
 
 
 

Mathematical and Computational Applications, Vol. 17, No. 2, pp. 132-139, 2012 

 
 

SYMMETRY REDUCTIONS AND EXACT SOLUTIONS OF A VARIABLE 
COEFFICIENT (2+1)-ZAKHAROV-KUZNETSOV EQUATION 

   
L. D. Moleleki, A. G. Johnpillai and C. M. Khalique 

 
International Institute for Symmetry Analysis and Mathematical Modelling,  
Department of Mathematical Sciences, North-West University, Mafikeng 

Campus, Private Bag X 2046, Mmabatho 2735, Republic of South Africa 
ldmoleleki@webmail.co.za, andrewgratienj@yahoo.com, masood.khalique@nwu.ac.za  
 
 
Abstract - We study the generalized (2+1)-Zakharov-Kuznetsov (ZK) equation of time 
dependent variable coefficients from the Lie group-theoretic point of view. The Lie 
point symmetry generators of a special form of the class of equations are derived. We 
classify the Lie point symmetry generators to obtain the optimal system of one-
dimensional subalgebras of the Lie symmetry algebras. These subalgebras are then used 
to construct a number of symmetry reductions and exact group-invariant solutions to the 
underlying equation. 
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1. INTRODUCTION 
 
The study of the exact solutions of nonlinear evolution equations plays an important 
role to understand the nonlinear physical phenomena which are described by these 
equations. The importance of deriving such exact solutions to these nonlinear equations 
facilitate the verification of numerical methods and helps in the stability analysis of 
solutions. 
In this paper, we study the exact solutions of one such nonlinear evolution equation, the 
generalized (2+1)-Zakharov-Kuznetsov equation of the form  

 
                                       0)()()(  xyyxxxxt uthutguutfu                                       (1) 

 
 of time dependent variable coefficients. Here f(t), g(t) and h(t) are arbitrary smooth 
functions of the variable t and 0fgh . The equation (1) models the nonlinear 
development of ion-acoustic waves in a magnetized plasma under the restrictions of 
small wave amplitude, weak dispersion, and strong magnetic fields [1]. The equation (1) 
also appears in different forms in many areas of Physics, Applied Mathematics and 
Engineering (see for example [2, 3]). 

 
The transformation   

                uuyyxxdttft ~,~,~,)(~                                                   (2) 

 maps equation (1) to  
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(3) 
  

where )(/)()(~,1)(
~

tftgtgtf  and ).(/)()(
~

tfthth  Therefore, with out loss of 
generality we can consider the equations of the general form  
 
                           0)()(  xyyxxxxt utbutauuu                                                        (4) 

 
 in our analysis as all the results of the class (4) can be extended to the class (1) by the 
transformation (2). 
 
In [4], travelling wave-like solutions for the equation (1) were obtained. In [5] and [6], 
similarity reductions and some exact solutions were obtained for the special cases of the 
class of equations (4) using symmetry group method. For the theory and application of 
the Lie symmetry methods, see e.g., the Refs. [7, 8, 9, 10]. Recently, in [11] the method 
of Lie groups is utilized to derive solutions to an integrable equation governing short 
waves in a long-wave model. 
The outline of the paper is as follows. In Section 2, we present the Lie point symmetries 
of a special case of the equation (4). In Section 3, we construct the optimal system of 
one-dimensional subalgebras of the Lie symmetry algebra of the special form of the 
equation. Moreover, using the optimal system of subalgebras symmetry reductions and 
exact group-invariant solutions of the underlying equation are obtained. Finally, in 
Section 4 concluding remarks are made. 
 

2.   LIE POINT SYMMETRIES 
  
In this section, we consider a special case of the class of equations (4). That is, for the 
time dependent coefficients tata /)( 0  and ,/)( 0 tbtb   where 0a  and 0b  are arbitrary 

constants, we utilize the Lie symmetry group method to obtain symmetry reductions and 
group-invariant solutions of the underlying equation. Therefore, the equation that is 
going to be studied in this paper takes the form  
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 is a generator of point symmetry of the equation (5) if   
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where the operator  ]3[X  is the third prolongation of the operator X defined by  
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the coefficients xxxxt  ,,  and xyy  are given by  

),()()()(  tytxtttt DuDuDuD   

),()()()(  xyxxxtxx DuDuDuD   

),()()()(  xxyxxxxxtxxxx DuDuDuD   

),()()()(  yxyyxxyxtxyxy DuDuDuD   

),()()()(  xxxyxxxxxxxtxxxxxx DuDuDuD   

).()()()(  yxyyyxxyyxytxyyxyy DuDuDuD   

 Here iD  denotes the total derivative operator and is defined by  

                                             ,3,2,1..., 
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and ).,,(),,( 321 yxtxxx   
 
The coefficient functions  ,,  and   are calculated by solving the determining 
equation (7). Since  ,,  and   are independent of the derivatives of u , the 
coefficients of like derivatives of u  in (7) can be equated to yield an over determined 
system of linear partial differential equations (PDEs). Therefore, the determining 
equation for symmetries after lengthy calculations yield  

 
 ,0,0,0),(),,(),(  uuxuxxyxtt                                      (8) 

                                    ,0)/3()/1()/1( 2  xt ttt                                      (9) 

                              ,0)/2()/1()/1()/1( 2  yxt tttt                                    (10) 

                                                                ,02  yyyu                                    (11) 

                                  ,0)/( 0  yyuxtt tbuu                                   (12) 

                             .0)/()/( 00  xyyxxxxt tbtau                                  (13) 

 
Solving the determining equations (8)-(13) for  ,,  and  , we obtain the following 
symmetry group generators given by  
  
                             .,,, 4321 utuxyx utXtXXX   

  
3.  SYMMETRY REDUCTIONS AND EXACT GROUP-INVARIANT      

SOLUTIONS OF THE EQUATION (5) 
 
Here we first construct the optimal system of one-dimensional subalgebras of the Lie 
algebra admitted by the equation (5). The classification of the one-dimensional 
subalgebras are then used to reduce the equation (5) into a partial differential equation 
(PDE) having two independent variables. Then we also study the symmetry properties 
of the reduced PDE to derive further symmetry reductions and exact group-invariant 
solutions for the underlying equation. 
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The results on the classification of the Lie point symmetries of the equation (5) are 
summarized by the Tables 1, 2 and 3. The commutator table of the Lie point symmetries 
of the equation (5) and the adjoint representations of the symmetry group of (5) on its 
Lie algebra are given in Table 1 and Table 2, respectively. The Table 1 and Table 2 are 
used to construct the optimal system of one-dimensional subalgebras for equation (5) 
which is given in Table 3 (for more details of the approach see [8] and the references 
therein). 

 
 Table 1. Commutator table of the Lie algebra of equation (5)  

  
1X  2X     3X    4X   

 1X    0   0  0   0 

2X    0  0  0   0 

3X    0   0  0  3X  

4X    0  0  3X    0 

 
 

Table 2. Adjoint table of the Lie algebra of equation (5)  
  Ad 

1X    2X    3X   4X  

 1X   1X    2X   3X    4X  

2X    1X    2X   3X   4X  

3X    1X    2X   3X   34 XX   

4X    1X    2X  
3Xe    4X  

 
  Table 3. Subalgebra, group invariants, group-invariant solutions of (5)  

 N   X          Group – invariant 
solution 

 1 
214 XXX     tx ln  ty ln   

),(
1 h
t

u   

2 
12 XX    t  yx    ),( hu   

3 
13 XX    t   y   

),(
)(




h
t

x
u 


  

4 
123 XXX     t   ytx )(    

),(
)(




h
t

x
u 


   

5 
1X   t    y   ),( hu    

 
Here  1,1,0    and  ,  and   are arbitrary constants.  

 
 Case 1. In this case, the group-invariant solution corresponding to the symmetry 
generator 214 XXX    reduces the equation (5) to the PDE  
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      .000    hbhahhhhh                                                 (14) 

 
 Now the equation (14) admits the following symmetry generators given by  

                                                 ., 21   XX  

 (a)   1X  

The group-invariant solution corresponding to 1X  is )(Hh  , where    is              

the group invariant of 1X , the substitution of this solution into the equation (14) and 

solving we obtain a solution /),,( yCeyxtu    for (5), here C is a constant.  
 
(b)  21 XX  , where   is a constant. 

21 XX   leads to the group-invariant solution )(Hh  , where    is the 
group invariant. Substitution of this solution into the equation (14) gives rise to the 
ordinary differential equation (ODE) 

 
                   ,0)()( 00

3  HHHHHba                            (15) 

 
 here `prime' denotes differentiation with respect to  .  

Case 2. The group-invariant solution arising from 12 XX   reduces the equation (5) to 
the PDE   

                               .0
)( 2

00 


  


h
ba

hhh                                        (16)                              

 The equation (16) admits the following three Lie point symmetry generators  

                                  .,, 321 hh hXXX     

The optimal system of one-dimensional subalgebras are ,,, 11213 XdXXcXX    

where c  is an arbitrary real constant and .1,0 d  
 
 (a)  13 cXX   

The group-invariant solution corresponding to 13 cXX   is )(
1 


Hh  , where 

 lnc  is the group invariant of 13 cXX  , the substitution of this solution into 

the equation (16) results in the following ODE 
             ,0)( 0

2
00  HHaHHHba                                                   (17) 

 here `prime' denotes differentiation with respect to .  
  
 (b)   12 dXX  . 

12 dXX   leads to the group-invariant solution )(
)(





H
d

h 


 , where    is the 

group invariant. Substitution of this solution into the equation (16) gives the solution  
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                 ,
)(
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 where C  is a constant.  
 
(c)   1X  

The symmetry generator 1X  gives the trivial solution Cyxtu ),,( , where C  is a 
constant.  

 
Case 3. The group-invariant solution that corresponds to 13 XX   reduces the equation 

(5) to the PDE   

                             .0





h
h                                                                    (18) 

 
 Hence the solution of the equation (5) is given by   
 

                        ,
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)(
),,(
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


t

yHx
yxtu  

 where )( yH  is an arbitrary function of its argument. 
 
Case 4. The 123 XXX   -invariant solution reduces the equation (1) to the PDE   
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  (a)   0  
 

In this case, the PDE (19) becomes   
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3
0 
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The equation (20) admits the Lie algebra spanned by the following symmetry generators 

                                        ./1, 21 hXX     

 (i)  1X  

The group-invariant solution corresponding to 1X  is )(Hh  , where    is the 

group invariant of 1X , the substitution of this solution into the equation (20) and 
solving we obtain the solution tCxyxtu /)(),,(  , where C  is a constant. 

 
(ii)  ,21 XX   where   is a constant. 

The grou-invariant solution corresponding to 21 XX   is ),()(/  Hh   

where    is the group invariant of 21 XX  , the substitution of this solution into 
the equation (20) and solving we obtain the solution  
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                               ,),,(




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
t
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where C  is a constant. 
 

 (b)  0 . 
In this instance, the PDE (19) admits the following symmetry generators   

 .)/(,)/(1 21 hh XX     

  (i)  1X  

The group-invariant solution corresponding to 1X  is  )()(/  Hh  , where 

   is the group invariant of 1X , the substitution of this solution into the equation 

(19) and solving we obtain the solution C
y

yxtu 


),,( , where C  is a constant. 

 
(ii) 12 XX  , where   is a constant. 

The 12 XX  -invariant solution is given by ),())((/)(  Hh   

where    is the group invariant of 12 XX  , the substitution of this solution into 
the equation (19) and solving we obtain the solution 

  

                      ,
)(

)(
),,(








t

Cyx
yxtu  

where C  is a constant.  
 

Case 5. The 1X -invariant solution reduces the equation (5) to 0h . Hence the 

solution of the equation (5) is given by )(),,( yHyxtu  , where )( yH  is an arbitrary 
function of its argument. 

 
4. CONCLUDING REMARKS 

  
In this paper we have studied the generalized (2+1)-ZK equation with time dependent 
variable coefficients using the Lie symmetry group method. We derived the Lie point 
symmetry generators of a special form of the underlying class of equations. The Lie 
symmetry classification with respect to the special form of the time dependent variable 
coefficients equation was presented. We used this classification of optimal system of 
one-dimensional subalgebras of the Lie symmetry algebras to construct symmetry 
reductions and exact group-invariant solutions for the special form of the equation. 
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