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1. INTRODUCTION 
 
    Nonlinear singular integral equations are widely used and connected with 
applications in several field of engineering mechanics like structural analysis, fluid 
mechanics and aerodynamics. This leads to the necessity to derive solutions for the 
nonlinear singular integral equations arising in applications, by using some approximate 
and constructive methods, (see [16] ). 
   The theory of nonlinear singular integral equations with Hilbert and Cauchy kernel 
and its related Riemann-Hilbert problems have been developed in works of 
Pogorozelski W. [20], Guseinov A. I and Mukhtarove Kh. Sh. [9], Wolfersdorf L.V. 
[24], Ladopoulous E.G [16] and others. 
   The successful development of the theory of singular integral equations (SIE) 
naturally stimulated the study of singular integral equations with shift (SIES). The 
Noether theory of singular integral operators with shift (SIOS) is developed for a closed 
and open contour (see [12-14], 17] and others). 
   Existence results and approximate solutions have been studied for nonlinear singular 
integral equations (NSIE) and nonlinear singular integral equations with shift (NSIES) 
by many authors  among them we mention (1-6, 10,11,15,16,19,21). 
   The classical and more recent results on the solvability of  NSIE should be 
generalized to corresponding equations with shift, (see[23]). The theory of SIES is an 
important part of integral equations because of its recent applications in many field of 
physics and engineering,(see [7,13,14])      

We consider a simple closed smooth Jordan curve L  in the complex plane with 
equation  stt  , ls 0  where s-arc coordinate accounts from some fixed point, l -

length of the curve L . Denote by D  and  D the interior and exterior domain of L  
respectively and let the origin be D0 . Denote by 0L  the unite circle with the center 

at the origin and let 
0L  and 

0L  the interior and exterior domain of 0L  respectively. 
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Consider the conformal mappings  rA  from 
0L  onto D  such that   A , 

  0lim 1 


rrA

r
  and  rB  from 

0L  onto D such that   0B .     

Now, consider the following NSIES:  
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Under the following conditions 
      ).()))((),(()))((),((,)())(,())(,( 4231 tbtuttuttatuttut ouououou      (1.2) 

 
for initial value 

0u , in the generalized Holder space  LH  , )(tu is unknown function, 

 tf  and 4,...,1)),(,(  rtutr , are continuous functions on L  and on the domain 

                                                  ,,,:, uLtutD , 
respectively. and the homeomorphism LL :  is preserving orientation, satisfying 
the Carleman condition 
                                            Ltttt  ,)())(( 2 ,                                        (1.3)   

and the derivative   0 t  satisfies the usual Holder condition. 

   The equation (1.1) in case   ,0tf without shift has been studied in [4] by modified 
Newton-Kantorovich method in the generalized Holder space  baH m ,, .  

In this paper the polynomial collocation method has been applied to NSIES (1.1) under 
condition (1.2), with zero index, in the generalized Holder space  LH  .  

 
2. SOME AUXILIARY RESULTS 

 
Definition 2.1. We denote by  DH 1,  to be the space of all functions 

4,...,1)),(,(  rtutr , which have partial derivatives up to second order with respect to 
u  and satisfy the following condition 

                                          21212211 ,, uuttcutut r
jruru jj   ,               (2.1) 

where   Dut ii , ,  ,2,1i  and r
jc  are constants; .2,1,0j  

Definition 2.2 [12,18]. We denote by   Lc  the space of all continuous functions 

 tu defined on L  with the norm: 

                                                       )(max
)(

tuu
LtLc 

  .                                                 (2.2) 

Definition 2.3 [5,9]. We denote by  )(LH  the space of all functions    Lctu   such 

that     ou )( , H , with the norm: 

                                                        uuu
Lc


)(
                                                 (2.3) 

                                                         
)(

)(
sup

0 




uu


 ; 
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 c~ is a positive constant.   
 
Definition 2.4 [5,14]. Let    LHLHS  :  denotes to the operator of singular 

integration     
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d
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 ,                                             (2.4)                             

to which we associate the Cauchy  projection operators 

                                                  ISSIP 
2,

2

1  ,                                           (2.5) 

where I is the identity operator on  LH . The Carleman shift operator             

                                                      LHLHW  : , 

is given by      tvtWv  . 
 
Lemma 2.1 [5]. The singular operator S  is abounded operator on the space )(LH and 

satisfies the inequality  
                                                          


 uSu 0 ,                                               (2.6) 

where 0  is a constant defined as follows : 

                                                 
 
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where 1c , 2c , c~  are constants. 
 
Lemma 2.2  [5]. The shift operator W  is a linear bounded continuously invertible 
operator on the space )(LH  and satisfies the inequality 

                                                             uWu 0  ,                                          (2.7) 

where   000 ,1max  and  is a constant given by     tutu
u

u 
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Lemma 2.3 [1] Let the functions   4,...,1,, rutr , belong to  DH 1,  . Then the 

operator  u  is Frechet differentiable at every fixed point  )(LHu  , moreover 
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satisfies Lipschitz condition  

                                           
 2112
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' )()( uuuu  ,                                    (2.9)  
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In the sphere     ruuLHuruS 
 00 :, , where 

                                              4
100

3
10

2
10

1
11 cccc   .  

Under condition (1.2)  The equation (2.8)  reduces to the following SIES, for the 
unknown function  th  : 
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    (2.10)                                

for initial value ou and the arbitrary function )(tf belong to the space ),(LH   

where 
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Using Definition 2.4 the dominant equation of equation (2.10) reduces to the following  
singular integral operator with shift : 
                                                        WPtbPtaM )(2)(2 .                                 (2.11) 
 
Theorem 2.1 [1,5,14]. The singular integral functional operator M is Noetherian on 

)(LH  if and only if  

                                            Lontqandte ,00inf  , 

where                        

                                               
    Lontb
tb

ta
tqtbte 0;,2  . 

The index of a Noetherian operator M is given by 

                                              LtqMind arg
2

1


  .                                       (2.12) 

 
Theorem 2.2 [5,21]. Let the conditions of Lemma 2.3 and Theorem 2.1 be satisfied and 

 LHu 0  is the initial approximation for equation (1.1) under conditions (1.2), 

   0
1

0 

 u  and      10

1
0 


  uu . Then if 2

1
110  m , then equation 

(1.1) under conditions (1.2) has a unique solution *u in the sphere  00 ;ruS  of the 

space  LH ,   rmmr  1
10 211 , to which the successive approximations: 

    nnn uuuu  


1
01  of modified Newton method converges and the rate of 

convergence is given by the inequality: 1
*

1


 B

B
uu

n

n 
 ; mB 211   
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3. COLLOCATION METHOD 
 

 Now, we seek an approximate solution of equation (1.1) under conditions (1.2) 
in  LH  as the form: 

                                                         
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
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nk

k
kn ttu , ,                                                (3.1) 

where the coefficients k are defined from the system of nonlinear algebraic equation 

with shift (SNAES)  
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where    njnijt j 2,0,122exp   . 
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We can rewrite SNAES (3.2) in the operator form: 

                                                     .2,0,; njtfff jn                                 (3.3) 
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Analogous to Lemma 2.3 the following lemma is valid. 
 
Lemma 3.1.[6] Let the conditions of Lemma 2.3 be satisfied. Then the operator n  is  
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                                           )1()2( 2112
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in the sphere  1
)0( ;rS   of the space  1

H  , where '
1  is a positive constant.  

Now, we show that the system of linear algebraic equations with shift (SLAES): 
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According to the collocation method, we seek an approximate solution of equation 
(2.10) as the form :                    
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Theorem 3.1. Let    tbta ,  and  tg  belong to  LH ,   0tb  on L , the index 0  
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where 1d  and 2d  are constants do not depend on n. 
 
Proof. 
 From [8], we can write equation (2.10) in the following form: 

                                         
  ,,

1

te

tg
dhtR

ite
thtqth

L
   


  

setting 

                                                   
 t

t
tq 







. 

Then we have 
                                                 gGhBhh ~ .                                                (3.10) 
Where 

            thtthttBh    ,          


dhtR
i

tc
tGh

L
 , ,          

     tctgtg ~ ,    
 te

t
tc






,     zz  exp ,                             

(3.11) 

          





  Dzd
zi

zDzd
zi

z
LL

;
1

,;
1 











 , 

where   t  is the inverse  t  and  t is a solution of the Fredholm integral equation 
of second kind  

                              
       tqd

tti
t

L

ln
11 '














  





 . 

Moreover, B is linear and  G is completely continuous from  LH  into itself. 

Denote by nX to be the (2n+1)- dimensional subspace of the space  LH , and let nQ  

be the projection operator into the set of interpolation polynomial of degree n with 

respect to the collocation points njt j 2,0,  . Then the system (3.9) can be written in 

nX  as a linear operator  

                                                        nnnnnnn ghGhBh ~ ,                              (3.12)  

where 
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                                    nnnn hBQhB  ,  nnnn hGQhG  ,  gQg nn
~~  . 

 
Now, we determine the difference nnnn Xhh  , from (3.10),(3.12) we have 

 
                         thttthttQIth nnnnnnn   

    .thGG nn              (3.13)                             

where n  is polynomial of the best uniform approximation of the function   with 

degree not exceeding n. 
From [6,8] and inequality (2.7), we have 

 nn hdh 1

                   


 th
n

dthttthtt nnnn 





  1

20 , 

and 
                                                      ndQn ln3


. 

Hence, we get 

                        


 thn
n

dthttthttQI nnnnnn ln
1

4 





  , 

                                                                                                                                (3.14) 
where 3204 ddd  . 

Let  tJ n  be the polynomial of best uniform approximation to the function 

                                                       


dhtR
i

tc
tJ n

L
 , , 

Then from [6], we have 

                                                


 nn h
n

dJJ 







1
5 , 

hence for arbitrary nn Xh  ,we get 

                                         


 nnnn hn
n

dhGGh ln
1

6 





 ,                               (3.15) 

where ndddnd lnln 5356  . From (3.13)- (3.15), we get 

                                      


 nnnn hn
n

dhh ln
1

7 





 ,                                  (3.16) 

where 647 ddd  . From Theorem 2.2 , the operator 0  has a linear bounded inverse 

operator 1
0
  , since hch  1

0  then the operator  has a linear inverse, also from [6] 

and by virtue of (3.16) the operator n  has a linear bounded inverse. 

Now, for the right parts of (3.10) and (3.12), we have 

                                                    .ln
1~~

8 n
n

dgg n 





 


                                    (3.17) 
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From [6], and inequalities (3.16), (3.17) for the solution *h of equation (2.10) and the 
approximate solution *

nh  , we obtain 

                                                   n
n

dhh n ln
1

9
** 






 


. 

Thus the theorem is proved. 
From Theorem 3.1 there exists the number 0n  such that for arbitrary ),max( 0 nn   the 

SLAES (3.6) has the unique solution *h and the following inequality is valid:  

                                                          n
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duhun ln
1

.., 10
*** 


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
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  ,    

Where  LHu *  is the unique solution of (3.7). Let  

                                            huhuhu nnnn 0,20,00 ,...,  
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From [6], we have  

                                                     n
n

du
HHnn ln

1
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0'
0 21 



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
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
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.                         

(3.18) 
Since for arbitrary  ,0nn  , there exists a bounded linear inverse operator, 

   121 :  HHn   then from (3.18), Banach theorem follows that there exists 

 ,01 nn   such that for arbitrary 1nn  , the linear operator nj , has bounded inverse, 

that is the SLAES (3.4) under condition (3.5) has the unique solution  1*
Hh  for 

arbitrary right side     njHtgg j 2,0,2   .Thus the following theorem is proved. 

 
Theorem 3.2 Let the coordinate of the vector           00

0
0
1

00 ,...,,,..., nn    be the 

Fourier coefficients the function  LHu 0  and the conditions of Theorem 1.2 are 
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110  m , then SNAES (3.3) has the unique solution  **
0

*
1

** ,...,,,..., nn    in 

the sphere   0
0 ;rS   of the space  LH ,    rmmr  1

10 211 , to which the 

following iteration process converges  
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inequality:  
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