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Abstract- The purpose of this study was to investigate the relationship between travel 

reduction and tractive performance and to illustrate how artificial neural networks 

(ANNs) could play an important role in the prediction of these parameters. The 

experimental values were taken in a soil bin. A 1-4-6-2 artificial neural network (ANN) 

model with a back propagation learning algorithm was developed to predict the tractive 

performance of a driven tire in a clay loam soil under varying operating and soil 

conditions. The input parameter of the network was travel reduction. The output 

parameters of the network were net traction ratio and tractive efficiency. The 

relationships were investigated using non-linear regression analysis and ANNs. The 

performance of the neural network-based model was compared with the performance of 

a non linear regression-based model using the same observed data. It was found that the 

ANN model consistently gave better predictions compared to the non linear regression-

based model. Based on the results of this study, ANNs appear to be a promising 

technique for predicting tire tractive performance.  
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1. INTRODUCTION 

 

Energy efficiency has become an increasingly important issue in the world. Much effort 

has been expended to develop cultural systems for crops that minimize fuel usage as 

well as to find alternative renewable fuels for crop production.   

The relationship between soil and the tractive device is an important field of study.  The 

soil-tire interface is responsible for approximately 20 to 55% of the losses of tractor 

power, a factor that drastically affects the amount of fuel used in drawbar - implement 

applications [1]. Gill and Vandenberg [2] estimated a national yearly fuel loss of 575 

million liters due to poor soil-traction interfaces in agricultural applications alone. This 

factor multiplied by a conservative 2.00 dollars per gallon of diesel fuel equates to a 304 

million dollar yearly loss solely in the agricultural production sector. This loss of energy 

by the pneumatic tire has prompted researchers to search for operational parameters that 

could improve tractive efficiency.    

Developments of prediction equations for tire tractive performance have been the focus 

of much research. Two approaches can be used for the prediction of the traction driving 

force for a tire moving on a soil; mathematical modeling of the traction behavior at the 

tire–soil interaction [3,4] and dimensional analysis [5,6]. Schmulevich et al., [7] 
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examined a simulation model to predict the effect of velocity on rigid wheel 

performance. The results corroborate that the effect of velocity on wheel performances 

cannot be neglected. Wheel performances such as maximum net tractive ratio and 

maximum tractive efficiency increase with increasing relative velocity.    

A study was conducted to determine the accuracy of Wismer-Luth and Brixius 

equations in predicting net traction ratio of a high-lug agricultural tire by Elwaleed et al. 

[8]. The tire was tested on a sandy clay loam soil in an indoor University Putra Malaysia 

tire traction testing facility. Regression analysis was conducted to determine the 

prediction equation describing the tire torque ratio. The logarithmic model was found 

suitable in torque ration prediction. Tarhan and Çarman [9] developed two mathematical 

equations by dimensional analysis to predict the torque and power requirements at zero 

net traction for traction tires (6.5-12; 7.00-18) on a hard surface. Some structural and 

working parameters of the tire that affect the torque requirement, such as tire size, tire 

deflection, tire load, and rolling radius, were considered for the analysis. The ratio of 

tire width over tire diameter and the ratio of tire deflection over tire section height were 

found to be dimensionless terms radically controlling the torque and energy 

requirements of tires. The prediction equation closely followed the experimental results. 

Soft computing technology is an interdisciplinary research field in computational 

science. At present, various techniques in soft computing such as statistics, machine 

learning, neural network and fuzzy data analysis are being used for exploratory data 

analysis. In recent years, the methods of artificial intelligence have widely been used in 

different areas including agricultural applications [10-12].  

The performance values of a driven tire were calculated using a fuzzy expert system. 

The results were compared with the experimental data and it was seen that the results 

obtained from the fuzzy expert system were closer to the experimental data. The mean 

relative error and correlation coefficient between measured and predicted values of 

traction efficiency were found as 9.1 % and 0.987 respectively [13].  

In this study, a statistical data-driven approach, i.e. artificial neural networks (ANNs), is 

introduced as an alternative to these mathematical models. ANNs are used in a wide 

range of engineering and non-engineering applications, such as, pattern recognition 

(spectroscopy, protein analysis, fingerprint identification), as well as behavior 

prediction and function approximation (stock market forecasting, energy demand 

forecasting, process control systems). These methods are inspired by the central nervous 

system, exploiting features such as high connectivity and parallel information 

processing, exactly like in the human brain. The characteristic feature of ANNs is that 

they are not programmed; they are trained to learn by experience [14,15].  

An important stage of a neural network is the training step, in which an input is 

introduced to the network together with the desired output, and the weights are adjusted 

so that the network attempts to produce the desired output. The weights after training 

contain meaningful information, whereas before training they are random and have no 

meaning. When a satisfactory level of performance is reached, the training stops, and 

the network uses the weights to make decisions. 

The aim of this study is to investigate the relationship between travel reduction to net 

traction ratio and tractive efficiency, and the construction of artificial neural networks 

for the prediction of the net traction ratio and tractive efficiency. Sampling data 



 

 

Prediction of Tire Tractive Performance  
 

184 

collected from a soil bin were used to validate the artificial neural networks. The 

prediction quality of the models proposed was evaluated and compared. 

 

2. MATERIAL AND METHODS 
 

This study was conducted under controlled conditions in a soil bin at the Department of 

Agricultural Machinery, Selçuk University, Turkey by using a single-wheel agricultural 

tire test machine as described by Çarman and Aydin [16]. The soil bin used in these 

tests was 20 m long, 2.25 m wide and 1m deep. This machine has provisions for 

operating the test tire and for controlling the dynamic load and drawbar pull and 

predetermined levels using a control system. Pertinent tire performance parameters were 

measured throughout each test.  

Soil bins containing clay loam were used in the study. The average cone index of the 

soil was approximately 1500 kPa for a depth of 20 cm. 

The tire used in this study was a 7.00-R18 and the lug height, total lug area of the tire 

and the drawbar height were 24.2 mm, 21% and 380 mm respectively. In the 

experiments, the tire was operated at dynamic loads of 4, 5 and 6 kN, at a constant 

forward velocity of 0.51 m/s and an inflation pressure of 150 kPa. 

In test machine, an adjustable overload clutch was used to provide different drawbar 

pulls that varied between 1.25 and 3.40 kN. Forward velocity was measured using a 

speed sensor attached to the test machine. The dynamic rolling radius of the tire was 

determined with zero drawbar pulls on a concrete road surface. The distance travelled 

by three complete revolutions of the tire in a straight line was measured with a tape 

measure and divided by 6 to obtain the dynamic rolling radius [17].  

The input torque was sensed by a torque transducer and was recorded using data logger. 

The traction parameters used to describe the tractive performance are as follows: 

Tractive efficiency (TE): 

a

d

N

N
TE            (1) 

Net traction ratio (NTR): 
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P
NTR            (2) 

Travel reduction (TE): 
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t
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TR          (3) 

Where Nd is drawbar power, Na is the axle power, W is the dynamic weight/normal load 

on wheel axle, P is the drawbar pull, Va is the actual velocity and Vt is the theoretical 

velocity [16,18].  

ANNs learn by using examples, namely patterns. In other words, to train and test a 

neural network, input data and corresponding target values are necessary. The examples 

in this study are numerical values determined by using experimental results, and 15 

patterns were obtained from the experiments. Here, ANNs were used for modeling net 

traction ratio and tractive efficiency. The input for the network was travel reduction. 

The outputs were net traction ratio and tractive efficiency.  
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The experimental results were used to train and test the network. To train the network, 

11 experimental results, from the total of 15, were used as data sets, while 4 results were 

used as test data. The architecture of the ANN was 1-4-6-2, 1 corresponding to the input 

value, 4-6 for the number of hidden layer neurons and 2 for the outputs.  

The back propagation learning algorithm was used in the feed forward, two hidden 

layers ANN. Training of the network was performed by using the Levenberg–

Marquardt [19,20], back propagation algorithms. These algorithms are iteratively adjust 

the weights to reduce the error between the experimental and predicted outputs of the 

network. Back propagation networks use the logarithmic sigmoid (logsig), the 

hyperbolic tangent sigmoid (tansig) or the linear (purelin) transfer functions. Logsig, 

tansig, and purelin are transfer functions. The selected ANN structure of the multi-layer 

is shown in Fig. 1. This ANN model consists of two hidden layers of tansig and tansig 

neurons followed by an output layer of one linear neuron. Linear neurons are those that 

have a linear transfer function.  

 
 

Figure 1. ANN architecture used for 4-6 neurons in two hidden layers 

 

The best approach with minimum error is made with back propagation algorithm. A 

mathematical formula was developed by using the approach (Eq. 4). To calculate net 

traction ratio and tractive efficiency ( my ) used in this study. 

 
k

kkmkm bFWy .)( ,3

  
(4) 

The TANSIG transfer function (for second hidden layer) given in eq.(5). 

1
)1(

2
)*2(





 kNETk
e

F  (5) 

 
j

jjkjk bFWNET .)( ,2

 
(6) 

The TANSIG transfer function (for first hidden layer) given in eq.(7). 
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http://posta1.selcuk.edu.tr/uwc/webmail/sample.html?lang=en#bookmark4
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 
i

ijij bxWNET 1,1 .)(

 
(8) 

where i  is the number of inputs, j  is the number of neurons in the first hidden layer, k  

is the number of neurons in the second hidden layer, m  is the number of outputs, 

321 ,, WWW  are the weights of the connection, x  is the input parameter, y  is the output 

parameter and b  is bias. The weights ( 321 ,, WWW ) are given in Table 1-3. 

Table 1. Connection weight values for Eq. (4) 

The number of 

outputs (m) 

 

(W3)k1 

 

(W3)k2 

 

(W3)k3 

 

(W3)k4 

 

(W3)k5 

 

(W3)k6 

1 -0.2144 -0.373 -1.3462 -0.5746 -0.6634 -1.0085 

2 -1.0739 -0.0514 -0.021 -0.0924 -0.1001 0.0322 

 

Table 2. Connection weight values for Eq. (6) 

The number of neurons 

in the second hidden layer (k) 
(W2)j1 (W2)j2 (W2)j3 (W2)j4 

1 1.1102 0.7258 1.4855 0.9173 

2 0.8633 0.5674 1.8963 -1.2928 

3 -0.0137 0.4685 -1.0618 -0.8691 

4 -0.9962 0.4488 1.7544 -0.4327 

5 1.297 -1.4068 -1.0625 -1.0952 

6 -0.831 -0.6786 -2.0079 0.832 

 

Table 3. Connection weight values for Eq. (8) 

The number of neurons  

in the first hidden layer (J) 
(W1)i 

1 32.9994 

2 -32.8009 

3 32.7321 

4 -32.8560 

 

A computer program was performed under Matlab 7.0.4. In the training, an increased 

number of neurons were used in two hidden layers. When the network training was 

successfully finished, the network was tested with the test data.  

In addition, the prediction of the model was obtained according to traditional methods 

(TM) of NTR and TE by using the Statistica software (Version 8.0). Travel reduction 

(TR) was used as a variable to obtain predicted equations.  

The predictive ability of the developed systems (ANN and TM) were investigated 

according to mathematical and statistical methods. In order to determine the relative 

error ( ) of the system, the following equation was used [21].  
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Where n is the number of observations, y is the measured value and ŷ  is the predicted 

value.   

The relative error gives the deviation between the predicted and experimental values 

and it is required to reach zero. In addition, goodness of fit ( ) of the predicted system 

was calculated by the following equation [21,22].   
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Where y is the mean of measured values. The goodness of fit also gives the ability of 

the developed system and its highest value is 1.  

 

3. RESULTS 

 

The travel reduction of the tested agricultural tire on the soil in the soil bin increased 

with increasing drawbar pull, but decreased with increasing dynamic load (Fig. 2). The 

travel reduction varied from 6.1% to 40.5%. An increase of approximately 172% in 

drawbar pull resulted in a travel reduction increase of 469%, while an increase of 50% 

in dynamic load caused a 9.5 % decrease in travel reduction. For dynamic loads of 4, 5 

and 6 kN, drawbar pulls varied between 1.25-2.95 kN, 1.61-3.15 kN and 1.85-3.40 kN, 

respectively. The effect of drawbar pull and dynamic load on travel reduction was 

statistically significant (P < 0.01). Drawbar pull was the major contributory factor on 

travel reduction as compared to dynamic load. The highest value of travel reduction was 

obtained at a dynamic load of 4 kN and drawbar pull of 2.95 kN.      

  
Figure 2. Effect of drawbar pull and dynamic load on travel reduction 

(♦:4 kN, ■:5 kN, ▲:6kN) 

Defining net traction ratio as a ratio of the drawbar pull to the dynamic load, the 

calculated average values of this quantity for different working conditions are shown in 
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Fig. 3. Net traction ratio varied between 0.308 and 0.737. While net traction ratio 

increased rapidly until a travel reduction of 20%, then it slowly increased with 

increasing travel reduction. An increase of approximately 564% in travel reduction 

resulted in a net traction ratio increase of 139%. The effect of travel reduction on net 

traction ratio was statistically significant (P < 0.01). The highest value of net traction  

 
Figure 3. Effect of travel reduction on net traction ratio 

 

ratio was obtained at a travel reduction of 40.5%. The results are similar to those 

reported by Bashford et al. [23], Bashford et al. [24], Elashry [25] and Esch et al. [26].  

Tractive efficiency decreased with increasing travel reduction (Fig. 4). Tractive 

efficiency varied between 0.239 and 0.720. While tractive efficiency decreased sharply 

until a travel reduction of 20%, then it slowly decreased with increasing travel 

reduction. An increase of approximately 564% in travel reduction resulted in a tractive 

efficiency decrease of 201%. The effect of travel reduction on tractive efficiency was 

statistically significant (P < 0.01). The highest value of tractive efficiency was obtained 

at a travel reduction of 6.1%. The results are similar to those reported by Bashford et al. 

[23], Bashford et al. [24], Elashry [25] and Esch et al. [26].  

 

 
Figure 4. Effect of travel reduction on tractive efficiency 
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The results of the developed ANN were compared with the experimental results. For the 

testing data, the means of measured and predicted values of net traction ratio were 0.488 

and 0.497 respectively. For tractive efficiency, the means of measured and predicted 

values were 0.466 and 0.462 respectively.   

The correlations between measured and predicted values of net traction ratio and 

tractive efficiency in different working conditions are given in Figs. 5 and 6 

respectively. The relationships were significant for all parameters. The correlation 

coefficients of the relationships were found to be 0.996 for net traction ratio and 0.999 

for tractive efficiency.    

 

 
Figure 5. Correlation between measured values and predicted values of net traction ratio 
 

 
Figure 6. Correlation between measured values and predicted values of tractive 

efficiency. 

For the testing data, the mean relative error of measured and predicted values (from 

ANN model) were 2.32% for net traction ratio and 1.33% for tractive efficiency. For all 

parameters, the relative error of the predicted value was found to be lower than the 

acceptable limits (10%) [22].  

The non linear regression models obtained according to traditional methods are given 

below: 
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TReTRNTR 003.0472.0130.0                                                                      (11) 
TReTRTE 030.0048.0960.0                         (12) 

The goodness of fit ( ) of the regression models developed were 0.923 for NTR and 

0.994 for TE. The mean relative errors of net traction ratio and tractive efficiency values 

which were predicted by using regression models were 7.128% and 3.637%, 

respectively. The mean relative errors of the regression models were found to be greater 

than that of the ANN model. 

The goodness of fit of the predicted (from the ANN model) values was found as 0.997 

for net traction ratio and 0.999 for tractive efficiency. All values were found to be close 

to 1.0. 

 

4. CONCLUSIONS 

 

A neural network for the prediction of the net traction ratio and tractive efficiency of a 

driven tire was studied in this study. The overall results show that the networks can be 

used as an alternative way to find tire tractive performance in these systems. The LM, 

GD and GDM algorithms were studied, and the best results were obtained from the LM 

algorithm with 10 neurons in the hidden layer. The average values of the errors were 

well below 3%, and the maximum errors were below 6%. So, these ANN-predicted 

results can be considered within acceptable limits. The results show good agreement 

between the predicted and experimental values. Besides its numerical accuracy, the 

ANN model is much faster and easier to use, which makes it suitable for the generation 

of tire tractive performance.  

The developed model can be used as a reference for further tractive performance 

studies. This system can be developed further by the addition of fuzzy logic to the 

system.  

 

NOMENCLATURE 

 

ANNs: Artificial neural networks 

TE: Tractive efficiency 

TR: Travel reduction 

NTR: Net traction ratio 

P: Drawbar pull 

W: Dynamic weight/normal load 

Na:  Axle power 

Nd: Drawbar power 

Va: Actual velocity 

Vt: Theoretical velocity 

LM: Levenberg–Marquardt 

GD: Gradient descent 

GDM: Gradient descent with momentum 

i: Number of inputs 

j: Number of neurons in the first hidden layer 

k: Number of neurons in the second hidden layer 
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m: Number of outputs 

x: input parameter 

b: Bias 

F: Transfer function 

NET: The sum of the multiplication products of the input parameters and their weights 

W1,W2,W3: Weights of the connection 

TM: Traditional method  

 : Relative error 

 : Goodness of fit 

y: Measured value 

ŷ : Predicted value 

y : Mean of measured values 

n: Number of observations 
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