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Abstract- In this paper, we present a new lattice model of traffic flow by considering 

the effects of traffic interruption probability. The stability condition of the proposed 

model is obtained by employing the linear stability theory. The results show that the 

stability of traffic flow is improved by considering the influence of traffic interruption. 

Applying the method of nonlinear analysis, the modified Korteweg-de Vries (mKdV) 

equation is derived to describe the traffic behavior near the critical point. The kink-

antikink soliton and the solution of the mKdV equation are obtained to describe the 

traffic jams. The good agreement between theoretical analysis and numerical simulation 

indicates that our new consideration can stabilize the traffic flow effectively.  

 

Key Words- Modeling and simulation, traffic interruption probability, nonlinear 
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1. INTRODUCTION 

 

  In the last decades, the research of traffic flow has attracted much attention of 

physicists and engineers. A number of traffic models [1-16], including microscopic car-

following models, cellular automaton (CA) models, macroscopic continuum models, 

and macroscopic gas-kinetic-based models, have been proposed to describe the physical 

mechanisms of traffic phenomena. Excellent reviews on this topic can be found in [1]. 

As an effective model to describe the traffic flow from macroscopic view, lattice model 

was first presented by Nagatani [13] in 1998. After that, many improvement have been 

put forward based on Nagatani’s original model. In 2004, the next-nearest-neighbor 

interaction of traffic flow was introduced into lattice model by Xue [14]. In 2008, Li et 

al. [16] presented a new lattice model considering the relative current information of 

traffic flow. However, the lattice models mentioned above do not involve the effects 

that the probability of traffic interruption has on traffic flow, and thus they can not be 

used to describe the complex phenomena resulted by traffic interruptions. In fact, some 

traffic interruptions (e.g. accident) always occur with some probabilities and produce 

complex phenomena. Very recently, a few traffic flow models have investigated the 

influences of traffic interruption probability in the hydrodynamic models [11] and car-

following models [12], and their results indicated that the consideration of the traffic 

interruption probability can improve the stability of traffic flow. 

In this paper, we introduce another approach to study the effect of traffic 

interruption probability with the lattice model of traffic flow. In the following section, 

we review the performance of the previous lattice models of traffic flow, and then put 
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forward the extended lattice model considering the effect of traffic interruption 

probability on a single-lane highway. In Section 3, we derived the linear stability 

condition by using the linear stability theory. In Section 4, by means of nonlinear 

analysis, we deduce the mKdV equation near the critical point. In Section 5, we carry 

out numerical simulation to validate the analytical results. Finally, we draw some 

conclusions from the presented study in Section 6.  

 

2. MODELS 

  

In 1998, Nagatani [13] presented the first lattice model to describe the density 

wave in traffic flow on freeway. The governing equation is described as follows: 

 

0
( ) 0

t x
v            (1) 

0
( ( ))

t
v a V x a v             (2) 

 

where 
0

  denotes the average density, a  is the sensitivity of a driver, ( )x  is the 

local density at position x   and time t,  represents the average headway, which 

means 
0

1/  , local density is expressed as ( ) 1/ ( , )x h x t   , where ( , )h x t  is the 

headway. 

Then, the lattice model is modified with dimensionless space x  (let /x x  , and 

x  is indicated as x  hereafter) and expressed as: 

 

0 1 1
( ) 0

t j j j j j
v v   

 
         (3) 

0 1
( ) ( )

t j j j j j
v a V a v   


        (4) 

 

where j indicates the jth site on a one-dimensional lattice, ( )
j

t denotes the local density 

on site j at time t , and ( )
j

v t  represents its corresponding  local velocity, and ( )V   refers 

to the optimal velocity function. Equation (3) is the lattice version of a continuity 

equation, while Eq.(4) is the evolution equation. 

After that, Xue [14] improved the evolution equation (4) by considering the 

next-nearest-neighbor interaction and described it as 

 

0 1 0 2
( ) ( ) ( ( ))(1 ) ( ( ))

j j j j
t v t V t p V t p      

 
        (5) 

 

where p is a constant ranging 0 ~ 0.5  ,which means the front term plays the dominant 

role, 1 a   denotes the delay time. In order to further improve the stability of traffic 

flow, Ge et al. developed a cooperative driving lattice model of traffic flow with the 

evolution equation as follows [15], 

 

0 1 2
( ) ( ) ( ( ), ( ), , ( ))

j j j j j n
t v t V t t t      

  
        (6) 

where n  denotes the number of sites ahead considered. 

In 2008, Li et al. [16] found that the relative current information can further 

enhance the stability of traffic flow, and then presented a new evolution equation, i.e. 
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0 1 1 1
( ) ( ) ( ) ( )

j j j j j j j
t v t V k v v      

  
        (7) 

 

However, the models mentioned above did not consider the influence of traffic 

interruption probability, and thus they can not be employed directly to describe the 

complex traffic phenomena caused by traffic interruption. In fact, the motion of vehicle 

may be interrupted with some probability in real traffic. Considering this, we put 

forward a new lattice model with the dynamic equations as follows, 

 

0 1 1
( ) 0

t j j j j j
v v   

 
         (8) 

0 1 1 2
( ) ( ) ( ) ( ) (1 )

j j j j j
t v t V k p Q k p Q    


           (9) 

 

where p  denotes the probability with which the preceding sites is interrupted, 
1

k and 
2

k  

are the reactive coefficients, and ( )V   is the optimal velocity function. 
j

Q is the current 

of j th site, 
1 1 1j j j j j j j

Q Q Q v v 
  

     is the relative current on site j . Once the 

leading site is completely interrupted, its current immediately becomes zero, thus the 

relative current between the leading site 1j   and  following one j  becomes (
j

Q ) . The 

idea of the Eq.(9) is that traffic current ( ) ( )
j j

t v t    on site j  at time t  is 

determined by the factors including optimal current 
0 1

( ( ))
j

V t 


, the current 
j

Q , the 

relative current 
j

Q  and the probability p . When
1

0k  ,
2

0k  and 0p  , Eqs.(8) and (9) 

of the extended model reduce into those of Nagatani’s model. When
1

0k  and 0p  , 

Eqs.(8) and (9) of the extended model reduce into those of Li’s model. Therefore, the 

extended model includes the Nagatani’s and Li’s model as special cases.  

In Eq.(9), ( )V   expresses the optimal velocity function and it decreases 

monotonically with upper bound. We adopt the optimal velocity function as follows 

[15,17],  

2

0 0

2 1 1
( ) tanh( ) tanh( )

c c

V



   

        (10) 

 

where 0.25
c

  is the critical density. Note that Eq.(10) has a turning point at 

j c
  when 

0 c
  . 

By eliminating speed v  in Eqs.(8) and (9), the density equations are obtained as 

follows, 
2

0 1 1

2

( 2 ) ( ) [ ( ) ( )] [ ( ) ( )]

(1 )[ ( ) ( )] 0

j j j j j j

j j

t t V V k p t t

k p t t

         

  


       

     
  (11) 

where
1j j j

  


   . 

 

3. LINEAR STABILITY ANALYSIS  
 

To investigate the influence of the traffic interruption probability on the traffic 

flow, the linear stability analysis method can be applied for the extended model as 

follows. It is obvious that the steady state is the uniform traffic flow with a constant 

density 
0

  and optimal velocity 
0

( )V  . So, the steady-state solution is given by, 
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0
( )

j
t   ,

0 0 0
( ) ( , , , )

j
v t V         (12) 

 

Suppose ( )
j

y t be a small deviation from the steady state flow, 

 

0
( ) ( )

j j
t y t         (13) 

 

Substituting Eq.(13) into Eq.(11) and linearizing them obtained 

 
2

0 0 1

1 2

( 2 ) ( ) ( )[ ( ) ( )]

[ ( ) ( )] (1 )[ ( ) ( )] 0

j j j j

j j j j

y t y t V y t y t

k p y t y t k p y t y t

   

 


    

        
  (14) 

 

where 
00

( ) [ ( ) ] |
jj j

V dV d
 

  


  . 

By expanding ( ) exp( )
j

y t ikj zt  , we have the following equation of z : 

 
2 2

0 0 1 2
( )( 1) ( 1) (1 )( 1)( 1) 0z z ik z z ike e V e k p e k p e e                (15) 

 

Inserting 2

1 2
( )z z ik z ik   into equation (15) give the first and second order 

terms of coefficients in expression of 
1

z  and 
2

z  respectively as follows, 
2

0 0

1

1

( )

1

V
z

k p

 
 


      (16) 

2 2 2 2

1 0 0 0 0

2 23 2

1 1 1

(3 )( ) (1 )1

2 (1 ) 2 (1 ) (1 )

k p V V p V
z k

k p k p k p

      
   

  
   (17) 

 

If 
2

z  is a negative value, the uniformly steady-state flow becomes unstable for 

long-wavelength modes, while the uniform flow is stable when 
2

z  is a positive value, 

thus the neutral stable criteria for this steady state is given by  

 
2

1 2 1

2

1 0 0

(1 ) 2 (1 )(1 )

(3 ) ( )

k p k p k p

k p V


 

   
 


     (18) 

 

For small disturbance with long wavelengths, the homogeneous traffic flow is 

stable under condition that 

 
2

1 2 1

2

1 0 0

(1 ) 2 (1 )(1 )

(3 ) ( )

k p k p k p

k p V


 

   
 


    (19) 

 

If the stability condition is unable to be satisfied, the uniform traffic flow will 

evolve into a stop and go traffic flow when affected by a small perturbation. 

The neutral stability lines (solid lines) in parameter space ( , )a are shown in 

Figure 1. 
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Figure 1. Phase diagram in the density-sensitivity space for Nagatani’s model, Li’s 

model with k2=0.1 and k2=0.2, as well as our model with k1=0.5, k2=0.2, p=0.2. 

For comparison purpose, we also give out the neutral stability lines of Nagatani’s 

and Li’s model in Figure 1. On each curve, there exists the critical point ( ,
c c

a ) which 

is the apex of the neutral stability line. Figure 1 shows that with the same value of 
c

 , 

the value of 
c

a  obtained from the proposed model is lower than those obtained from the 

other two models. This verifies that the stability of traffic flow can be improved by our 

model, and demonstrates that the factor of traffic interruption probability should not be 

omitted when using lattice model to describe the dynamics properties of traffic. 

 

4. NONLINEAR ANALYSIS AND MKDV EQUATION 

 

When traffic flow is affected by disturbances for various reasons, car density 

will fluctuate and form density waves，which is one of the causes of traffic jam. In 

order to further investigate the effect of traffic interruption probability on the 

propagation behavior of traffic jam, the reductive perturbation method is applied to the 

extended model described by Eq.(11). Thus, we introduce slow scales variables for 

space variable j  and time variable t , and define slow variable X and T as follows: 

 

( )X j bt   and 3 ,T t  0 1      (20) 

 

where b is a constant to be determined. Letting  

 

( ) ( , )
j c

t R X T         (21) 

 

where the ( , )R X T  is a function to be determined. 

Substituting Eqs.(20) and (21) into Eq.(11) and making the Taylor expansion to 

the fifth order of   lead to the following expression: 
'''

2 2 ' 3 2 4 3 3

0 3 41 42

5 4 2 3 2

1 51 52 42

[ ] {( }
6

{[3 ] ( ) } 0

X X

X X X

X T X

c T X c

V
Ab V R A R A R A R A R

b k p B R A A R A R C R

   

  

          

           

   (22) 

 

Where 
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[ ( ) ] |
j j j c

V dV d       and 3 3[ ( ) ] |
j j j c

V d V d        (23) 

1
(1 )A k p  , 

2
(1 )B k p  , and 

2

1
( 3)

2

b k p
C


    (24) 

'

2

3 0
2

V
A C Bb           (25) 

2 ' 3 2

41 0 1

1
[ (3 7) 3 ( 2 1)]

6
A V k p b Bb b l           (26) 

'''

2

42 0
6

V
A          (27) 

4 3 2 ' 3 2

51 1 0

1
[15 ) 4 ( )]

24
A k p b V B b          (28) 

2 2

52

1
[6 (2 1) 4 (3 3 1)]

24
A b l b l l          (29) 

 

Near the critical point ( , )
c c

a , 2(1 )
c

    , taking 
2

c
V

b
A

 
  and eliminating the 

second order and third order terms of  from Eq.(22) result in the simplified equation, 

 
4 3 3 5 2 4 2 3

1 2 3 4 5
[ ] [ ] 0

T X X X X X
R g R g R g R g R g R               (30) 

Where 

3 2 2 '

1 1 0

1
[(3 7) 3 ( 3)]

6
c c

g k p b V Bb b
A

           (31) 

2 42
g A         (32) 

3 c
g C         (33) 

51 52

4 3

* * *1

4 41

[3 ]

24

c c
b b k p B

g A A A
A

   
        (34) 

142

5

2[3 ]
(1 )

2

c
b k p BA

g
A

  
        (35) 

 

It is need to note that in Eq. (34), * * *

41 51 52
, ,A A A  are obtained by replacing   with 

c
 , 

l  with 1 in Eqs. (26), (28) and (29) respectively 

In order to derive the regularized equation, we make the following 

transformations for Eq. (30), 

 

1
T g T  ,  1

2

g
R R

g
     (36) 

We have the standard mKdV equation with a ( )O  correction term as follows: 

 
3 3 [ ] 0

T X X
R R R M R
             (37) 

where 

2 4 2 31 5

3 4

1 2

1
[ ] [ ]

X X X

g g
M R g R g R R

g g
            (38) 
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Ignoring the ( )O  term, we will obtain the mKdV equation with the kink-

antikink soliton solution 

 

0
( , ) tanh ( )

2

c
R X T c X cT         (39) 

 

With the method described in Ref.[18], we obtain the selected velocityC .  

 

2 3

2 4 1 5

5

2 3

g g
C

g g g g



     (40) 

 

Hence, we obtain the kink-antikink soliton solution as follows: 

 

1

1

2

( ) ( 1) tanh ( 1)[ (1 ( 1)) ]
2

j c

c c c

g C C
t j Cg t

g

  
 

  
         (41) 

 

Then, amplitude A  of the kink-antikink soliton is given by 

 

1

2

( 1)
c

g c
A

g




       (42) 

 

The kink-antikink soliton represents coexisting phases, which consist of the 

freely moving phase at low density and the jammed phase at high density. The densities 

corresponding to the freely moving phase and the jammed phase are given, respectively, 

by 
j c

A   and
j c

A   . Thus, we can depict the coexisting curve in the ( , )a  

parameter space (see the dot lines in Figure 1).  

In Figure 1, the dot lines represent the coexisting curves obtained from the 

solution of the mKdV equation. For each pair of dot and solid lines, we can see that the 

phase space is divided into three different regions, i.e. stable region, metastable region 

and unstable region. In the stable region, traffic jam will not appear. However, in the 

other two areas, when small disturbances are added into the uniform traffic flow, traffic 

flow will evolve over time to be unstable and form density waves. In Figure 2, the 

propagating backward kink-antikink density wave appears which is in good agreement 

with the analytical results. 

 

5. NUMERICAL SIMULATION  

 

To verify the theoretical analysis above, numerical simulation was carried out 

with periodic boundary condition. The initial conditions in the simulation are set as 

follows: 



 

 

                        Modeling and Simulation of a Traffic Flow Model                          119 
 

0
(0) 0.25,

j
   (1) (0) 0.25,

j j
   for 50,51j  , (1) 0.25 0.1

j
   for 50j  ,and 

(1) 0.25 0.1
j

    for 51j  ,where the total number of sites is 100N  , and sensitivity 

coefficient is 2.0a  . 

In real traffic, the traffic interruption probability depends on the related traffic 

condition and road configuration. For simplicity, we set the traffic interruption probability 

to be constant 
0

0.2p   in this paper. It is need to note that we just investigate the impact 

of traffic interruption probability on the traffic dynamics behavior and suppose that no 

interruption take place in the lane really when the simulation is carried out. 

Figure 2 shows the simulation results after 410t  time step. Figure 2(a)-2(d) 

show the space-time evolution of the density for Nagatani’s model, Li’s model 

with
2

0.1k  , Li’s model with
2

0.2k   and our model, respectively. 

 

     

(a)                                                              (b) 

     

(c)                                                             (d) 

Figure 2. Space-time evolution of the density after 10
4
 time steps for Nagatani’s model, 

Li’s model with k2=0.1, Li’s model k2=0.2 and our model with k1=0.5, k2=0.2 ,p=0.2. 

 

In Figures 2(a)-2(c), because the stability condition are not satisfied, when small 

perturbation is added into the uniform traffic flow, it is amplified with time and the 

uniform flow changes finally to inhomogeneous traffic flow. The traffic jam in Figure 

2(a) is the most serious, followed by those in Figure 2(b) and Figure 2(c) since the 

relative current can improve the stability of traffic flow. Nevertheless, the traffic jams 

still occur, which means that only considering the relative current information can not 

completely eliminate the fluctuation of traffic flow. In Figure 2(d), due to the 

probability of traffic interruption are taken into account, the perturbation finally 

disappears and the traffic flow recover to the uniform state.  

To analyze the results of simulation quantitatively, the profile of the density 

wave at t = 10100 corresponding to Figure 2. are showed in Figure 3. and its statistical 

results is showed in Table.1.  

app:ds:suppose
app:ds:serious
app:ds:nevertheless
app:ds:keep
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Figure 3. Profile of the density wave at t = 10100 corresponding to Figure2 . 

 

Table 1. Statistical results of density waves at t = 10100 corresponding to Figure 3. 

 

 Maximal 

density 

Minimal 

density 

Standard variance 

of density 

Average 

density 

(a) k1=0, k2=0, p=0 0.3305 0.1695 0.0734 0.25 

(b) k1=0, k2=0.1, p=0 0.3079 0.1921 0.0514 0.25 

(c) k1=0, k2=0.2, p=0 0.2811 0.2188 0.0262 0.25 

(d) k1=0.5, k2=0.2, p=0.2 0.2503 0.2498 0.000137 0.25 

 

From Figure 3 and Table 1, we can obtain the same result with the analysis of 

Figure 2, that is, the fluctuation of density is decreased obviously from pattern a to 

patter c, and finally disappeared in pattern d, furthermore, this result is consistent with 

the analytical results in Figure 1. 

Consequently, we can conclude that the probability of traffic interruption should 

be considered in the lattice model of traffic flow to suppress the traffic jams efficiently. 

 

6. SUMMARY  

  

 In this paper, we present an extended lattice model considering the effect that the 

probability of traffic interruption has on traffic flow. Through the linear stability 

analysis, we obtain the stability criterion, and show that the new consideration can 

stabilize traffic flow. Moreover, the mKdV equation is derived to investigate the 

evolution behavior of traffic jams near the critical point. It should be noted that in our 

model and simulation, traffic interruption does not happen really but just describes the 

anxiety and anticipation of driver when he or she adjusts his own car according to the 

observed traffic flow state ahead. The good agreement between numerical simulation 

results and analytical ones indicated that such psychological state of drivers do 

influence traffic dynamics and stabilize traffic flow.  
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