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Abstract- In this study, free vibration of an Euler-Bernoulli beam resting on a variable 

Winkler foundation is considered. Structures which are supported along their length 

such as beams or pipelines resting on elastic soil are very commonly modeled with a 

Winkler foundation. In this problem, the elastic coefficient of the foundation is variable 

along the beam major axis. Constant, linear and parabolic variations are considered. The 

problem is handled for three different boundary conditions: simply supported-simply 

supported, clamped-clamped and cantilever (clamped-free) beams. The governing 

differential equations of the beam are solved by using Differential Transform Method 

(DTM). DTM is an easy transformation technique based on Taylor expansion series, 

providing high accuracy. 

Key Words- Differential Transform Method, DTM, Elastic soil, Vibration, Beam, 

Pipeline 

 

1. INTRODUCTION 

 

During the past decades, various models have been introduced for beams resting 

on elastic foundations such as soil etc. Those structures supported along their main axis 

are represented by several approaches such as Winkler, Pasternak or Vlasov, Flonenko - 

Borodich foundations. The Winkler modeling, one of the most fundamental methods 

was suggested in 1867 by Winkler. The approach introduces a linear algebraic 

relationship between the normal displacement of the structure and the contact pressure 

[1]. The Winkler Model represents the soil medium by a set of mutually independent 

spring elements. Such an approach grants simplicity in obtaining closed-form solutions 

[2,3]. Moreover, it gives the chance of obtaining a nonlinear behavior with lower 

computational effort compared to other methods [4-8].  

There are numerous studies on the Winkler elastic foundation modeling in 

literature. Zhou [9] and Eisenberger [27] studied a general solution to vibrations of 

beams on a variable Winkler elastic foundation. Auersch [10] carried out a study about 

infinite beams on half-space compared with finite and infinite beams on a Winkler 

support. Eisenberger and Clastornik [11] examined the vibrations and buckling of a 

beam on a variable Winkler elastic foundation. Gupta et al. [12] presented buckling and 

vibrational behavior of polar orthotropic circular plates with linearly varying thickness. 

Also, Ruge and Birk [13] studied the dynamic behavior of infinite beam models, giving 

importance on asymptotic behavior at high frequencies. Dynamic response of a 

Timoshenko beam with a moving concentrated mass was solved by Lee [14]. Huang 

and Thambiratnam [15] who worked on the deflection of plates with moving accelerated 
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loads by using Winkler model and the finite strip method. Oz and Pakdemirli has 

studied on resonances of shallow beams resting on elastic foundations [26]. Also, some 

researchers [16-17] studied the analysis of elastic foundations with Winkler-Pasternak 

models. In addition to differential transform method for structures on elastic foundation,  

Differential Quadrature Method (DQM) and Harmonic DQ methods are also widely 

used, where some of the studies of this method by Civalek [28-29] could be examined. 

This study covers the free vibration of an Euler-Bernoulli beam resting on a 

variable Winkler elastic foundation. The elastic variation through the beam is handled in 

three cases: Constant, linear and parabolic variations. Boundary conditions of the beam 

are taken to be simply supported-simply supported, clamped-clamped and clamped-free 

ends, respectively. In order to find the natural frequencies, DTM is applied to the 

governing differential equations and boundary conditions. By using this method, these 

equations are transformed to a set of algebraic equations whose solutions give the 

desired results with an excellent accuracy compared with the exact results in open 

literature.  

 

2. EQUATION of MOTION and BOUNDARY CONDITIONS 

 

The governing differential equation of motion for an Euler-Bernoulli beam is 

expressed as follows; 
4 2

4 2

( , ) ( , )
( ) ( , ) 0

w x t w x t
EI A k x w x t

x t


 
  

 
,    0 x l   (1) 

where l is the length, EI is the bending rigidity, ρA is the mass per unit length, k(x) is the 

elastic coefficient of Winkler foundation and ( , )w x t  is the displacement. 

Figure 1 represents the beam with constant cross-section laying on elastic Winkler 

foundation.   

 

 
 

Figure 1: Beam structure resting on Winkler foundation 

 

The relevant boundary conditions are;  

Simply supported-simply 

supported: 

2
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 at 0,x l  (2) 
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Cantilevered: 0
w

w
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Assuming the displacement function as follows, where ω is the circular natural 

frequency;  

l 

k(x) 



 

 

Free Vibration Analysis of Beams on Variable Winkler Elastic Foundation 

 

775 

( , ) ( ) i tw x t w x e   (5) 

and substituting this into the governing differential equation Eq. 1 takes the form: 
4

2

4
( ) 0

w
EI A w k x w

x
 


  


 (6) 

The elastic foundation is represented by a set of linear springs in Winkler modeling. In 

this study, Winkler elastic foundation can vary linearly or parabolically or even 

constantly through the length of the beam. Variation is given below for constant, linear 

and parabolic cases, respectively: 

 

3. NON-DIMENSIONALIZATION 

 

Defining a non-dimensional coordinate 
x

l
   , the equation of motion is obtained as; 

4
4

4
( ( ) ) ( ) 0

w
K w  




  

  

(10) 

Where dimensionless parameters are: 

x

l
 

,

w
w

l


,

4( )
( )

k
K

EI


 

,

2 4
4 A l

EI

 
 

 
(11) 

Additionally, dimensionless boundary conditions can be expressed as follows; 

Simply supported  
2

2
0

w
w




 


  at 0,1   (12) 

Clamped-clamped: 0
w

w



 


    at 0,1   (13) 

Cantilever: 0
w

w



 


  at 0   and 
2 3

2 3
0

w w

 

 
 

 
 at 1   (14) 

and variation of elastic coefficient of Winkler foundation is expressed as; 

 

4. DIFFERENTIAL TRANSFORM METHOD 

 

Differential transform method is an efficient technique for solving differential equations 

by iteration with considerable accuracy and easiness. It was first introduced by Zhou in 

1986 [18], who applied differential transformation not only to linear but also to non-

linear initial value problems in electrical circuit analysis. Many scientists [19-24] have 

Constant: 0( )k x k  (7) 

Linear: 0( ) (1 )k x k x  ,   0 1   (8) 

Parabolic: 
2

0( ) (1 )k x k x  ,   0 1   (9) 

Constant: 0( )K K   (15) 

Linear: 0( ) (1 )K K    (16) 

Parabolic: 
2

0( ) (1 )K K    (17) 
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studied DTM in order to examine a variety of applications, such as the solution of non-

linear systems, eigen-value, and initial value or boundary value problems. 

Differential transform is a simulation method which depends on Taylor Series 

expansion. The prime advantages of DTM, which make the method superior to others, 

are its accuracy, simplicity and rapidity. In contrast to higher order Taylor series 

method, DTM does not need the symbolic calculation of derivatives. It uses some 

transformation rules to transform original functions, including boundary conditions, into 

a set of algebraic functions [20]. Solving the algebraic set by iteration, desired results 

are obtained with great accuracy. 

A function f(x), analytical in domain D could be represented by a power series around 

any x=x0 point in the current domain. The differential transform of the function f(x) is 

given by 

0

1 ( )
( )

!

r

r

x x

d f x
F r

r dx


 
  

 
 (18) 

where F(r) is the differentially transformed function and r is the member of the non-

negative integer domain Z
+
. Then the inverse transformation is described as; 

0

0

( ) ( ) ( )r

r

f x x x F r




   (19) 

Combining Eqs. 18 and 19, the following equation is obtained: 

0

0

0

( ) ( )
( )

!

r r

r
r x x

x x d f x
f x

r dx



 

 
  

 
  (20) 

Considering f(x) by a series of finite terms, Eq. 20 is arranged as follows, with assuming 

the residual terms to be negligibly small. The increase of convergence is determined by 

the value q.  

0

0

0

( ) ( )
( )

!

r rq

r
r x x

x x d f x
f x

r dx 

 
  

 
  (21) 

Basic transformation rules depending on the DTM for differential equations and 

boundary conditions are tabulated in Tables 1 and 2, respectively. 

 

Table 2: Theorems of differential transform method for equation of motion 

 Original Function  Transformed Function 

 ( ) ( ) ( )f x g x h x    ( ) ( ) ( )F k G k H k   

 ( ) ( )f x g x   ( ) ( )F k G k  

 ( ) ( ) ( )f x g x h x   
0

( ) ( ) ( )
k

l

F k G l h k l


   

 
( )

( )
n

n

d g x
f x

dx
   

( )!
( ) ( )

!

k n
F k G k n

k


   
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Table 3: Theorems of differential transform method for boundary conditions 
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5. FORMULATION WITH DTM 

 

By using the DTM rules tabulated in Tables 1 and 2, below analytical expressions 

are obtained. 

Constant modulus: 

For constant elastic coefficient of Winkler foundation, ( ) (0)K K  , the differential 

equation takes the form: 
4

4

04
( ) 0

d w
K w

d



    (22) 

Applying DTM to the above equation, following recurrence relation is obtained: 
4

0( 4) ( )
( 4)( 3)( 2)( 1)

K
W r W r

r r r r

 
 

   
 (23) 

Linear modulus: 
4

4

0 04
( ) 0

d w
K w K w

d
  


     (24) 

4

0
0( 4) ( ( ) ( 1))

( 4)( 3)( 2)( 1)

K
W r W r K W r

r r r r





   

   
, 1r   (25) 

Parabolic variation: 
4

4 2

0 04
( ) 0

d w
K w K w

d
  


     (26) 

4

0 ( 2)
( 4) ( )

( 4)( 3)( 2)( 1) ( 4)( 3)( 2)( 1)

K W r
W r W r

r r r r r r r r

  
  

       
, 2r   (27) 
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For example, W(0) and W(2) coefficients of the beam with both ends simply supported, 

are obtained by using boundary conditions, and W(1) and W(3) are set to unknown 

constants, namely; 

(0) 0W  , 1(1)W c , (2) 0W  , 2(3)W c  (28) 

Hereby, the calculation procedure is given only for parabolic variation. Using Eq. 27 

and Eq. 28, W(r)’s are evaluated in terms of  0 1, ,K c and 
2c . 

(4) 0W   (29) 

4 0 1( )
(5)

240

K c
W

 
  (30) 

(6) 0W   (31) 

4 0 2 1
( )

(7)
840 840

K c c
W

 
   (32) 

              

Similar procedure is followed for the other two boundary conditions; clamped-clamped 

and cantilever beam. 

In order to give an idea to the reader about the accuracy, free vibration case of an Euler-

Bernoulli beam without foundation is compared to the Reference [25]. The Winkler 

elastic parameter is set to zero and the above DTM equations are ran. The results are 

given below: 

Table 1: Comparison of DTM with exact solutions 
Mode DTM [25] 

1 1.875104069 1.8751014 

2 4.694091133 4.694091 

3 7.854757438 7.854757 

4 10.99554073 10.995541 

 

As seen from the above table, differential transform method provides the satisfying 

accuracy. The method also is also accurate for the free vibrational modes of the beam 

lying on Winkler foundation, which is the main subject of the study and where the 

results are given with comparison to the open literature in the Tables 2-7. Through the 

study, 50 iteration has been used and for the solutions.  

The convergence of the first six natural frequency set is introduced at Figure 2. At least 

55 terms should be evaluated for five-digit precision for the 6th natural frequency. By 

definition of differential transform method, as the higher terms are evaluated, the more 

natural frequencies are obtained.  
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Figure 2: Convergence of natural frequencies with N 

 

6. NUMERICAL RESULTS 

 

Frequency parameters λi for different boundary conditions are tabulated in this section. 

In particular the results of the simply supported-simply supported case at different K0 

values are given extensively. The present results are compared with various results in 

open literature. 

 

6.1 Simply Supported-Simply Supported Beam 

Frequency variation for simply supported-simply supported beam at constant elastic, 

linear and parabolic modulus is shown at Figure3, 4 and 5, respectively. 
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Figure 3: Frequency variation of S-S beam with constant modulus 
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Figure 4: Frequency variation of S-S beam with linear modulus 
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Figure 5: Frequency variation of S-S beam with parabolic modulus 

Frequency parameters for above conditions are listed at Table 4, 5, and6, respectively. 

 

 

Table 4: Frequency parameters for S-S beam at constant elastic modulus 

 

* Exact results [9]    

K0 λ1 λ 2 λ 3 λ 4 λ 5 λ 6 λ 7 λ 8 

10 3,219291184 6,293239752 9,427762796 12,56763025 15,70860826 18,84992919 21,99138364 25,13289871 

 
(3,219)* (6,293) (9,428) (12,568) (15,709) (18,850) (21,991) (25,133) 

50 3,484424567 6,33298318 9,439673875 12,57266501 15,71118743 18,85142205 21,99232383 25,13352858 

 
(3,484) (6,333) (9,440) (12,573) (15,711) (18,851) 21,992 (25,134) 

100 3,748364250 6,381633293 9,454499603 12,57894997 15,71440961 18,85328763 21,99349889 25,13431586 

 
(3,748) 6,382 (9,454) (12,579) 15,714 18,853 (21,993) (25,134) 

200 4,152776516 6,475725032 9,483943557 12,59149170 15,72084802 18,85701712 21,99584846 25,13589020 

 
(4,153) 6,476 (9,484) (12,591) (15,721) (18,857) (21,996) 25,136 

500 4,943880409 6,735814452 9,570668085 12,62889372 15,74011595 18,86819235 22,00289264 25,14061144 

 
(4,944) (6,736) (9,571) (12,629) (15,740) (18,868) (22,003) (25,141) 

1000 5,755620336 7,112107040 9,710176091 12,69050177 15,77207279 18,88677371 22,01461793 25,14847427 

 
(5,756) 7,112 (9,710) 12,691 (15,772) (18,887) (22,015) 25,149 

1500 6,321993397 7,436673846 9,843917717 12,75122540 15,80383655 18,90530040 22,02632451 25,15632973 

 
(6,322) 7,437 (9,844) (12,751) 15,804 (18,905) (22,026) (25,156) 

2000 6,767383474 7,723570755 9,972420206 12,81109369 15,83540994 18,92377278 22,03801246 25,16417784 

 
(6,767) (7,724) (9,972) (12,811) (15,835) (18,924) (22,038) (25,164) 
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Table 5: Frequency parameters for S-S beam at linear elastic modulus 
α=0,2 

λ1 λ 2 λ 3 λ 4 λ 5 λ 6 λ 7 λ 8 
K0 

10 3,211771150 6,292236540 9,427464444 12,56750430 15,70854376 18,84989187 21,99136013 25,13288352 

50 3,454480416 6,328057675 9,438187563 12,57203601 15,71086511 18,85123547 21,99220627 25,13345065 

100 3,699921549 6,371998414 9,451540469 12,57769379 15,71376534 18,85291457 21,99326387 25,13415880 

200 4,080996862 6,457257919 9,478078411 12,58898659 15,71956102 18,85627142 21,99537858 25,13557555 

500 4,836530578 6,694670148 9,556387790 12,62268461 15,73690986 18,86633128 22,00171909 25,13982521 

1000 5,618515814 7,042035261 9,682794448 12,67825778 15,76569823 18,88306219 22,01227444 25,14690373 

1500 6,165920336 7,344688366 9,804455230 12,73311253 15,79433039 18,89974892 22,02281476 25,15397413 

2000 6,596856775 7,614150729 9,921767296 12,78727024 15,82280832 18,91639176 22,03334004 25,16103879 

 

 
Table 6: Frequency parameters for S-S beam at parabolic elastic modulus 

 

β=0.2 
λ1 λ 2 λ 3 λ 4 λ 5 λ 6 λ 7 λ 8 

K0 

10 3,215045955 6,292596434 9,427567258 12,56754708 15,70856552 18,84990441 21,99136804 25,132886950 

50 3,467585253 6,329826163 9,438699854 12,57224968 15,71097386 18,85129819 21,99224569 25,133476400 

100 3,721190961 6,375461338 9,452560641 12,57812054 15,71398272 18,85303997 21,99334274 25,134209970 

200 4,112601888 6,463908152 9,480101377 12,58983775 15,71999529 18,85652210 21,99553618 25,135681680 

500 4,883849037 6,709562392 9,561319893 12,62479524 15,73799190 18,86695697 22,00211273 25,140088566 

1000 5,678785297 7,067574639 9,692271528 12,68242292 15,76785029 18,88431020 22,01306060 25,147429051 

1500 6,234265490 7,378411599 9,818140700 12,73927864 15,79754069 18,90161591 22,02399227 25,154762587 

2000 6,671219285 7,654476911 9,939366318 12,79538616 15,82706529 18,91887441 22,03490765 25,162090591 
 

 

6.2 Clamped-Clamped Beam 

Table 7 shows that the frequency parameters for clamped-clamped beam. 

Table 7: Frequency parameters for C-C beam 

K0 Constant Linear ( α=0.2) Parabolic  (β=0.2) 

 λ1 λ2 λ3 λ1 λ2 λ3 λ1 λ2 λ3 

1 4,7324 7,85372 10,9958 4,73217 7,85367 10,9958 4,73227 7,85369 10,9958 

[24]* 4,730042 7,853203 10,99559 - - - - -  

10 4,75349 7,85836 10,9975 4,75116 7,85785 10,9973 4,75222 7,85805 10,9974 

100 4,95039 7,90432 11,0144 4,92965 7,89925 11,0125 4,93914 7,90125 11,0132 

1000 6,22391 8,32512 11,179 6,11724 8,28151 11,1611 6,16646 8,29879 11,1677 

* Squared results are tabulated in the reference for K0=1 

 

6.3 Cantilever Beam 

Frequency parameters for cantilever (C-F) beam can be seen in the Table 8. 

Table 8: Frequency parameters for cantilever (C-F) beam 

K0 Constant Linear ( α=0.2) Parabolic  (β=0.2) 

 λ1 λ2 λ3 λ1 λ2 λ3 λ1 λ2 λ3 

1 1,91192 4,69651 7,85527 1,90613 4,69622 7,85522 1,90708 4,69631 7,85524 

[24]* 1,911926 4,696509 7,855272 - - - - - - 

10 2,1746 4,71808 7,85991 2,13427 4,71525 7,85936 2,14102 4,71611 7,85954 

100 3,25578 4,9191 7,90584 3,13189 4,89398 7,90045 3,15299 4,90169 7,9022 

1000 5,64071 6,20825 8,32642 5,39828 6,08174 8,28005 5,43684 6,12325 8,29529 

* Squared results are tabulated in the reference for K0=1 
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The study covers the dynamic response of an Euler-Bernoulli beam in free vibration. 

The beam with constant cross-sectional area is supported along its length by variable 

Winkler elastic foundation. Winkler modeling is frequently applied to the beams and 

pipelines resting on an elastic soil. Such modeling introduces the elastic foundation by a 

set of mutually independent spring elements. In the present work, the elastic coefficient 

of the spring set is variable throughout the major axis of the beam. Three cases are 

studied: Constant, linear and parabolic variations. Also, three boundary cases are 

concerned: Simple support-Simple Support, Clamped-Clamped and Clamped-Free 

(cantilever) beams.  Although the governing differential equations and boundary 

conditions are determined, they are not easily solvable. Hereof, corresponding studies 

which aim to solve the system equations with different approaches can be found in 

literature. In this study, the system equations are solved by Differential Transform 

Method, which is a succeeding and easy transformation technique. By solving the 

algebraic functions set, which are the transforms of differential equations, natural 

frequencies are obtained. The results are tabulated and compared with the former 

studies and a great accuracy to exact results is obtained. 
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