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Abstract- In this paper, an aproximate analytical method called the differential 

transform method (DTM) is used as a tool to give approximate solutions of nonlinear 

oscillators with fractional nonlinearites. The differential transformation method is 

described in a nuthsell. DTM can simply be applied to linear or nonlinear problems and 

reduces the required computational effort. The proposed scheme is based on the 

differential transform method (DTM), Laplace transform and Padé approximants. The 

results to get the differential transformation method (DTM) are applied Padé 

approximants. The reliability of this method is investigated by comparison with the 

classical fourth-order Runge–Kutta (RK4) method and Cos-AT and Sine-AT method. 

Our the presented method showed results to analytical solutions of nonlinear ordinary 

differential equation. Some plots are gived to shows solutions of nonlinear oscillators 

with fractional nonlinearites for illustrating the accurately and simplicity of the 

methods. 

Key words- Padé approximants, Modified differential transform method, Nonlinear 

oscillators with fractional nonlinearites. 

 

1. INTRODUCTION 

 

The modified differential transform method (MDTM) will be employed in a 

straightforward manner without any need of linearization or smallness assumptions. 

DTM was first applied in the engineering domain by [1,2]. DTM provides an efficient 

explicit and numerical solution with high accuracy, minimal calculations, avoidance of 

physically unrealistic assumptions. However, DTM has some drawbacks. By using 

DTM, we obtain a series solution, in practice a truncated series solution. This series 

solution does not exhibit the periodic behavior which is characteristic of oscillator 

equations and gives a good approximation to the true solution in a very small region. In 

order that improve the accuracy of DTM, we use an alternative technique which 

modifies the series solution for non-linear oscillatory systems as follows: we first apply 

the Laplace transformation to the truncated series obtained by DTM, then convert the 

transformed series into a meromorphic function by forming its Padé approximants[3], 

and finally adopt an inverse Laplace transform to obtain an analytic solution, which 

may be periodic or a better approximation solution than the DTM truncated series 

solution. Ebaid [6] have developed a so-called Cosine-AT and Sine-AT method for 

solutions of nonlinear oscillators with fractional nonlinearites. 
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The aim of this paper is to extend the differential transformation method 

proposed by Zhou[1] to solve nonlinear oscillators with fractional nonlinearites. The 

results of the modified differential transformation method are numerically compared 

with conclusions acquired by Cosine-AT and Sine-AT method and the fourth-order 

Runge–Kutta method. The MDTM is benefical to obtain exact and approximate 

solutions of linear and nonlinear oscillations equations. No necessity to linearization or 

discretization, large computational work and round-off errors is avoid. It has been used 

to solve efficiently, easily and accurately a large class of nonlinear problems with 

approximations. These approximations converge rapidly to exact solutions [6–19, 24-

28]. 

2. DIFFERENTIAL TRANSFORM METHOD 

 

As in [6–19, 24-28]. the basic definition of the differential transformation 

method are gived as follows: 

Differential transform of function ( )y t  is defined as follows: 

 
 

0

1
,

!

k

k

t

d y t
Y k

k dt 

 
  

  

             (1) 

where ( )y t is the original function and  Y k is the transformed function, which is also 

called the T-function. In this paper, the lowercase and uppercase letters represent the 

original and transformed functions respectively. 

The inverse differential transform of  Y k is defined as: 

    
0

.k

k

y t Y k t




          (2) 

Combining Eqs. (1) and (2), we obtain: 

 
 

0
0

.
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k k

k
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d y t t
y t

kdt






 
  

  
         (3) 

From the definitions (1) and (3), it is easy to obtain the following mathematical 

operations: 
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Table 1 The fundamental operations of the differential transformed method 

Original function Transformed function 

   y t cw t     Y k cW k  

 
 dw t

y t
dt

       1 1Y k k W k    

 
 i

i

d w t
y t

dt
          1 2 ...Y k k k k i W k i      

     y t u t v t       
0

k

r

Y k U r V k r


   

       y t u t v t w t         
0 0

k k s

s m

Y k U s V m W k s m


 

    

     
0

t

y t u t v t dt      
 

1

1
, 1

k

r

V r
Y k U k r k

r


    

 

2.1. Padé Approximation 

 A rational approximation to ( )f x  on  ,a b  is the quotient of two polynomials 

( ) and ( )N MP x Q x  of degrees N and M, respectively. We use the notation 
, ( )N MR x  to 

denote this quotient. The 
, ( )N MR x  Padé approximations to a function ( )f x  are given by 

[3] 

 ,

( )
( )    for  a x b.

( )

N

N M

M

P x
R x

Q x
         (4) 

 The method of Padé requires that ( )f x  and its derivative be continuous at 

0x  . The polynomials used in (4) are  

 2

0 1 2( ) ... N

N NP x p p x p x p x          (5) 

 2

1 2( ) 1 ... M

M MQ x q x q x q x           (6) 

The polynomials in (5) and (6) are constructed so that ( )f x  and 
, ( )N MR x  agree at 0x   

and their derivatives up to N M  agree at 0x  . In the case 0 ( ) 1Q x  , the 

approximation is just the Maclaurin expansion for ( )f x . For a fixed value of N M  

the error is smallest when ( ) and ( )N MP x Q x  have the same degree or when ( )NP x  has 

degree one higher than ( )MQ x . 

 Notice that the constant coefficient of MQ  is 0 1q  . This is permissible, because 

it notice be 0 and 
, ( )N MR x  is not changed when both ( ) and ( )N MP x Q x  are divided by 

the same constant. Hence the rational function 
, ( )N MR x  has 1N M   unknown 

coefficients. Assume that ( )f x  is analytic and has the Maclaurin expansion 

 2

0 1 2( ) ... ...,k

kf x a a x a x a x           (7) 

And from the difference ( ) ( ) ( ) ( ) :M Nf x Q x P x Z x   
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0 0 0 1

M N
i i i i

i i i i

i i i i N M

a x q x p x c x
 

     

          (8) 

The lower index 1j N M    in the summation on the right side of (8) is chosen 

because the first N M  derivatives of ( )f x  and 
, ( )N MR x  are to agree at 0x  . 

 Equating the coefficients of the powers of kx  are set equal to zero for 

0,1,2,...,k N M  , we obtain a system of linear equations. Maple can be used to solve 

these linear equations.  

 

 

3. APPLICATIONS 

 

In this section, we will apply the differential transformed method to nonlinear 

oscillators with fractional nonlinearites. 

 

3.1. Example 1 

Consider the nonlinear differential equation[20] 

 
2

2 2
0,

1

d u u

dt u
 


        (9) 

with the initial conditions 

    0 , 0 0.u u          (10) 

Firstly, we suppose that  

  
2

,
1

u
f u

u



        (11) 

then we take a differentiation of  f u  with respect to t  to obtain 

 2 2 .
df df du du

u uf
dt dt dt dt

          (12) 

Now, the application of the differential transform to Eq.(9), (10) and (12) give 

the following recurrence relations for 0 :k   
   

 
 

 

      

                   
1

1 2

2 2

1 1 2 2 1 1 2

0 0

0 , 1 0.

0
0 .

11 0

1 2 2 0.

1 1 1 1 1 1 2 1 .
kk

k k

U U

U
F

U

k k U k F k

k F k k U k k k U k k U k F k k U k k F k







 

 

 


    

               

(13) 

Using these recurrence relations by taking 6N  , we obtain a system of algebraic 

equations for 0,...,4k  . By solving this equations fort pense he values 

(2), (3),..., (6)U U U   by using MAPLE, we get 

 
 

   
 

 
   

 

 

2 2 4

3 52 2 2

1 1 20 7
2 , 3 0, 4 , 5 0, 6 .

2 1 24 1 720 1
U U U U U

    

  

   
    

  
          

(14) 
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 
 

 

 

 

2 2 4

2 4 6

3 52 2 2

1 1 20 7
( ) + .

2 1 24 1 720 1
u t t t t

    


  

  
  

  
                          (15) 

Substituting 0.1   into Eq.(15) we obtain the equation, 

 2 4 6( ) 0.1-.0495049505 +.00400368436 -.0001058109133 .u t t t t     (16) 

We apply Laplace transformation to (16), which yields 

    3 5 7

0.3 .099009901 .09608842464 .07618385758
- - .L u s

s s s s
    (17) 

For simplicity, let 
1

s
t

 ; then 

   3 5 70.1 -.099009901 +.09608842464 -.07618385758 .L u t t t t t    (18) 

The [4/4] Padé approximant gives 

 
3

2 4

( )

4 .09999999998 +.8773649552
.

4 .9999999998+9.763748562 +8.706193539u t

t t

t t

 
 

 
   (19) 

Recalling 
1

t
s

 , we obtain [4/4] in terms of s 

3

4 2

( )

9 9

11 11

4 .4999999999*10 .4386824776*10

4 4999999999 +.4881874281*10 .435309677*10
.

u t

s s

s s






 
  

   (20) 

By using the inverse Laplace transform to the [4/4] Padé approximant, we obtain the 

modified solution 

( ) -.00003207215013cos(2.961613547 ) .1000320721cos(.9962899989 ).u t t t            (21) 

[6] the cosine-AT approximate periodic solution obtain in following: 

approx ( ) -.000032cos(2.96161 ) .100032cos(.99629 ).u t t t     (22) 

 

Table 2. Approximate periodic solution using different Padé approximants at 0.1   

 3/ 3  -.002020202085 .1020202021cos(.9851360760 )t  

 3/ 4  .1cos(.9950371903 )t  

 4 / 4  -4-.3207215013*10 cos(2.961613547 ) .1000320721cos(.9962899989 )t t  

 4 / 5  .1cos(.9950371903 )t  

 5/ 4  -.001000334325cos(1.812894486 ) .09789910457cos(1.022217551 ) .003101229756t t 

 

 5/ 5  -.001000334265cos(1.812894486 ) .09789910456cos(1.022217551 )

.003101229705

t t


 

 5/ 6  .1cos(.9950371903 )t
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3.2. Example 2 

Consider the Duffing-harmonic oscillator[21] 

 
2 3

2 2
0,

1

d u u

dt u
 


        (23) 

with the initial conditions 

    0 0, 0 .u u           (24) 

Firstly, we suppose that  

  
3

2
,

1

u
f u

u



        (25) 

then we take a differentiation of  f u  with respect to t  to obtain 

 2 22 3 .
df df du du

u uf u
dt dt dt dt

         (26) 

Now, the application of the differential transform to Eq.(23), (24) and (26) give 

the following recurrence relations for 0 :k   
   

 
 

 
 

 

 

      

                        
1

1 2

3 3 3

2 2 2

1 1 2 2 1 1 2 1 2

0 0

0 0, 1 .

0 1
0 0, 1 .

11 0 1 1

1 2 2 0.

1 1 1 1 1 3 1 1 2 1 .

kk

k k

U U

U U
F F

U U

k k U k F k

k F k k U k k k U k k U k U k k F k k U k U k k F k







 

 

   
 

    

                

(27) 

Using these recurrence relations by taking 11N  , we obtain a system of algebraic 

equations for 0,...,9k  . By solving this equations fort pense he values 

(2), (3),..., (11)U U U   by using MAPLE, we get 

         
3 5

3 0, 4 0, 5 , 6 0, 7 ,
20 42

U U U U U
 

      

   
 

   
 5 2 7 23 20 9 28

8 0, 9 , 10 0, 11 .
1440 3080

U U U U
    

       (28) 

 
   5 2 7 23 5

5 7 9 11
3 20 9 28

( ) + .
20 42 1440 3080

u t t t t t t
    


 

      (29) 

Substituting 0.3   into Eq.(29) we obtain the equation, 
5 7 9 11( ) 0.3 -.00135 +.00005785714286 +.000002025 -.4601220779e-6 .u t t t t t t   (30) 

We apply Laplace transformation to (32), which yields 

    2 6 8 10 12

0.3 .162 .2916 .734832 18.36660096
- .L u s

s s s s s
       (31) 

For simplicity, let 
1

s
t

 ; then 

   2 6 8 10 120.3 -.162 +.2916 +.734832 -18.36660096 .L u t t t t t t    (32) 

The [6/6] Padé approximant gives 

 
2 4 6

2 4 6

( )

6 .3 4.321611941 8.977701492
.

6 .9999999999 14.40537314 30.46567165 6.806901496u t

t t t

t t t

  
     

(33) 
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Recalling 
1

t
s

 , we obtain [6/6] in terms of s 

( )

4 2

6 12 4 12 2 11

6 300000000.s +4321611941s +8977701492

6 9999999999.s +.1440537314*10 s +.3046567165*10 s +.6806901496*10
.

u t


 
  

(34) 

 

By using the inverse Laplace transform to the [6/6] Padé approximant, we obtain the 

modified solution 

( ) .00002515875810sin(3.448412631 ) - .02550319495sin(1.50353282 ) .6722110609sin(.5032022717 ).u t t t t      (35) 

[6] the sine-AT approximate periodic solution obtain in following: 

approx
( ) .000025sin(3.44841 ) - .0255032sin(1.50353 ) .672211sin(.503202 ).u t t t t       (36) 

 

Table 3. Approximate periodic solution using different Padé approximants at 0.3   

 3/ 3  -.09216099531sin(1.191476077 ) .6644594427sin(.6167534011 )t t  

 3/ 4  2474616cosh(.6061546512 )sin(.6061546512 )

.2474616sinh(.6061546512 )cos(.6061546512 )

t t

t t
 

 4 / 4  -.09216099531sin(1.191476077 ) .6644594427sin(.6167534011 )t t  

 4 / 5  -.09216099531sin(1.191476077 ) .6644594427sin(.6167534011 )t t  

 5/ 5  -.09216099531sin(1.191476077 ) .6644594427sin(.6167534011 )t t  

 6 / 6  
-4.2515875810*10 sin(3.448412631t)-.02550319495sin(1.50353282t)

+.6722110609sin(.5032022717t)
 

 7 / 7  
-4.2515875810*10 sin(3.448412631t)-.02550319495sin(1.50353282t)

+.6722110609sin(.5032022717t)  

 

3.3. Example 3 

Consider the relativistic harmonic oscillator [22] 

 

 
2

2 2
0,

1

d u u

dt u
 


                   (37) 

with the initial conditions 

    0 , 0 0.u u          (38) 

Firstly, we suppose that  

  
2

,
1

u
f u

u



        (39) 

then we take a differentiation of  f u  with respect to t  to obtain 
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 3 3 .
df du

u f
dt dt

         (40) 

 

Now, the application of the differential transform to Eq.(37), (38) and (40) give 

the following recurrence relations for 0 :k   
 

   

 
 

 

      

                  
1 2

1 2 3

2 2

1 1 2 2 3 3 1 1 2 2 3 3 1

0 0 0

0 , 1 0.

0
0 .

1 0 1

1 2 2 0.

1 1 1 0.

k kk

k k k

U U

U
F

U

k k U k F k

k k U k k U k k U k F k k F k k F k k F k U k k







  

 

 
 

    

           

 (41) 

Using these recurrence relations by taking 6N  , we obtain a system of algebraic 

equations for 0,...,4k  . By solving this equations fort pense he values of 

(2), (3),..., (6)U U U   by using MAPLE, we get 

     
 

   
 

 

2

2 72 2 2 2

1 9
2 , 3 0, 4 , 5 0, 6 .

2 1 24 1 720 1

U U U U U
  

  

 
    

  

 

 

 

2

2 4 6

2 72 2 2 2

1 9
( ) + .

2 1 24 1 720 1

u t t t t
  


  


  

  

    (42) 

Substituting 0.5   into Eq.(42) we obtain the equation, 

 2 4 6( ) 0.5-.2236067977 +.01333333333 +.000397523196 .u t t t t   (43) 

We apply Laplace transformation to (43), which yields 

 

    3 5 7

0.5 .4472135954 .3199999999 .2862167011
- .L u s

s s s s
     (44) 

For simplicity, let 
1

s
t

 ; then 

   3 5 70.5 -.4472135954 +.3199999999 +.2862167011 .L u t t t t t    (45) 

The [4/4] Padé approximant gives 

 

 
3

2 4

( )

4 .4999999998 +3.130495169
.

4 .9999999998+7.155417528 +5.759999999u t

t t

t t

 
 

 
   (46) 

Recalling 
1

t
s

 , we obtain [4/4] in terms of s 

3

4 2

( )

4 2499999999. .1565247584e11

4 4999999999. +.3577708764e11 .2880000000e11
.

u t

s s

s s

 
   

   (47) 
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By using the inverse Laplace transform to the [4/4] Padé approximant, we obtain the 

modified solution 

 ( ) -.002824948426cos(2.496198830 ) .5028249481cos(.9614618722 ).u t t t   (48) 

 

[6] the cosine-AT approximate periodic solution obtain in following: 

 

approx ( ) -.00282495cos(2.4962 ) .502825cos(.961462 ).u t t t    (49) 

Table 4 

 

Approximate periodic solution using different Padé approximants at 0.5   

 3/ 3  -.1249999996 .6249999996cos(.8458970109 )t  

 3/ 4  -.002824948485cos(2.49619883 ) .5028249485cos(.961461872 )t t  

 4 / 4  -.002824948426cos(2.49619883 ) .5028249481cos(.9614618722 )t t  

 4 / 5  -.002824948485cos(2.49619883 ) .5028249485cos(.961461872 )t t  

 5/ 5   

 

.6304944061

.6304944061

-.6999999983cos(.4458268703 ) .1502601915sin(.4458268703 )

-.6999999983cos(.4458268703 ) .1502601915sin(.4458268703 )

1.899999996

t

t

e t t

e t t

 

 


 

 

The following comparison of the results obtained from three methods are given. 

 
Figure 1. The comparison of the results of the three methods for Eq.(9) at  0.1  . 
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Figure 2. The comparison of the results of the three methods for Eq.(23) at 0.3  . 

 

Figure 3. The comparison of the results of the two methods for Eq.(37) at 0.5  . 

 

Comparison of the modified approximate solutions for Eq.(9), Eq.(23) and Eq.(37) and 

the solutions obtained by the fourth-order Runge–Kutta method in Fig. 1, Fig. 2 and 

Fig. 3 show that the modified DTM greatly improves the differential transform 

truncated series in the convergence rate and the accuracy.  
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5. CONCLUSIONS 

In this article, the application of differential transform method was extended to 

obtain approximate analytical and numerical solutions of nonlinear oscillators with 

fractional nonlinearites. The differential transform method generates the Taylor series of 

the exact solution. For the oscillatory systems, Laplace transformation of the differential 

transform series solution has some specific properties, so we applied Laplace 

transformation and Pade´ approximant to obtain an analytic solution and to develop the 

accuracy of differential transform method.  The modified DTM is an efficient method 

for calculating periodic solutions of nonlinear oscillators with fractional nonlinearites. It 

is seen from the results of the modified DTM, Sine-AT and Cosine-AT techniques and 

the results of the fourth-order Runge–Kutta(RK4)  solution that rate of convergence and 

accuracy of the modified DTM is very good. 
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