the set A. Then Iis a non-trivial admissible ideal of N and the corresponding 

convergence coincide with the statistical convergence. 

 

Lemma 2.1.  A sequence space EF is normal implies EF is monotone. (For the crisp set 

case, one may refer to Kamthan and Gupta (see, [4]). 

 

3. SOME NEW SEQUENCE SPACES OF FUZZY NUMBERS 

 

In this section, using the sequence of Orlicz functions, an infinite matrix and I-

convergence; we introduced the following new sequence spaces and examine some 

properties of the resulting sequence spaces. Let I be an admissible ideal of N and let 

p=(pk) bea sequence of positive real numbers for all kN, and A=(ank) an infinite matrix. 

Let M=(Mk) be a sequence Orlicz functions and X=(Xk) be a sequence of fuzzy numbers, 

we define the following new sequence spaces: 
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Let us consider a few special cases of the above sets. 

(i) If Mk(x)=x for all kN, then the above classes of sequences are denoted by 

w
I(F)

[A, p], w
I(F)

[A, p]0, w
F
[A, p]∞ , and w

I(F)
[A, p]∞ , respectively. 

 

(iii) If p=(pk)=(1,1,1,...), then we denote the above spaces by w
I(F)

[A, M], w
I(F)

[A, 

M]0,  
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w
F
[A, M]∞ , and w

I(F)
[A, M]∞. 

(iv) If we take A=(C,1),i.e., the Cesaro matrix, then the above classes of 

sequences are denoted by w
I(F)

[w,M,p], w
I(F)

[w,M,p]0, w
F
[w,M,p]∞ , and w

I(F)
[w,M,p]∞, 

respectively. 

v) If we take A=(ank) is a de la Valeepoussin mean, i.e., 
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where (n) is a non-decreasing sequence of positive numbers tending to ∞ and  

n+1≤n+1, 1= 1, then the above classes of sequences are denoted by w
I(F)

[M,p], 

w
I(F)

[M,p]0, w
F
[M,p]∞ , and w

I(F)
[M,p]∞, respectively. 

 

(vi) By a lacunary=(kr); r=0,1,2, ... where k0=0, we shall mean an increasing 

sequence of non-negative integers with kr - kr-1 as r∞. The intervals determined by 

will be denoted by Ir =(kr-1,kr ] and hr=kr - kr-1. As a final illustration let 
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Then we denote the above classes of sequences by w
I(F)

[A,M,p], w
I(F)

[M,p]0, 

w
F
[M,p]∞ , and w
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[M,p]∞, respectively. 

(vii) If I=If, then we obtain 
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(viii) If I=I  is an admissible ideal of N, then we have 
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If X=(Xk)w
F
[A,M,p] then we say that X=(Xk) is strongly (p)- Cesaro convergent with 

respect to the sequence of Orlicz functions M. 

 

4. MAIN RESULTS 

 

In this section, we examine the basic topological and algebraic properties of the 

new sequence spaces and obtain the inclusion relation related to these spaces. 

 

Theorem 4.1. Let (pk) be a bounded sequence. Then the sequence spaces w
I(F)

[A,M,p], 
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[A,M,p]0, w
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[A,M,p]∞ are linear spaces. 

 

Proof. We shall prove the result for the space w
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[A,M,p]0 only and the others can be 

proved in similar way. 
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Let  , ß be two scalars. By the continuity of the function M=(Mk)  the following 

inequality holds: 
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From the above relation we obtain the following: 
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This completes the proof. 

 

Theorem 4.2. w
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where H=max{1, supkpk}. 

 

Proof. This can be easily verified by using standard techniques and so is omitted. 

 

Theorem 4.3. (a) Let 0<inf pk≤ pk≤1. Then 
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The other part can be proved in similar way. 

(b) Let X=(Xk) be an element in w
I(F)

[A,M,p]. Since 1≤pk ≤sup pk<∞. Then for 

each 0<<1 there exists a positive integer n0 such that 
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This implies that 
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The other part can be proved in similar way. 

 

Proposition 4.4. The sequence spaces w
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[A,M,p]∞ are normal as 

well as monotone. 
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Again the set 
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Hence B1I and so Y=(Yk)w
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