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ABSTRACT – In this study, a fuzzy robust regression method is proposed to construct 
a model that describes the relation between dependent and independent variables in 
insurance. Fuzzy robust regression suggested as an alternative to not only ordinary least 
squares but also classical robust regression. Fuzzy robust regression is finally 
investigated and discussed by an example with real data arose from a well-known 
insurance company in Turkey. 
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1. INTRODUCTION 
 
Ordinary least squares (LS)  method is one of the most well-known and the 

simplest type of estimation tool in statistics to determine the line of the best fit for a 
model. The LS method is specified by an equation with certain parameters to observed 
data and used in regression analysis and estimation with some assumptions, which can 
be easily found in the literature. Related assumptions of the LS method may be easily 
found in the literature. However, in the parameter estimation of the regression, the 
method has also some incompetence when the data has the outlier, and underlying 
distribution departs from normality. Therefore, diagnostic checks should be done on 
data before applying the LS method.  

A statistical procedure is called robust if it is insensitive to the occurrence of 
gross errors in the data. Robust statistical procedures seek to provide methods even if 
there exists a single outlier. In such cases, robust methods are preferred to the LS 
method.  

Fuzzy regression analysis is a fuzzy type of the classical regression analysis that 
is used in evaluating the functional relationship between the dependent and independent 
variables in a fuzzy environment[16]. The fuzzy regression model analysis is generally 
divided into two categories. The first of them is based on the Tanaka et al. (1982)’s 
linear programming approach, and the second one is based on the fuzzy least squares 
approach which is proposed by Diamond (1988)  [16][18][25][26].  

Tanaka et al.[22] proposed a study on linear regression with a fuzzy model then 
fuzzy regression analysis has been widely studied and applied in various areas. 
However, Tanaka’s approach may give an incorrect interpretation of the fuzzy linear 
regression results when the data set consists at least an outlier. To handle the outlier 
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problem, Hung and Yang (2006) proposed an omission approach for Tanaka’s linear 
programming method. This approach had the capability to examine the behavior of 
value changes in the objective function of fuzzy regression models when observations 
are omitted. The procedure is to delete the first i -th observation and then the remaining 
observations are applied Tanaka’s approach[12]. Nasrabadi et al. (2007) developed a 
new linear-programming-based approach for computations of fuzzy regression models 
[17].  

In the context of fuzzy regression, observation which has a bigger residual value 
than the others is called as an outlier [12]. Fuzzy robust regression is robust for the 
estimation of fuzzy linear regression models, especially when outliers exist.  

Rousseeuw et al.’s (1984) model considered a simple regression model. 
Furthermore, dependent and independent variables are represented as are non-fuzzy 
(crisp) numbers and estimations of parameters are non-fuzzy (crisp) number [19].  

In this study, we focused on a multi-regression model by using fuzzy numbers 
when dependent and independent variables are triangular fuzzy numbers and estimation 
of parameters is a crisp number.  

This paper has been divided into five sections. Section 2 describes parameter 
estimation in multiple linear regression. Section 3 deals with the concepts of robust 
regression. An algorithm for parameter estimation on fuzzy robust regression and a 
numerical study, based on real data, will be investigated by using the algorithm in 
Section 4. Finally, in the last section, discussion and conclusion are provided.  
 

2. MULTIPLE LINEAR REGRESSION 
 
Regression analysis is a useful statistical tool to model the functional 

relationship between dependent and independent variables under regularity conditions. 
Multiple linear regression generalizes the simple linear regression model by allowing 
for many terms in a mean function rather than just one intercept and one slope [24].    

In almost all cases, the outcome of a related variable is not determined entirely 
by the outcome of a single factor. Many independent factors typically have an effect on 
the dependent variable. For instance, total claim amount payments of car accidents may 
be affected by time period of the year, vehicle type or/and number of accidents. Thus, 
an extension of the classical linear model might assume that the dependent variable is 
determined by a linear combination of the independent variables. For any observation i :  

0 1 1 2 2 for 1 2 1 2i i i j ij iY X X … X j … p i n                     (1)
Generally model, which is given in (1), is denoted in matrix form as:  
    Y X  

where, Y  is 1n  matrix of n  observations,   is  1 1k    matrix of the beta 

coefficients, X  is  1n k   matrix containing n  observations for k  independent 

variables and   is 1n  matrix of error terms. Variables must be linearly independent 
for fitting a linear regression model. Otherwise the estimations of the coefficients 
cannot be determined. We assume that the independent variable is non-random for 
repeated samples, and the error terms are random with a zero mean conditional on the 

explanatory variables and   2E     . The error term essentially describes that the 
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error in the predicted value, given the independent variables [1]. Solving for   
coefficients, the goal is to minimize the sum of squares error, which can be expressed 
by  

2

1

n

i
i

  



   (2)

This can also be expressed as  

      Y X Y X   

By taking the first partial derivative with respect to   and setting it to zero gives the 
solution as 

 1


    X X X Y  (3) 

  
   

In here,   is called as estimation of multiple linear regression coefficients. The main 
advantage of multiple linear regression is that it allows the use of more than one 
variable to explain the variation of the dependent variable Y . Remember that more 
independent variables may not always give better estimation of the dependent variable 
Y  [8].  
 

3. ROBUST REGRESSION 
 
LS estimator is very sensitive to outliers and to deviation from normality 

assumptions. Therefore, estimation results are directly affected by each observation and 
the data should be analyzed in detail. This is such an important issue that sometimes 
even a single observation can change the value of the parameter estimates dramatically, 
and omitting this observation from the data may lead to totally different results. Outliers 
always have huge impact on model fitting, especially in regression analysis. They 
decrease the efficiency of the estimator. Now, we discuss widely used M estimation 
methods of Huber, Hampel, Andrews and Tukey. 

The most common general method of robust regression is M estimations, 
introduced by Huber(1964) [10][16]. This class of estimators can be regarded as a 
generalization of maximum-likelihood estimation, hence the term ‘M’, comes from 
“generalized maximum likelihood” estimation [7].  The general M estimator minimizes 
the objective function  


1 1

pn

i ij j
i j

y x d 
 

  
   

   
   (4) 

where the function   gives the contribution of each residual to the objective function. 
By taking the first degree partial derivative of the sum in equation (4) with respect to 
each 

j  and setting it to zero, it may be found that regression coefficients of p  

equations:  


1 1

0 1 2
pn

ij i ij j
i j

x y x d j … p
 

  
          
   

   (5) 
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where    z z   be the derivative of  . The standardized residuals may be defined 

as iz r d   where 
1

p

i i ij jj
r y x 
   [14]. In here,  d  is a robust estimate of scale 

[14]. Under normality, the expected value of d  is the standart error of estimate in 
population [13]. When data contain outliers, standart deviations are not a good measures 
of variability. Hence, other robust measures of variability are required. One robust 
measure of variability ( d ) is defined as; 

  0 6745i id median r median r     (6) 

0 6745  is used as denominator in equation (6) because then d   when n  is large and 
the sample actually arises from a normal distribution. Usually the sample standart 
deviation s  is not used as a d  value since it is influenced too much by outliers and thus 
is not robust [13]. The numerator of d  in equation (6) is called as the median of the 
absolute deviations (MAD) [11]. 

Huber’s   is defined as  

 

2

2

2

2

z
z k

z
k

k z z k




  

   

  

The cutoff point is referred to in robust statistics as a tuning constant. When the normal 
error structure holds (e.g., when least square estimates typically are considered best), the 
use of the Huber method would result in some loss of efficiency. The percentage of loss 
in efficiency represent the Premium to be paid for the guard against un-reasonable least 
square estimates in nonnormal cases. If the Premium is set at 5% , the tuning constant 
k  is typically set at 1 5  [13]. The tuning constant is generally picked to give reasonably 
high efficiency in the normal case; in particular,   for the Huber produce   percent 
efficiency when the errors are normal, and still offer protection against outliers [7].  
Huber’s weight function is defined by    W z z z    such as  

 
1 z k

W z k
z k

z

  
 

 

  

[5][7][13][14].  
The Hampel’s   and W  functions are defined as:  
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   

   
          


 

 

respectively. In here, 1 7a   , 3 4b    and 8 5c    are called cutoff point of the Hampel-
estimator. Reasonably good choices for the constant are 1 7a   , 3 4b    and 8 5c    
[5][9][13][14].  

The Andrew’s   and W  functions are defined as:  

  
2

2

1 cos

2

z
k z k

kz

k z k






  
    

  
  

             
 sin

0

z k
z k

W z z
z k






  

  

 

respectively. In here, k  is called cutoff point of the Andrews-estimator. Actually if the 
scale is known, 1 339k    requires a premium of 5%  otherwise 1 5k    or 2 1k    
[5][9] [13][14].   

The Tukey’s bisquare (or biweight estimator)   and W  functions are defined 
as:  

  

32
1

1 1
6

1

6

z
z k

k
z

z k



                  


 


                 22
1

0

z kz k
W z

z k

    
  

 

respectively. In here, k  is called cutoff point of the Tukey-estimator. If scale is known, 
4 685k    implies a premium of 5%  otherwise 5 0k    or 6 0k    [5][7][9][13][14].  

A robust procedure tries to accommodate the majority of the data. Outliers 
consequently possess large residuals from the robust fit. So, in addition to insensitivity 
to outliers, a robust regression estimator makes the detection of the outliers as an easy 
job. Of course, the residual from LS cannot be used for this purpose, because the 
outliers may possess very small LS residual as the LS fit is pulled too much in the 
direction of these deviating points [20].  
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4. AN ALGORITHM FOR PARAMETER ESTIMATIONS BY THE FUZZY 
ROBUST REGRESSION 

 
LS estimates are known to be the best when data have normal distributed error 

terms. Observation may be called an outlier when it has the largest residual in the 
context of fuzzy regression [12]. The classical LS method is influenced by the outliers 
and outliers may distort the estimates. Accordingly, robust methods have been created 
to modify LS methods so that the outliers have much less influence on the final 
estimates. The fuzzy robust regression is robust for the estimation of fuzzy linear 
regression models, when outliers are exist in the given data set. In case of outliers in a 
data set, the estimation of regression parameters has been studied by many authors and 
robust methods have been defined. Recently, much research has studied fuzzy 
estimation [15].  

In this study, we consider a multi-regression model by using fuzzy numbers 
when X  and Y  are triangular fuzzy numbers, estimation of parameters are crisp 
numbers. In the model estimation, heuristics are not allowed. After the multi-regression 
model is obtained, it is determined whether outliers exist in the given data set, and the 
weight matrix is defined by the membership function of the residuals. The weighted 
fuzzy least square is built by using the weight matrix. Thus, a model estimation not 
influenced by outliers is obtained. The fuzzy robust regression method may be able to 
detect outliers automatically by giving each one a membership that is zero or very small 
as compared with other memberships.  

Let 1 2 pX X … X    be independent variables. Triangular fuzzy numbers are 

defined as  X x        where x  is the modal value of X ,   is left spreads and   is 

right spreads. Let Y  be a dependent variable. Triangular fuzzy numbers are defined as 

 Y y        where y  is the modal value of Y ,   is left spreads and   is right 

spreads. According to the information given above, dependent and independent 
variables are triangular fuzzy numbers, the steps of the fuzzy robust regression method 
algorithm are as follows:  

Step 1:When i i i iX x   
 
 

    and i i i iY y   
 
 

   , 1 2i n   , triangular fuzzy numbers, 

fuzzy regression model is defined by: 
Y a bX     

where a b  are crisp numbers. When parameters are crisp, the fuzzy least squares 
optimization problem is defined as: 

2min ( ) ( )i ir a b d a bX Y      (7)

In equation (7), ( )i id a bX Y   is 

 

2 2
2

2

( )i i i i i i i i i i

i i

d a bX Y a bx y b a bx y b

a bx y

         
      
         

           

  
  

[6]. In this study, the fuzzy least squares model is given in equation (7)  by generalized 
multi-regression model. In this case, the optimization problem is defined as: 
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2
1 2 1 1 2 2min ( ) ( )p i i p ip ir a b b b d a b X b X b X Y           (8)

The parameters are estimated by the minimizing equation (8). Estimation of parameter 

is found as equation (9) [21]. When  X x      and  Y y      are a triangular 

fuzzy numbers, initial estimation of parameter is found as  
    1

X X A A B B X Y A C B D
           (9)

where  

 

11 1 1 11 1 1

21 2 2 22 2 2

1

11 111 1

21 221 2

1 1

1

1

1

1

1

1

p

p

n np n nn n n

p p

p p

n npn

x … x y yy

x … x y yy
X Y C D

x … x y yy

x … x

x … x
A

x … x

 
 

 

 

 



   
   
   
   
   
   
   
   
   
     

    
             
   
   

       
 

 




     

   

11 111 1

21 121 1

1 11 1

1

1

1

p p

p p

n pnp n p

x … x

x … x
B

x … x

 

 

  

    
   

    
    

   
        

   

 

provided that the   1
X X

  is exist.  

Step 2: 
iy  are estimated and the residuals ir  are calculated.  

Step 3: Median is determined with respect to the absolute residual values, and distances 
are calculated by  

    1 2i i iD abs r median abs r i … n 
 
 

         

where   is the Euclidean distance[21].  

Step 4: The membership function is shown in Figure 1 and defined in as follows:  

 

1

0 elsewhere

r a

b r
r a r b

b a


  


    


 (10)

where  ia median D  and  max ib D d  . In here 

( ) 0 6745i id median r median r      
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Figure1. Picture of the membership function. 

 
Step 5: Chang and Lee (1996) proposed a generalized fuzzy weighted least squares 
regression. The model based interactive decision maker and used non-fuzzy input-
output data[2]. Weighted function is consists the degree of membership and the 
weighted fuzzy least square is built by using the weight matrix [21]. The membership 
function defined by equation (10), the membership values are determined and the 
weight matrix is constituted. The weight matrix is a diagonal matrix, where diagonal 
elements consist of the degree of membership. The weighted fuzzy least squares 
estimations are found by  

    1
X WX AWA BWB X WY AWC BWD

           (11)

provided that the   1
X X

  is exist and W  is non-zero matrix where W  is the weight 

matrix such that  1 2 nW diag …      .  

Step 6: If  1k k  

   then stop. Otherwise proceed to Step 2. Where   is the 

estimation of regression parameters, k  denote the iteration number and 0   is a very 
small number  [21].  
 

5. NUMERICAL EXAMPLE 
 
In our example the data are collected from a well-known insurance company. 

1 2X X  and Y  represent number of months, claim numbers in related month and 

payments in related months respectively. In this study the structure of the fuzziness is 
apart from the study of Dalkilic et al. (2009).  

In Diamond 1988, while crisp numbers were fuzzified, left and right spread are 
calculated as approximately of centers 10 15% %  or 20% [6]. While crisp numbers were 
fuzzified for symmetric triangular fuzzy number, all spreads were calculated as 1 in 
Chang (2001) and asymmetric triangular fuzzy numbers were calculated by assigning 
left and right spreads halfwidths to the fuzzy data [3]. In Xu and Li (2001), the values of 
spread were assumed by the author[23].  
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In here, the independent variable values are fuzzified, analysis of the fuzzy 
robust regression (FRR) method takes the values of independent variables; center, left 
spread and right spread are defined as ix , 8ii

x    and 7ii
x   , respectively. The 

dependent variable value is fuzzified, FRR method takes the values of dependent 
variables; center, left spread and right spread are defined as 8i ii

y y     and 

7ii
y   , respectively.  

 
Table 1. Data set 

1X  1 2 3 4 5 6 7 8 9 10 11 12 

2X  1270 2630 3653 3045 3232 3681 3169 3448 3163 3096 3765 4481 

410Y   125 387 589 591 609 654 631 545 583 606 753 898 

 
Analysis was performed using MATLAB code, which has written by the 

authors, for the LS method, M estimator and FRR. The results obtained by using data 
set, which has given  in Table 1. The results of the residual analysis indicate that the 
eighth observation is an outlier. Because, standardized residuals for this observation is 
greater than 2 .  

 
Table 2. Estimation of Regression Parameters 

Estimations\Method LS Huber Hampel Tukey Andrews FRR 


0  -118.4504 -123.0439 -121.3489 -130.7774 -120.6027 -103.9568 


1  12.2628 14.1149 13.8047 16.5405 13.2381 15.8823 


2  0.1925 0.1900 0.1908 0.1847 0.1916 0.1804 

 
The parameter estimations of regression models are given in Table 2 for the 

different methods. As Table 2 shows, parameter estimations are the same in sign and 
nearly the same in magnitude as those obtained with robust methods, since the weight 
matrix is obtained via the membership function. Each observation is included in 
estimation of the regression model depending on the degree of membership. Thus 
possible negative effects of the outlier on the model may be minimized. FRR is not 
influenced by outliers, and results of the method are also beter. 

The residuals and weights are obtained by LS, the M and the FRR methods and 
shown in Table 3 and Table 4, respectively. The weight matrix is obtained via the 
membership function. Each observation is included in estimation of the regression 
model depending on the degree of membership. Thus possible negative effects of the 
outlier on the model may be minimized. Our method is not influenced by outliers, and 
results of the method are also better than the others.  

Parameter estimation of the regression model is obtained where X  and Y  are a 
triangular fuzzy numbers. In this case, it is seen that the model has less influenced by 
outliers than LS method. Therefore this approach allows to determine total claim 
amounts in the related month as an alternative to the model suggested by Rousseeuw et. 
al.  

As mentioned in  Section 3, contrary to rest of the observation’s residuals, the 
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eighth observation was an outlier due to it's large residual. So, it is seen that the 
residual, which are obtained via fuzzy robust regression method, has very big values 
such as (-100.0739,82.1510) for outlier. Contribution of the other observations to the 
regression model is more significant and residuals are small for the observations except 
for outlier. 

 
Table 3.Residuals for the LS, the M Method and the FRR Method 

Obs. # \ Method LS  Huber  Hampel  Tukey  Andrews  FRR  
1 -13.2563  -7.3226  -9.7292  4.7034  -11.0125  -16.0162  
2  -25.2858  -17.7856  -20.9763  -0.9911  -22.8748  -15.2240  
3  -32.4510  -24.2315  -27.9353  -4.4511  -30.1560  -13.6415  
4  74.3113  79.1504  76.2446  93.2890  75.1203  82.1510  
5  44.0555  47.5126  44.7657  60.2149  44.0464  50.5365  
6  -9.6288  -6.8952  -9.6938  5.7567  -10.2360  -1.3393  
7  53.6559  53.2504  51.1726  60.7683  51.6433  52.1362  
8  -98.3076  -99.8639  -101.8568  -93.2957  -101.0611  -100.0739  
9  -17.7148  -21.8397  -23.2942  -19.2046  -21.6830  -26.5461  

10 5.9182  -0.2271  -1.3186  -0.3721  0.9185  -7.3426  
11 11.8893  5.5735  4.2534  6.5418  6.4763  3.0966  
12  6.8141  0.4459  -1.1405  2.7762  1.0272  3.0577  

Sum of Sq. Error  22503.91  22843.58  22783.41  25221.06  22636.21 23489.41 
 
Sum of squares error is given in Table 3 for LS, M and the FRR methods. 

However, sum of squares error were greater for M method than the other methods due 
to the residual value of outlier in robust method. It is also seen that the sum of squares 
error of FRR’s method is close to M method’s.  In Table 3, dependent and independent 
variables, values are the crisp number in LS and M estimations, as well as fuzzy 
numbers in FRR. Estimation of regression paremeters is crisp number in the all method.  

The weights of the eight observation are “0.3619”, “0.3525”, “0”,  “0.2490” and  
“0.0124” for the methods of Huber, Hampel, Tukey, Andrew and FRR respectively. 
Weights that are found in the results from the FRR method are the degrees of 
membership of each observation. These memberships show effects of observations to 
the model. Also, as in Table 4, outliers influence the model by very small degree of 
membership, the degrees of membership of the other observation values are 1 or close 
to 1, and the effects of those on the estimation of the regression model are important. 
Standardized residual of fourth observation is close to 2 . Degree of membership of this 
observation is small. Thus, contribution of the observation to the model is small and the 
degree of membership of the observation value is 0 2146 .  

 
Table 4.The weights for the LS, the M method and the FRR method 

Obs. #  \ Method LS Huber Hampel Tukey Andrews FRR 
1  1.0000 1.0000 1.0000 0.9808 0.4730 0.9608 

2   1.0000 1.0000 1.0000 0.9991 0.4625 0.9698 

3   1.0000 1.0000 1.0000 0.9828 0.4526 0.9876 

4   1.0000 0.4566 0.5497 0.0000 0.3407 0.2146 

5   1.0000 0.7607 0.9362 0.0000 0.4267 0.5713 

6   1.0000 1.0000 1.0000 0.9713 0.4734 1 0000  

7   1.0000 0.6787 0.8190 0.0000 0.4089 0.5533 
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8   1.0000 0.3619 0.3525 0.0000 0.2490 0.0124 

9   1.0000 1.0000 1.0000 0.7043 0.4639 0.8420 

10   1.0000 1.0000 1.0000 0.9999 0.4762 1.0000 

11  1.0000 1.0000 1.0000 0.9630 0.4751 1.0000 

12   1.0000 1.0000 1.0000 0.9933 0.4762 1.0000 

 
6. CONCLUSION 

 
In this study, a fuzzy robust regression method has been suggested to construct a 

model to describe the relation between dependent and independent variables, as an 
alternative to ordinary least squares and classical robust regression method in insurance. 
When Table 2 is examined, it is seen that estimations of regression parameters obtained 
via the fuzzy robust regression method are the same sign and nearly the same magnitude 
as those obtained with robust methods. Therefore, it can be said that the estimation of 
regression model is suitable excluding outlier.  

Four sub-model based on fuzzy infreence rules was taken by In Dalkilic et al 
(2009) [4]. In their study, each set of observations in the Neural Networks approach 
with the fuzzy rules for the membership degrees are included in the model. Thus, 
contribution of the outlier value to the models is limited by membership degrees and 
possible negative effects to model may be minimized.  Apparently, from Dalkilic et al. 
(2009), in this study, the weight matrix is obtained via the membership function. Each 
observation is included in estimation of the regression model depending on the degree 
of membership. Thus possible negative effects of the outlier on the model are 
minimized.  
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