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Abstract- The paper is concerned with the applicability of the collocation method to a
class of nonlinear singular integral equations with a Carleman shift preserving
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1. INTRODUCTION

Nonlinear singular integral equations are widely used and connected with
applications in several field of engineering mechanics like structural analysis, fluid
mechanics and aerodynamics. This leads to the necessity to derive solutions for the
nonlinear singular integral equations arising in applications, by using some approximate
and constructive methods, (see [16] ).

The theory of nonlinear singular integral equations with Hilbert and Cauchy kernel
and its related Riemann-Hilbert problems have been developed in works of
Pogorozelski W. [20], Guseinov A. | and Mukhtarove Kh. Sh. [9], Wolfersdorf L.V.
[24], Ladopoulous E.G [16] and others.

The successful development of the theory of singular integral equations (SIE)
naturally stimulated the study of singular integral equations with shift (SIES). The
Noether theory of singular integral operators with shift (SIOS) is developed for a closed
and open contour (see [12-14], 17] and others).

Existence results and approximate solutions have been studied for nonlinear singular
integral equations (NSIE) and nonlinear singular integral equations with shift (NSIES)
by many authors among them we mention (1-6, 10,11,15,16,19,21).

The classical and more recent results on the solvability of NSIE should be
generalized to corresponding equations with shift, (see[23]). The theory of SIES is an
important part of integral equations because of its recent applications in many field of
physics and engineering,(see [7,13,14])

We consider a simple closed smooth Jordan curve L in the complex plane with
equation t =1t(s), 0 <s <1 where s-arc coordinate accounts from some fixed point, |-

length of the curve L. Denote by D™ and D the interior and exterior domain of L
respectively and let the origin be 0 € D*. Denote by L, the unite circle with the center

at the origin and let L,” and L, the interior and exterior domain of L, respectively.
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Consider the conformal mappings A(r) from L, onto D~ such that A(oo):oo,
limA(r)r™ >0 and B(r) from L,” onto D*such that B(w)=0.

r—ow

Now, consider the following NSIES:

(PU))t) = W, (£, u(t) + ¥, (a(t) u(«(t)) -
1 [ F3(T'“(T))+ lP“(T'u(T))}dr: £(t), forall tel @D

i T—t 7—aft)

L
Under the following conditions

W (U, () =, (U (0) =at), wy, (@), U, (@) =~y (@), Uy (@) =b(t).  (1.2)

for initial value u,, in the generalized Holder space H (L), u(t)is unknown function,
f(t) and P, (t,u(t)), r =1,...,4, are continuous functions on L and on the domain
D={tu):tel,,ue(-ow,»),
respectively. and the homeomorphism «:L — L is preserving orientation, satisfying
the Carleman condition
ala)=a,t)=t, tel, (1.3)
and the derivative o'(t)# 0 satisfies the usual Holder condition.
The equation (1.1) in case f(t): 0, without shift has been studied in [4] by modified
Newton-Kantorovich method in the generalized Holder space H ,  [a,b].

In this paper the polynomial collocation method has been applied to NSIES (1.1) under
condition (1.2), with zero index, in the generalized Holder space H (L)

2. SOME AUXILIARY RESULTS

Definition 2.1. We denote by H,,(D) to be the space of all functions

WP, (t,u(t)), r =1,...,4, which have partial derivatives up to second order with respect to
u and satisfy the following condition

Vi (tl'ul)_‘//rui (tz’uzx < C; {¢qt1 _t2|)+|u1 —U2|}, (2.1)
where (t;,u;)e D, i=12, ¢ € ® and c| are constants; j=012.

Definition 2.2 [12,18]. We denote by ¢(L) the space of all continuous functions
u(t)defined on L with the norm:
”u ”c(L) - r?ix|u(t)| : (2.2)

Definition 2.3 [5,9]. We denote by H (L) the space of all functions u(t)e c(L) such
that , (8) = o(¢(5)), ¢ € H® , with the norm:
[ull, =lull, +[ul (2.3)

ey 2u(0)
lul=sup sy
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HoD :{q)e D: .T%M*_&jj%df < 5(0(5)} ,

C is a positive constant.

Definition 2.4 [5,14]. Let S:H (L)—>H,(L) denotes to the operator of singular
integration

(Su)t)= i.j—u(r) dr (2.4)
ﬂILr—t
to which we associate the Cauchy projection operators
P, =%(| +S), S?=1, (2.5)

where 1 is the identity operator on H w(L). The Carleman shift operator
W:iH,(L)> H,(L),
is given by (Wv)t)=v(a(t)).

Lemma 2.1 [5]. The singular operator S is abounded operator on the space H (L) and

satisfies the inequality
Isul, <o, @)
where p, is a constant defined as follows :

5
Do = c{f@dg +1J +¢c,C,
where c,, c,, C are constants.

Lemma 2.2 [5]. The shift operator W is a linear bounded continuously invertible
operator on the space H (L) and satisfies the inequality

[wul, <7oful, . (2.7)

where 7, = max{l, e, }and a, is a constant given by ¢, = sup & g , U(t)=u(alt)).
§-0 ),
Lemma 2.3 [1] Let the functions y,(t,u), r=1...,4, belong to H,,(D) . Then the
operator P(u) is Frechet differentiable at every fixed point u e H,(L) , moreover
P (U)h =y, (Lu() h(t) + 7y, (a(t) u(a(t)) (e () -
2.8
—iq{ww“““”+ww“““”}mﬂd1, (28)

iy Tt T—a(t)

satisfies Lipschitz condition
[P'w)-P')], <pfu-ul,. (2.9)
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In the sphere S, (u,,r)= {u eH,(L):|u-uy,|, < r}, where

PL= (Cll + 708y + PoC; +70pocl4)-
Under condition (1.2) The equation (2.8) reduces to the following SIES, for the
unknown function h(t) :

oh =a(t)h(t) +b(t)h(a(t)) - a(t)f

L

dr+

h(z) dT+b(J.[)I h(z)
T—t m i r—a(t)

%jR(t,r)h(r) dz=f(t),

for initial value u, and the arbitrary function f (t) belong to the space H (L),
where

(2.10)

R(t, 7) = Yoo (U, (1) ~ 5, (7,Us (7)) | W ((1), U, (1)) — 4 (7,1, (7))
Tt 7—a(t)
Using Definition 2.4 the dominant equation of equation (2.10) reduces to the following
singular integral operator with shift :
M = 2a(t)P_ + 2b(t)WP, . (2.11)

Theorem 2.1 [1,5,14]. The singular integral functional operator M is Noetherian on
H, (L) if and only if

inf|e(t) > 0 and q(t)=0, onL,
where
eft) = 20(t), q(t) = 2:b(t) 2 0 on L.

b(t)

The index of a Noetherian operator M is given by

7 =indM = 21 fargqt)}, - (2.12)

2r
Theorem 2.2 [5,21]. Let the conditions of Lemma 2.3 and Theorem 2.1 be satisfied and
Uy € HW(L) is the initial approximation for equation (1.1) under conditions (1.2),
H(P'(UO))_lu,p <g, and H(P’(uo))‘l P(uo)Hw <¢,. Then if m=¢g,p,e, < %, then equation
(1.1) under conditions (1.2) has a unique solution u”in the sphere S_(u,;r,) of the
space HV,(L), ly :gl(l—M)m‘l <r, to which the successive approximations:

u,,, =u, —(P'(u,))"P(u,) of modified Newton method converges and the rate of

&, B=1-41-2m

n

1-B

convergence is given by the inequality:

u, —u*H <
4
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3. COLLOCATION METHOD

Now, we seek an approximate solution of equation (1.1) under conditions (1.2)
in H,(L) as the form:

= antk ’ (3.1)
k=-n

where the coefficients 7, are defined from the system of nonlinear algebraic equation
with shift (SNAES)

0,0t ) et ., ) - - {%(T’”n("””ﬂ’ AN ﬂd,_ i)

iy T -t r—af(t;)
- (3.2)
where t; = exp(27j/(2n+1)), j=0,2n.
Consider (2n+1)- dimensional spaces H” and H? with the norms:
@ ) ‘U —u ‘
o, ol =maxiuj|+su
i =, B = s
respectively, where 77 = (77_,.... 74,7, 17, ) € HP and u = (ug,...,u,, ) e HE.
Introduce the operator P, (r7): H{ — H® where
Py (7)="2,(t; u, (1)) + 2, et Ju o a( ))-
_iJ‘ lPS(T'l'ln(77'T))_+_ 1P4(T,Un(77,2')) dT, sz
Ty -1, t—af(t;)
We can rewrite SNAES (3.2) in the operator form: .
P,(n)=f; f=f(t) j=02n. (3.3)

Consider, the coordinates of the vector 7” from H " these are the Fourier coefficients
of the function u, e H (L) that is

7 =—Iu 7w, j=0,nand 7" :—_juo(A(w))w""ldw, j=-n-L
L
Analogous to Lemma 2.3 the following lemma is valid.

Lemma 3.1.[6] Let the conditions of Lemma 2.3 be satisfied. Then the operator P, is

Frechet differentiable at every fixed point x =(77_,....,7,) € HY, moreover

Pl 0Qh =y, (t),u, () u, (0 t)) + vy, (a(t)),u, (X alt)) u, (h alt))) -
__I{V/SU (z,u,(x,7)) N muT(T ;(t(_X) T))}un(h,r) dr, | :Qanh

ere h=(h_,,...h,)e HY, the derlvatlve P, (x)= Py (X)s.ens Py

Lipschitz condition

(x)) satisfies
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wo <Pl % =% .

in the sphere 8(77(0’ o, ) of the space H" where p, is a positive constant.
Now, we show that the system of Ilnear algebraic equations with shift (SLAES):

P! (nh=g, (3.4)
under the conditions
o (U, (10 ) =y, (t,u, () ) = a(t),

(3.5)
Wo (at;) U, (7, at))) = =y, (a(t;) u, (7, () = bt ).
has a unique solution he H® for arbitrary g =(gy,...,,,)e HP? .
For this aim, we consider the SALE(S:) ( )
alt; un(h1T) bit; Un(h,T)
a(tj)un(h,t-))"‘b(tj)Un(h,a(tj))_ 7zij J|: iy dr+ 721'1 '[T—a(tj)d T+ -

1 i -
— | Rt hr)dzr=glt,), j=0,2
7u { ( T)J T T = g( J) ] n
corresponding to the SIES:
a(t)u(t) +b(t)u(a () -

a(?) f u(r)

L

bt
~[z’ a(t)
+%IR(t,1)u(r) dr=g(t),

L
According to the collocation method, we seek an approximate solution of equation

(2.10) as the form :

(3.7)

=Y Bt tel,
k=-n
where the coefficients g, are defined from SLAES:
Z AB =glt,) j=02n (3.8)

where

A, =aft, )[tk——j—dr]+b(t )[(a(t ) +— ﬁol j m.[R(tj,r)hn(rhr

The SLAES (3.8) can be rewritten as foIIowmg form:

2l )58 420, 5l )+ L R S e =)

L
Where

DWARUAGEES WAS

2n. (3.9)
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Theorem 3.1. Let a(t),b(t) and g(t) belongto H, (L), b(t)=0 on L, the index » =0
and the operator P' has a linear inverse in H (L) , then for all n>max(n,, ),

N, = min{n eN Idl(p(ijh’ln <1} , the system (3.9) has the unique solution { [}fn
n

and the approximate solution ,h Z Bit*, of equation (2.10) convergences to its

Sdz(p(ljlnn,
¢ n

where d, and d, are constants do not depend on n.

exact solution h”, moreover |h”(t)—h; (t)

Proof.
From [8], we can write equation (2.10) in the following form:

; § 1 _g(t)
h*(a(t)) - q(th~(t)+ O {R(t,r)h(r)dr—g(—t),

setting

Then we have
'h=Bh+Gh=g. (3.10)
Where

(BhXt) =y~ (Oh* (@) -y (@t ) Gh)(t—%IRtr )n(zhz,

3(t)= ot)clt), o) =1 (2)= expl6(2),
(3.11)
9(2):i_‘[mdr;2eD*, 9(2):i_ Mdr;ZGD’,

Ty T-1

where y(t) is the inverse a(t) and p(t)is a solution of the Fredholm integral equation

of second kind |
e L[ e L home -naty)

i\« r)—a(t) T—1
Moreover, Bis linear and G is completely continuous from H (L) into itself.

Denote by X to be the (2n+1)- dimensional subspace of the space HW(L), and let Q,
be the projection operator into the set of interpolation polynomial of degree n with
respect to the collocation points t;, j =0,2n. Then the system (3.9) can be written in
X, as a linear operator

r,h,=Bh, +Gh, =4,, (3.12)
where
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Bnhn:Qthn’ Gnhn:QnGhn’ gn:Qng'

Now, we determine the difference I'h, —I',h, € X, , from (3.10),(3.12) we have

(r=r,)h, )= (1 =Q b O)-w, O, (@)~ (@) -v, (@O)h, O]+
+(G -G, ), (t). (3.13)
where y, is polynomial of the best uniform approximation of the function w with

degree not exceeding n.
From [6,8] and inequality (2.7), we have
hi

n
4

o @)= D0 )~ @) Db 0], <02 .

<dyh, ||

and
IQ, ”(,, <d,Inn.

Hence, we get

[0 -0 Ml ©)-w; O (@) (@lt) -y (), 0], <d4¢( jmnnh ),

(3.14)
where d, = y,d,d,.
Let J,(t) be the polynomial of best uniform approximation to the function
30= Y[Rt ), ()
zid
Then from [6], we have
-2l sdo{ 2 Jnl,.
hence for arbitrary h e X, we get
lh, ~G,h,|, < d6(o( ) (inn)n, . (3.15)
where d, Inn=d, +d,d, Inn. From (3.13)- (3.15), we get
1
[Th, —T,h, | < d%ﬂ(ln n ], (3.16)

where d, =d, +d,. From Theorem 2.2 , the operator I'; has a linear bounded inverse
operator I',* , since I';h =c™ I"h then the operator T has a linear inverse, also from [6]

and by virtue of (3.16) the operator I', has a linear bounded inverse.
Now, for the right parts of (3.10) and (3.12), we have

- -~ 1
| - gn||¢ < dggo(ﬁjln n. (3.17)
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From [6], and inequalities (3.16), (3.17) for the solution h”of equation (2.10) and the
approximate solution h , we obtain
< dggo(ij Inn.
¢ n
Thus the theorem is proved.

From Theorem 3.1 there exists the number n, such that for arbitrary n > max(n,, y) the

b

SLAES (3.6) has the unique solution h” and the following inequality is valid:
f, x . 1
ui(h”,.)-u 0, Sdmgp(HJlnn ,
Where u” Hw(L) is the unique solution of (3.7). Let
1—‘n (uo)h = (Fo,n (uo)h""’FZn,n(UO)h)

where
I,y =alt; Ju, (hut;))+blt, Ju, (el )-
)b

A {r-a(t) +g,[R(tJ’T)Jn(th)dT, j=0,2n

a(tj)J'Un(h,T) d

Pl T -1,

T+

L

From [6], we have

T, (u,)-P. ()

<d 1 Inn
HOSHE) = 4 n .

(3.18)
Since for arbitrary n>(n,,y), there exists a bounded linear inverse operator,

I':H® > HY then from (3.18), Banach theorem follows that there exists
n, > (n,, z) such that for arbitrary n>n,, the linear operator P; , has bounded inverse,
that is the SLAES (3.4) under condition (3.5) has the unique solution h” e H(f})for

arbitrary right side g = g(tj )e H;Z) , ] =0,2n .Thus the following theorem is proved.

Theorem 3.2 Let the coordinate of the vector 7 =(1,...7%,7....7) be the

Fourier coefficients the function u, H¢(L) and the conditions of Theorem 1.2 are

)| <et ana [ )
4

m’ = &g ple] < %, then SNAES (3.3) has the unique solution 5" = (7", ,....7". 76 ) IN
the sphere S(p(ry(‘)); r;) of the space H,(L), 1y = gl’(l— N 2m'Xm’)’1 <r’, to which the
following iteration process converges

7™ =™ _ (P ()", (™) and the rate of convergence is given by the

satisfied and for n>n,, ‘

‘ <!, Then if
4

inequality: ”n(m) —n*H(p < 1_81:31 g, B, =1-+1-2m’.
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