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Abstract-In this paper, we apply He’s variational iteration method (VIM) coupled with 
an auxiliary parameter and Adomian’s polynomials which proves very effective to 
control the convergence region of approximate solution. The proposed algorithm is 
tested on generalized Hirota–Satsuma coupled KdV equation and numerical results 
explicitly reveal the complete reliability, efficiency and accuracy of the suggested 
technique. It is observed that the approach may be implemented on other nonlinear 
models of physical nature.
Key words-Variational iteration method; Auxiliary parameter; Adomian’s polynomials, 
Hirota–Satsuma coupled KdV equation.

1. INTRODUCTION

 The rapid development of nonlinear sciences, (see Abbasbandy [1-3], Bildik [4], Chun 
[5], Demirbağ [6], Geng [7], Ganji [8], Hirota [9], Herişanu [10], He [11-21], Kaya 
[22], Mohyud-Din [23-26], Soltanian [27], Tatari [28], Wu [29], Yu [30], Yong [31] ) 
witnesses number of new analytical and numerical methods. Most of these introduced 
techniques are coupled with the inbuilt deficiencies including calculation of the so-
called Adomian’s polynomials, divergent results, limited convergence, lengthy 
calculations, small parameter assumption and non compatibility with the physical nature 
of the problems. In order to cope with such deficiencies, He [11-21] developed the 
variational iteration method (VIM) which was completely independent of the above 
mentioned inadequacies and has been applied to a wide class of nonlinear problems, 
(see Abbasbandy [1-3], Bildik [4], Chun [5], Demirbağ [6], Geng [7], Ganji [8], Hirota 
[9], Herişanu [10], He [11-21], Kaya [22], Mohyud-Din [23-26] and the references 
therein). The exponential success rate of He’s VIM is a true index of its credibility. 
With the passage of time, several modifications have been introduced in He’s 
variational iteration method (VIM) which has further enhanced the accuracy and 
efficacy of this algorithm to a tangible level. Abbasbandy [1-3] introduced the insertion 
of Adomian’s polynomials in the correction functional of variational iteration method 
(VIM) and solved quadratic Riccati differential equation and Klein-Gordon equations. 
Inspired and motivated by the ongoing research in this area, we propose insertion of an 
unknown auxiliary parameter h  into the correction functional of VIM and the 
subsequent coupling of Adomian’s polynomials in the re-formulated correctional 
functional. The algorithm has been successfully tested on generalized Hirota–Satsuma 
coupled KdV equation. It is observed that the suggested insertion of auxiliary parameter 
h  provides a simple way to adjust and control the convergence region of approximate 
solution for any values of x  and t . Numerical results explicitly reveal the complete 
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reliability, efficiency and accuracy of the proposed algorithm. It is observed that the 
approach may be implemented on other nonlinear models of physical nature. It is worth 
mentioning that generalized Hirota–Satsuma coupled KdV equation (Wu [29], Yu [30], 
Yong [31]):
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arises very frequently in applied and engineering sciences. 

2.  ANALYSIS OF THE PROPOSED ALORITHM

Consider the following functional equation (see Abbasbandy [1-3], Bildik [4], Chun [5], 
Demirbağ [6], Geng [7], Ganji [8], He [11-21], Mohyud-Din [23-26]):
                                ,)x(gNuRuLu                                                                  (2)                                                                                                         
where L  is the highest order derivative that is assumed to be easily invertible, R  is a 
linear differential operator of order less than L , Nu  represents the nonlinear terms, and 
g  is the source term.  The basic characteristic of He's method is to construct a 
correction functional for (2), which reads

  
t

0
nnnn1n ds)s(gu~Nu~R)s(uL)s()t(u)t(u ,                                     (3)                                     

where   is a Lagrange multiplier which can be identified optimally via variational 
theory (He [11-21], nu  is the nth approximate solution, and nu~  denotes a restricted 

variation, i.e., .0~ nu  To solve (2) by He's VIM, we first determine the Lagrange 

multiplier   that can be identified optimally via variational theory. Then, the successive 
approximations 0n),x(u n  , of the solution )x(u  can be readily obtained upon using 

the obtained Lagrange multiplier and by using any selective function 0u . The zeroth 

approximation 0u  may be selected by any function that just satisfies at least the initial 

and boundary conditions. With   determined, several approximations 0u),x(u nn  , 
follow immediately. Consequently, the exact solution may be obtained by using 

).(lim)( xuxu n
n 

                                                                       (4)                                                                                                                       

In summary, we have the following variational iteration formula for (2):
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2.1 Coupling Of Auxiliary Parameter And Correction Functional
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An unknown auxiliary parameter h  can be inserted into the correction functional (5) of 
He’s VIM. According to this assumption, we construct the following variational 
iteration formula:
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Of course, assuming the Lagrange multiplier , has been already identified. It should be 
emphasized that 1n),h,x(u n   can be computed by symbolic computation software 

such as Maple or Mathematica. The approximate solutions 1n),h,x(u n   contain the 
auxiliary parameter h . The validity of the method is based on such an assumption that 
the approximations 0u),h,x(u nn   converge to the exact solution )x(u . It is the 
auxiliary parameter h  which ensures that the assumption can be satisfied. In general, by 
means of the so-called h -curve, it is straightforward to choose a proper value of h
which ensures that the approximate solutions are convergent. In fact, the proposed 
combination is very simple, easier to implement and is capable to approximate the 
solution more accurately in a bigger interval. 
2.2 Coupling Of Auxiliary Parameter, Adomian’s Polynomials And Correction 
Functional
In this algorithm, we will be making the coupling of Adomian’s polynomials and the re-
formulated correctional functional (6) and obtain the following iterative scheme:
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where nA  are the so-called Adomian’s polynomials which can be generated according 

to the  specific algorithms Abbasbandy [1, 2]. 

3. NUMERICAL EXAMPLES

 In this section, we apply the proposed algorithm (6a) to solve two generalized Hirota–
Satsuma coupled KdV equations. Numerical results are compared with original 
variational iteration method (VIM).

Example 3.1 Consider the KdV equation (1) with the initial conditions (Wu [29], Yu 
[30], Yong [31]) 
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where 0c,c,k 10  , and   are arbitrary constants and the exact solutions are given by
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which is bell-type for )t,x(u and kink-type for )t,x(v and ).,( txw  According to the 
original VIM, we have the following variational iteration formula (1):

 

 

 
























 



















.dwu3www)t,x(w

,dvu3vvv)t,x(v

,dwv3uu3u
2

1
uuu

t

0
nnnnn1n

t

0
nnnnn1n

t

0 xnnnnnnn1n

xxxx

xxxx

xxxx

                                       (9)

Fig. 5 shows the absolute error of )t,x(u3 by the original VIM. The same situations 

exist for )t,x(v3 and )t,x(w3  which confirm that the obtained results by original VIM 

is not valid for large values of x  and t  in example 3.1. Now, using the recursive 
scheme (6a), and by selecting )0,x(uu0  , )0,x(vv0  , and )0,x(ww0  , we 

successively obtain
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where nA , nB , nC , nD  are the so-called Adomian’s polynomials and can be generated 

by using the specific algorithm defined in Abbasbandy [1-3]. First, to find the proper 
value of h  for the approximate solutions (11), we plot the so-called h-curve of
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 for the case 1x  and 1t   as 

shown in Fig. 1. According to these h-curves, it is easy to discover the valid region of h, 
which corresponds to the line segments nearly parallel to the horizontal axis. Here, we 
select 01.0h  . 
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The absolute error of coupling of VIM and auxiliary parameter results for )t,x(u3 , 

)t,x(v3 and )t,x(w3 when 5.1c0  , 1.0c1  , 1.0k  , 5.1 , ]100,0[x  and 

]100,0[t  are plotted in Figs. 2, 3 and 4, respectively.

                     
Fig. 2. Absolute error for the 3rd-order           Fig. 3. Absolute error for the 3rd-order
approximation   by the coupled form of          approximation by coupled form of
VIM for )t,x(u and 01.0h  .                          VIM for )t,x(v  and 01.0h  .

                  
Fig. 4. Absolute error for the 3rd-order             Fig. 5. Absolute error for the 3rd-order
approximation by coupled form of VIM           approximation by original VIM 
for )t,x(w  and 01.0h  .                                  for )t,x(u .

Example 3.2 Consider the generalized Hirota–Satsuma coupled KdV equation (1) with 
the initial conditions (Wu [29], Yu [30], Yong [31]) 
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where 0c,c,k 10  , and   are arbitrary constants and the exact solutions are 
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which is bell-type for )t,x(u and kink-type for )t,x(v and ).,( txw  Proceeding as before, 

the absolute errors are given for )t,x(u3 , )t,x(v3 and )t,x(w3 when 5.1c0  , 

1.0c2  , 1.0k  , 5.1 , ]100,0[x  and ]100,0[t  are plotted in Figs. 6, 7 and 8, 

respectively. Furthermore, the absolute error of )t,x(u3 by the original VIM is shown in 

Fig. 9 which confirms that the obtained results by original VIM is not valid for large 
values of x  and t  in example 3.2.

            
Fig. 6. Absolute error for the 3rd-order            Fig. 7. Absolute error for the 3th-order
approximation by coupled form of VIM          approximation by coupled form of VIM
for )t,x(u and 001.0h  .                                 for )t,x(v  and 001.0h  .
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Fig. 8. Absolute error for the 3rd-order          Fig. 9. Absolute error for the 3rd-order
approximation by coupled form of VIM        approximation by original VIM for )t,x(u .
for )t,x(w  and 001.0h  .                             
                                                      4. CONCLUSION

       In this paper, we coupled an unknown auxiliary parameter and Adomian’s 
polynomials in the correction functional of He’s VIM for generalized Hirota–Satsuma 
coupled KdV equations. Numerical results and graphical representations explicitly 
reveal the complete reliability of this combination. It is observed that the used coupling 
can be very effective in solving complicated nonlinear problems of physical nature.  
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