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1. INTRODUCTION

As they arise in the mathematical formulations of real-life problems, differential 
equations play a central role in displaying the interrelations between mathematics,
physical and biological sciences or engineering [1]. Hence studying the solution 
methods of differential equationbs has always been an important research area [2, 3, 4]. 
With the invention of computer algebra systems, ongoing efforts for finding new 
methods for computation of solutions of differential equations led to exciting 
developments. An understanding of the scope and built-in algorithms in such systems is 
very useful while applying them in practice as they typically allow for a 
variety of approaches (symbolic, numerical, and graphical) for solving 
differential equations.

In this paper, we give an overview of available methods for solving ordinary 
differential equations (ODEs) in closed form and give examples of these methods in 
action as they are being used in DSolve, the function for solving differential equations 
in Mathematica [5], a major computer algebra system. In section 2, we give a list of 
methods for solving first-order ODEs. Section 3 contains the methods for solving 
second or higher order linear ODEs. In section 4, we deal with second or higher order 
ODEs which are nonlinear. Section 5 contains the methods for handling systems of 
ODEs. The examples have been chosen to illustrate the structure of typical members of 
each class of ODEs and we have tried to give insight into the key ideas and algorithms 
which are used to solve them. We have also included applications of differential 
equations to population dynamics and differential geometry. The final section offers 
suggestions for pursuing the study of differential equations in greater depth using  
Mathematica.

2. FIRST-ORDER ODEs

As they also become useful when solving higher order equations and systems of 
ODEs, studying the solution methods of first-order ODEs is really important. For some 
classes of first-order ODEs solution methods are known and well-studied [3, 4]. Among
these classes of equations, we can list: linear, separable, Bernoulli, homogeneous, 
inverse linear, exact and Clairaut type first-order ODEs. Riccati, Abel [6] and Chini 
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type first-order ODEs are also well-studied and many sub-classes of these equations for 
which a solution can be found are identified. For first-order ODEs which do not fit into 
one of these classes, one can try: recognizing the defining differential equations of the 
special functions of physics, finding integrating factors or computing Lie symmetries of 
the ODE [7, 8, 9].

In the well-known books by Kamke [3] and Murphy [4], the standard methods 
are covered. When dealing with a first-order ODE, based on the statistics of equations 
listed in [3], one can choose the sequence of the methods to apply. A great portion of 
the 576 first-order ODEs listed in [3] can be solved with the standard methods for 
solving linear, separable, Riccati and Abel type equations. For example, 103 equations 
fit into the separable class.

2.1. Linear equations
Linear first-order ODEs are identified as )()()()(' xbxyxaxy  and the solution 

is given after integration:

   

In the above solution, ]1[K and ]2[K denote the dummy integration variables. To 
suppress possible messages generated by DSolve, we initially ran the following 
command:

2.2. Separable equations
First-order ODEs which can be written as ))(()()(' xygxfxy  are called separable 

equations and the solution is again given after integration:

The logistic equation ))(1()()(' xybxyxy  is a well-known separable equation. Now let 
us solve the logistic equation with the initial condition ay )0( :

Now let us plot the solution we found with various settings of the variables a and b :
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2.3. Bernoulli type equations
Equations of the form kxyxgxyxfxy )()()()()('  are called the Bernoulli type 

equations and the solution is found after integration. Following example is the equation 
1.34 from [3]:

2.4. Homogeneous equations
A first-order ODE of the form ))(,()(' xyxfxy  is called homogeneous if the 

substitution xxyxu /)()(  reduces it to a separable equation [4]:

2.5. Inverse linear equations
ODEs of the form ))(,()(' xyxfxy  are called inverse linear if ))(,(

1
xyxf becomes 

linear after substituting )(yxx  and yxy )( :

2.6. Riccati type equations
First-order ODEs of the form 2)()()()()()(' xyxcxyxbxaxy  are called Riccati 

type equations. The methods for solving the Riccati type equations are studied in [3, 4]:
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The following Riccati type ODE is first transformed into a linear second-order ODE and 
once the second-order ODE is solved, solution to the original first-order Riccati type 
ODE is found by inverse transformation:

Note that, in the above general solution if an initial condition such as 1)0( y has to be 
satisfied, this could be handled by using limit:

2.7. Chini type equations
Equations of the form )()()()()()(' xhxyxgxyxfxy n  are called Chini type first-

order ODEs and various cases when a solution is directly formed are given in [3, 4]:

2.8. Abel type equations
Equations of the form 32 )()()()()()()()(' xyxdxyxcxyxbxaxy  are called Abel 

equations of the first kind. Abel equations of the second kind are of the form 

)()()(
)()()()()()()( 32

)(' xyxfxe
xyxdxyxcxyxbxaxy 

 . The cases where direct solution methods are available 

are studied in [3, 4] and [6]:
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To verify this implicit solution, we can do:

2.9. Exact equations (and computing integrating factors)
A first-order ODE is exact if ))(,())(,()(' dx

d xyxRxyxfxy  . For an ODE 
))(,()(' xyxfxy  , if ))(,()))(,()('())(,( dx

d xyxRxyxfxyxyx  , then ))(,( xyx is an 
integrating factor. This means that you make the ODE exact if you can find an 
integrating factor [3, 4]:

2.10. Lie symmetry methods
The knowledge of a symmetry in the form of an infinitesimal generator reduces 

the order of an ODE which typically simplifies the problem. DSolve function checks for 
standard types of symmetries in the given ODE and uses them to return the solution [7, 
8, 9].

For the following ODE 1.357 of [3], DSolve uses the symmetry methods to find
the solution:

For the ODE 1.188 of [3], DSolve returns an implicit solution:

2.11. Clairaut equations
ODEs of the form ))('()(')( xyfxyxxy  are called Clairaut equations [3]:
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2.12. Recognizing defining equations of special functions
Several elliptic functions are defined by first-order ODEs as illustrated below for 

the WeierstrassPPrime function:

3. LINEAR SECOND OR HIGHER ORDER ODEs

There are various standard methods for solving linear second or higher order 
ODEs. Equations with constant coefficients are solved using the roots of the 
characteristic equation. The Euler-Legendre type equations can be transformed into 
equations with constant coefficients. Some equations are exact and so can be directly 
integrated whereas some can be directly integrated after multiplying with an integrating 
factor. For second-order equations with rational coefficients there is the well-known 
Kovacic algorithm for finding the Liouvillian solutions [10]. For second or higher order 
equations with rational coefficients, in [11, 12] and [13] the algorithms for finding 
rational and exponential solutions are given. The hypergeometric PFQ type solutions 
are found using the algorithms in [14] and [15]. In [16] an algorithm using the concept 
of symmetric powers, and in [17] an algorithm using the concept of symmetric products 
are given. There are also various factorization algorithms for higher order ODEs in [18] 
and [19].

3.1. ODEs with constant coefficients
The general solution of linear ODEs with constant coefficients are found by 

using the roots of the characteristic equation for the ODE:

3.2. Euler-Legendre type equations
The following equation is an Euler-Legendre ODE which can be solved by 

transforming it to a linear ODE with constant coefficients:

3.3. Exact equations (and integrating factors)
The following is an example of an exact ODE since the left-hand side can be 

integrated to a first-order expression whose solution gives one element of the general 
solution of the second-order ODE:
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3.4. Recognizing the defining equations of special functions
There are many physical processes which are modeled by linear second or 

higher order ODEs. DSolve can recognize the defining ODEs for many special 
functions:

3.5. Kovacic algorithm
This is a standard algorithm for solving second-order linear homogeneous ODEs 

with rational function coefficients [10]:
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In the above solution, the piece with C[1] is found by the Kovacic algorithm, and the 
second independent solution is found by reduction of order.

3.6. Rational and exponential solutions
For finding rational solutions of linear ODEs with rational coefficients the 

algorithms in [11] and [12], and for finding exponential solutions the algorithm in [13] 
can be used. Here is a nice example where we can see a nice harmony of the methods 
for rational solutions, reduction of order and recognizing special functions:

3.6. Hypergeometric PFQ type solutions
Hypergeometric PFQ type solutions are found by using the algorithms in [14] 

and [15]. The following example is equation 2.16 from [3] with 2,1  cba :

3.7. Symmetric power and symmetric product solutions
Given a second-order linear ODE with basis },{ vu for its general solution, we can 

construct an ODE of order )2(n whose general solution has basis },,,{ 121  nnn vvuu  . 
This higher order equation is called the )1( n th symmetric power of the second-order
ODE [16]. Following example is a third order ODE which is solved using the second
symmetric power of the Legendre's equation:

Given a pair of second-order linear ODEs with the bases },{ sr and },{ vu , it is 
possible to construct a fourth order ODE whose general solution has the basis
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},,,{ vsusvrur . This fourth order ODE is called the symmetric product of the second-
order equations [17]:

Here is the solution of the symmetric product of these ODEs:

3.8. Factorization
DSolve has the implementations of factorization algorithms in [18] and [19]:

3.9. Equations solved after a transformation
DSolve uses a number of transformation rules in order to solve ODEs whose 

coefficients are rational in either trigonometric, hyperbolic or exponential functions. 
The basic idea is to transform the given ODE into one whose coefficients are rational in 
the new independent variable.

In the following example, we use DSolve to find quantum eigenfunctions for a 
modified Pöschl–Teller potential, which requires the solution of a linear second-order 
ODE with hyperbolic coefficients:

4. NONLINEAR SECOND OR HIGHER ORDER ODEs

DSolve has special methods for solving important classes of nonlinear ODEs 
which arise in applications. This includes the standard methods for handling the 
equations with missing variables, exact equations, and homogeneous equations [3, 4], 
computing integrating factors due to the algorithms in [20], and computing the Lie 
symmetries [9] and applying transformation rules that reduce the equation to one of the 
standard types.
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4.1. Equations with missing variables
In the following example, the differential equation does not depend explicitly on 

the independent variable x , and a first integral can be found after making the 
substitution )(' xyp  :

4.2. Transformations
It is sometimes possible to remove the explicit dependence of an ODE on the 

independent variable by using a transformation. For instance, the following ODE is 
solved by making the transformation xxuxy  )()( , which leads to a differential equation 
for )(xu with missing independent variable x :

4.3. Homogeneous equations
The left-hand side of the following nonlinear ODE is a homogeneous function of 

degree 2 in the variables )}(''),('),({ xyxyxy , and the substitution  ))(exp()( dxxuxy

reduces the problem to solving a first-order differential equation in )(xu :

4.3. Exact equations (and integrating factors)
In [20] methods for finding integrating factors of the form ))(,( xyx , ))(',( xyx , 

and ))('),(( xyxy are presented. 2)('
1

xyx
 is used as an integrating factor for solving the 

following ODE:

5. SYSTEMS OF ODEs

DSolve has a variety of methods for solving systems of ODEs with constant or 
variable coefficients. Systems with higher-order derivatives are internally reduced to 
first-order systems and, wherever possible, the system is decoupled to reduce the 
problem to solving a set of independent single ODEs. We will now give a few examples



Methods in Mathematica for Solving Ordinary Differential Equations794

for solving systems of ODEs with increasing levels of complexity to illustrate the 
techniques used for solving them.

5.1. Systems with constant coefficients
Linear systems with constant coefficients are solved by applying matrix 

exponentiation to the coefficient matrix:

5.2. Systems of decoupled equations
The following example illustrates a system composed of decoupled equations in 

which each equation involves a single dependent variable only. In such cases, the 
equations are solved independently using the available methods for single ODEs.

5.3. Systems solved by one at a time integration
The following system of ODEs is solved by integrating the first equation which 

involves only )(tx  and then substituting the solution for )(tx in the second equation to 
obtain a closed-form solution for )(ty :

5.4. Systems with patterns
The following linear system of ODEs is solved in closed form as the coefficient

matrix has a special structure:

5.5. Rational solutions
For linear systems with rational coefficients, the algorithms in [11, 12] for 

finding rational solutions are used:
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5.6. Application: Solving the equations for a Cornu spiral
The following equations describe a Cornu spiral. This is a plane curve through 

the origin whose curvature is equal to the parameter value s  at every point.

The solution of the ODEs contains Fresnel functions.

A graph of the curve clearly shows that the curvature becomes large as s  approaches 
infinity:

6. CONCLUSION

Further information on DSolve is available on the documentation page for this 
function [21]. The tutorial [22] gives a comprehensive overview of the functionality 
available in DSolve for symbolic solutions of differential equations, along with further 
references for this topic. Numerical solutions of differential equations can be computed
using the NDSolve function [23] in Mathematica.

We hope that the examples and ideas outlined in this paper will be useful for 
elementary and advanced courses on ordinary differential equations, as well as for 
solving differential equations which occur in research and design problems in practice.
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