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Abstract- In this paper, combined Laplace transform—Adomian decomposition method
is presented to solve differential equations systems. Theoretical considerations are being
discussed. Some examples are presented to show the ability of the method for linear and
non-linear systems of differential equations. The results obtained are in good agreement
with the exact solution and Runge-Kutta method.
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1. INTRODUCTION
A system of ordinary differential equations of the first order can be considered as:

Yo = (X Yoo o)

y2,= fz(x,yl,...,yn) (1)

Yo = (X Yieon V)
where each equation represents the first derivative of each unkown functions as a
mapping depending on the independent variablex, and n unknown functions

f,, f,,---, f, and the initial conditions y, (0),y,(0),...,y,(0) are prescribed.

The main purpose of this paper is to extend the application of combined Laplace
transform—Adomian decomposition method [1,2,3,4] to obtain an approximate solution
of differential equations systems . The paper is organised as follows: In Section 2, how
to use of combined laplace transform—adomian decomposition method is presented. In
Section3, combined laplace transform—adomian decomposition method is demonstrated
by applying it on three problems and conclusion is given at the last section.

2. THE USE OF COMBINED LAPLACE TRANSFORM-ADOMIAN
DECOMPOSITION METHOD

We can present the system (1), by using the i, equation as:
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Y, =0, (X Yo Vo) + R (6 Y0 Y, )i =12,.0m (2)

Here g (X,¥.....¥,)and  F(XY,...,y,) are linear and nonlinear parts of

f (X, ¥1:..., Y, ) respectively. To solve the system of ordinary differential equations of
the first order (1) by using the combined Laplace transform—Adomian decomposition
method, we recall that the Laplace transform of the derivative of y,"are defined by

L{yi'} =sL{y;}-v(0),i=12...,n.
Applying the Laplace transform to both sides of (2) gives

sL{y;}-y;(0)= L{gl (X, Yire oy yn)}+L{Fi (XYoo Yo )2 =1,2,..,1 (3)
This can be reduced to

L{y} :@J%L{gi (X, yl,...,yn)}Jr%L{Fi (X Yy ¥o)hi=12,.00 (4)

The Adomian decomposition method and the Adomian polynomials can be used to
handle (4) and to address the nonlinear term F, (x, Yireoos yn) . Solutions are represented

as infinite series in this method, such that

Yi=> Vi i=12,...n (5)
k=0

where the components ., are to be recursively computed. However, the nonlinear term
F (x, Yireoos yn) at the right side of equation (5) will be represented by an infinite series
of the Adomian polynomials A, in the form

F (X Yo ¥a) = S A(X)i=12,..1 . (6)

k=0

Where A;,n>0 are defined by

1 dk k ) k . n . .
A= ELx,z/’tlylj,Z/l‘yzj,...,z/l’ynj) k=012,..;i=12,....n (7)
kldA =0 i=0 j=0

A=0
where the so-called Adomian polynomials A, can be evaluated for all forms of

nonlinearity. In other words, assuming that the nonlinear functions is F (x, Yireeo yn),
therefore the Adomian polynomials are given by
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Ao =F (Yio)’
Al = yilFi,(yiO)’
A, = inFi'(yi0)+£yilei”(yiO)’ (8)

2!
[ ”n 1 "
A3 = yi3Fi (Yio)+ yilinFi (yi0)+§ yi13Fi (Yio)'

! 1 " l " 1 iv
Aﬁ4 = yi4Fi (yi0)+(§ Yiz2 + yilyi3) Fi (yi0)+§ yilzinFi (yi0)+myil4|:i( )(yio)-

Substituting (5) and (6) into (4) leads to

L{iyik}:@+%L{gi (x,gylk,...,gynkj}+%L{kZ:Ak(x)},i =12,...,n

k0 9)
Matching both sides of (9) yields the following iterative algorithm.
y; (0) 1 1 :
Liyo t=——=,L{V...t==Lsg (X, Yy,---» ~L A=12,...,
{yuo} S {ylk+l} S {g, (X Yi Yok )}+ S {Ak (X)} I n 10)

Applying the inverse Laplace transform to the first part of (10) gives y,,, that will
define A,. Using A, will enable us to evaluate y,,. The determination of y,, and vy,
leads to the determination of A, that will allows us to determine y,, ,and so on. This
successively will lead to the complete determination of the components of
Y., K = 0upon using the second part of (10). The series solution follows immediately

after using equation (5). The combined Laplace transform—Adomian decomposition
method to solve systems of differential equations of the first and second order are
illustrated by studying the following examples.

3. NUMERICAL EXAMPLES

Three examples are presented in this part. The first and second examples are considered
to illustrate the method for linear and non-linear ordinary differential equations systems
of order one while in third example a differential equations system of order two is
solved.

Example 1. In this example we solve the following non-linear system of differential

equations, with initial values y,(0)=1, y,(0)=1, y,(0)=0 [5]. Exact solutions are
V=€, y,(x)=¢" and y,(x) =xe"
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yl’ = 2y22
y, =e™y, (11)

y3' =Y, +Y;
Applying the Laplace transformation we get

12 .,

L{y1}=g+§|—{yz }

L{yz}:%+§L{e‘xy1} (12)
1 1

L{y3}:gL{y2}+gL{y3}

Substituting v, => Vi ¥, =D Yar Vs =2 Yy and R =y,> =>" A, into (12) leads
k=0 k=0 k=0 k=1

to

_l’_
= »|N

{
L{e*iylk} (13)
FAETARN

Where A, are Adomian polynomials defined by

,_
f_H
Nk
<<
R
%,_J
Il
nilkr vl vk
— +
Me 7
8

k

1 dk k . Kk . n .
Alk:mﬁlil:l(xizljylj’zijyﬂ’Zﬂijij:I k=012,...
H j=0 j=0 j=0 2
Table 1

The absolute error involved in the combined Laplace transform—Adomian decomposition method along
with the exact solution for Example 1

=0

X, () err(vi(x))  va(x) err(y,(x)) ys(x)  err(ys(x))
0 1. 0. 1. 0. 0. 0.

0.1 12214 932904e¢’ 110517 1973087  0.100167 1.03504e
0.2 149177 558506e° 1.22139 1.12364e° 0.201334  4.29468e2
0.3 1.82152 596726  1.34974 114138  0.304497 1.00461e*
0.4 222239  3.15363¢°° 149125 573158¢* 0.410631 1.86099%
0.5 2.70693 1.13473e7? 1.64676 1.95841e2  0.520667 3.03694e
0.6 3.28807 3.20509e? 1.81687 5249502 0.635471 4.57800e
0.7 3.97853  7.66715e? 2.00184 1.19098¢2 0.755826 6.53801et
0.8 4.79049  1.62542¢™ 220161 2.39291¢ 0.882413 8.98019¢™
0.9 5.7352 3.14451e* 241576 4.38416e2 1.01581 119783

1 6.82272 566335 2.64356 7.47225¢2 1.15649 15618
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We obtain the following procedure by using the combined Laplace transform—Adomian
decomposition method.

1 2
L{Ylo}:ng{Y1k+1}:gL{Ak}
L{Yzo} :%’ L{yzku} :%L{ex)ﬁk} (14)

1 1
L{y30}=0, L{y3k+1}=gL{y2k}+gL{y3k}

Approximations to the solutions with five terms are as follows:

Y, =— % — % e +15e % +124e + % X—16e 7*x +104e*x — 4 *x?

Y, = 1%4 + % e ¥ — 408 + 288 + %X —16e X — 326 X

Y, = _P8L L e 1T amen B0 pe 2y ek _Bx? 4 23— Lyt 4 Ly
18 9 2 3 6 12 120

Table 1 shows the results of from the solution of Example 1 and illustrates the absolute
errors between exact solution and combined Laplace transform—Adomian
decomposition method, respectively. We achieved a good approximation with combined
Laplace transform—Adomian decomposition method with only six iterations.

Example 2. Now we consider stiff system of differential equations [7, 8, 9].
dy, _

dx —ky ¥y (X)+5,Y, (X) Y (X),

d

%:Ksyl(x)+K4y2(X)ys(x)_K5y22(X)’ =
d

f = KgYs (X)’

Where x, =0.04,x, =0.01, x, =400, x, =100, x, =3000 and x, =30. The initial
conditions are given by y,(0)=1, y,(0)=0,y,(0)=0.

Taking the Laplace transformation of Egs. (15), we get

L{yl}%—% L{y1}+%L{y2y3},
L{y} =22 L+ Loy} 2Ly ] (16)

I—{Ys}:%L{YZZ},
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Substituting v, => Vi ¥, =D Var Ya=2 Vg and F=y,y;=> A,
k=0 k=1

k=0 k=0

F=v,= i A, in(16) leads to
k=1

|

e

Where A, and A,, are Adomian polynomials defined by
1 dk ko ko n
Alk :Ew{Fl(X,j_zo/ljylj,jzollyzj,gljygj]} ,k :0,1,2,...

=0

1 d* S R
Ax ZEJ{B [X'Z’“ylj'Zfljyzrzijysjﬂ k=012,
: j=0 =0 =0

A=0

(17)

(18)

(19)

We obtain the following procedure by using the combined Laplace transform—-Adomian

decomposition method.

Ly} =2 L) == 2 L} + 2 LA,

L{yzo}ZO’ L{y2k+1}=%L{Y1k}+%L{A‘1k}_%L{A2k}'
L{yso}ZO’ L{y3k+l}:%L{A2k}’

Approximations to the solutions with five terms are as follows:

1 1 1 1
1(X)=1—xx, + = X7 — =X+ — XK ——— X’k + ok’
Vi(x) 2Tt e 24" Y 1207 7 720

1 5 3 9 6 3
+— XK Ky Ky — —— X KKK K
360

15

1 1 1 1
y2(X) = XK, — > XPry i, + = XK K, — i Xl + 120 Xkl K,

1 1 7 1
——— XK, — = X, + = X KK — — XK KK +— XK KK
3 4 60 24

S o Le o Lss D e s
K K3 Ky KyK3Kg KKK 72 KiK3 KK

15

(20)
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1 7 1 2 5
y3(X) == X’k3Ks 7 X Ky + 0 KKK, 2 XK e — T KKK, + % X° K KKK

Table 2 shows the results of the solution of Example 2 and illustrates the absolute errors
between solution obtained by using Runge-Kutta fourth order method and solution
obtained by using combined Laplace transform—Adomian decomposition method. We
achieved a good approximation by using presented method with only six iterations.

Table 2.
The absolute error involved in the combined Laplace transform—Adomian decomposition method along
with the result obtained by the Runge-Kutta fourth order method for Example 2

X, |y (%) —RKM| ¥, (%)—RKM| Vs (% )—RKM|
0.0000 0. 3.666064475¢ > 4.449668544¢ %
0.0002  7.105427358¢*° 4.499723839% " 4.498063952¢°
0.0004 6.883382753¢ ° 0.00005671875213 5.670656463¢
0.0006  6.994405055e " 0.0008889447241 8.887566672¢°
0.0008  6.772360450e* 0.005967764147 0.00005966518137
0.0010  6.994405055¢ 0.02510443631 0.0002509926943

Example 3. Now we consider the following system of differential equations [6].

2
d—gl +y,=1
d 2Y2
dx?

With the initial conditions y, (0) =1y, (0) =y, (0)=y, (0)=0. Exact solutions are
e cosx e* e cosx
yl(x)_Z+T—T,y2(x)_1 ————— —

+Yy,=0

Taking the Laplace transformation of Egs. (21), we get
1 1

L{yi}=Z-ZL{Y
LYoy =— L%
Substituting y, = i y,and vy, = i Y, 1N (22) leads to
k=0 =0
L{Z Y1k}—_3__2|-{z Y2k}
k=0 S S k=0
(23)
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We obtain the following procedure by using the combined Laplace transform—Adomian
decomposition method.

1 1
L{ylo} :?’ L{Y1k+1} :_S_gl—{ka}
; (24)
L{yzo} =0, L{y2k+1} :_S_QL{ylk}
Table 3

The absolute error involved in the combined Laplace transform—Adomian decomposition method along
with the exact solution for Example 3

X ¥ (%) err(y,(x)) Y. (%) err(y, (%))
0 0. 0. 0. 0.
0.1 0.005 1.11022x10*® —4.16667x10° 5.55112x107"'
0.2 0.0200001 O. -0.0000666667  1.11022x107*
0.3 0.045001 O -0.000337502 0.
0.4 0.0800057 0 -0.00106668 0.
0.5 0.125022 0. -0.00260426 5.55112x107"
0.6 0.180065 0. -0.00540042 0.
0.7 0.245163 0. -0.0100056 0.
0.8 0.320364 0. -0.0170708 5.55112x107"
0.9 0.405738  1.11022x107'¢ -0.0273482 5.55112x107"
1 0.501389 0. -0.0416915 0.
We obtain the following solutions
t2 tG th tl4 tlB
y(t)=—+—+ + +
2 720 3628800 87178291200 6402373705728000
t22
+
1124000727777607680000
t4 t8 t12 tle
t)=——-— — _
Y. (1) 24 40320 479001600 20922789888000
t20
~ 2432902008176640000

Table 3 shows the results of the solution of Example 3 and illustrates the absolute errors
between the exact solution and the solution of presented method. We achieved a good
approximation with the presented method with only six iterations.
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4. CONCLUSION

Combined Laplace transform—Adomian decomposition method has been applied to
linear and non-linear systems of ordinary differential equations. Numerical examples
have been presented to show that the approach is promising and the research is worth
continue in this direction. All the calculations are performed easily. The calculated
results are quite reliable. Since every ordinary differential equations of order n can be
written as a linear algebraic equation by using Laplace Transform, this method is very
useful and reliable for any order ordinary differential equation systems. Therefore, this
method can be applied to many complicated linear and non-linear ODEs.
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