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Abstract- Dual numbers and dual vectors are widely used in spatial kinematics [3,5-

15,18]. Plücker line coordinates of a straight line can be represented by a dual unit 

vector located at the dual unit sphere (DUS). By this way, the trajectory of the screw 

axis of a rigid body in 3R (the real three space) corresponds to a dual curve on the DUS. 

This correspondence is done through Study Mapping [8,9]. Conversely a dual curve on 

DUS obtained from the rotations of the DUS represents  a rigid body motion in 3R  [8]. 

The dual Euler parameters are used in defining the screw transformation in 3R  [8], but 

originally in this paper these parameters are constructed from the Rodrigues and the 

dual Rodrigues parameters [15].   

 

Key Words- Kinematics, Study Mapping, Dual Euler Parameters, Screw 

Transformation. 

 

1. INTRODUCTION 

 

The dual representation of a line is simply the Plücker vector written as a dual unit 

vector [9]. For any operation defined on a real vector space, there is a dual version of it 

with similar interpretation [5].  

 Olinde Rodrigues, the French mathematician, wrote a paper on rigid body 

kinematics in 1840. This paper is well known for its contributions to spherical 

kinematics  [17]. Rodrigues revealed that every translation can be represented in an 

infinite number of ways by composition of two rotations of equal but opposite angle 

about parallel axes [16]. Similarly Euler showed that every displacement can be 

described by a rotation followed by a translation. 

 There is a detailed survey ranging from Chasles motion to the Rodrigues 

parametrization and also from the theoretical developments of the rigid body 

displacements to the finite twist in Dai [20]. 

 Regarding the historical developments of the rigid body displacement, the 

studies in this field are associated with the finite twist in the 1990s. The finite twist 

representation and transformation and its ordered combination for several manipulators 

which is based on the Lie group operation are investigated by Dai, Holland and Kerr in 

1995[19].   
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 In our paper, the dual Euler parameters are used for defining the transformation 

of screws in 3R . The dual Euler parameters are constructed from the Rodrigues and the 

dual Rodrigues parameters (see [15]) which are obtained from the rotations of the DUS. 

When a dual vector x

ˆ  is rotated to the dual vector x


ˆ  in DUS, this movement 

corresponds to a screw transformation in 3R . This transformation can be given by the 

dual Euler parameters. In other words, this paper discusses the usage of dual Euler 

parameters for the transformations of screws in 3R and these parameters are defined in 

terms of the Rodrigues and the dual Rodrigues parameters.   

 Quaternions and dual numbers were combined and generalized to form what is 

referred as “ Clifford Algebra” as first discussed by Clifford in 1882. Application to 

kinematic analysis is discussed by [1],[13]. A comprehensive introduction to dual 

Quaternions can be found in [8]. 

 Assembling the Euler parameters 3210 ,,, cccc   of a rotation into the quaternion  

kcjciccZ 3210   ( 1222  kji , kjiijjikkiikjjk  ,, ), 

rotations in real space can be identified. If a vector 3

321 ),,( Rxxxx 


 is defined as the 

vector quaternion kxjxixx 321 


, then the rotation from x


 to x

  is given by the 

quaternion equation ZxZx


 , where the conjugate is defined as 

kcjciccZ 3210   [8]. If the dual quaternion   kcjciccZ 3210
ˆˆˆˆˆ   is given by 

the dual Euler parameters 3210
ˆ,ˆ,ˆ,ˆ cccc  and the corresponding spatial displacement is 

given by the dual vector vww

ˆ (here w


 and v


 define the angular and linear 

velocities of the spatial displacement respectively) then the transformed screw w

ˆ is 

obtained by  ZwZw ˆˆˆˆ


  [8]. Since the transformed screw has the coordinates produced 

from the dual Rodrigues parameters, it has informative coordinates about the rotations 

of the DUS. 

 In section 1, we introduce the dual numbers and the Study mapping. The 

theoretical background of the dual Euler parameters is developed in section 2 and the 

application of dual Euler parameters on the screw transformation is discussed by an 

example in section 3. 

 

1.1. Dual numbers 

 A dual number is a formal sum *ˆ aaa  , where a  and *a  are real numbers. 

Similar to the complex unit 12 i , we have here 02  . Addition and multiplication 

are given by 

)()()()(
*

1
*

111
*

11
*

11 bababbaa    

                               )()()).(( 1
*

1
*

1111
*

11
*

11 babababbaa    

 For a given real analytic function f  we can extend its definition to dual 

numbers by letting 

)( *xxf  





0

0

* )(
k

k

k xxxa   
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                  





0

0 )(
k

k

k xxa + 





0

*1

0 )(
k

k

k xxxka  =  )()( * xfxxf    

For instance, 

 

 

SinxxCosxxxCosxCos **)(ˆ    

xxx exee *ˆ
  

 

1.2. Dual Vectors 

 A dual vector v

ˆ  in three dimensional dual space 3D  is defined by *ˆ vvv


 , 

where 3*, Rvv 


.  

 The norm of v

ˆ , denoted by DDv 3:ˆ


 is;  

 2

1

*2

1

)2()ˆˆ(ˆ vvvvvvv

   2

1

2

2

*

])1[(
v

vv
v 


 

  ),(
**

v

vv
v

v

vv
v 







 




   

      The dual vector with the norm )0,1(1  is called a dual unit vector. Therefore a 

dual unit vector v

ˆ  is the vector with  1v


 and 0* vv


. The set of dual unit vectors 

defines the dual unit sphere (DUS), which is also called the Study Sphere (For detailed 

algebraic properties of dual numbers see also [18]).      

 

1.3. Study Mapping 

 A point lp ( p can be written as a vector, p


, from origin to l ) and a unit 

direction vector g


 of l  determine the equation of the straight line l  in 3R . A unit force 

with respect to the origin acting to l  gives the moment vector .* gpg


  The norm of 

the moment vector is the smallest distance from line to the origin [9]. 

 The compenents of  ),,,,,(),(
*

3

*

2

*

1321

* gggggggg 
 6R   are called the 

Plücker coordinates of l . Since 1 gg


 and  0*  gg


, the dual vector 

*ˆ ggg

 defines a point on DUS. The mapping which assigns to an oriented line of 

Euclidean space the dual vetor *ˆ ggg

  is called the Study mapping.  

 

1.4. The Cayley Formula  

 Performing the Cayley formula [8] for the dual spherical motion with the dual 

rotation matrix Â  (it is clear that Â  is orthogonal), we obtain the skew symmetric dual 

matrix B̂  and the dual Rodrigues vector *ˆ bbb


 (see section 3). In these 

computations, similar to the real case (that is
2

tan


b


) [8], the norm of dual 

CosxxSinx)xx(Sinx̂Sin ** 
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Rodrigues vector is the tangent of the half of the rotation angle ̂ , that is
2

ˆ
tanˆ 

b


. 

Using the algebra of dual numbers one can simply obtain 

             )
2

tan1(
22

tan
2

ˆ
tanˆ 2

** 



 

b

bb
bb 




 (See[15])                           (1) 

 

2. THE DUAL EULER PARAMETERS AND THE SCREW 

TRANSFORMATION 

 

The dual Rodrigues vector b


ˆ  is the axis of rotation of DUS. Let us define the dual unit 

vector  s

ˆ  by 

b

b
ssssssssss 




ˆ

ˆ
),,()ˆ,ˆ,ˆ(ˆ

*

33

*

22

*

11321   . Using the dual rotation 

angle ̂  and the dual unit vector  s

ˆ  we get the dual parameters  

                
2

ˆ
cosˆ

0


c , 11

ˆ
2

ˆ
sinˆ sc


 , 22

ˆ
2

ˆ
sinˆ sc


 , 33

ˆ
2

ˆ
sinˆ sc


 ,                                      (2)  

which are known as the dual Euler parameters [8]. 

 Reviewing the method of transformation of vectors given in real space, the 

similar method for the dual case can be proposed. As it is discussed, the rotation from x


 

to x

  in 3R  is given by the quaternion equation ZxZx


 . A spatial displacement can 

be identified by a coordinate transformation ][T   in terms of a rotation matrix ][A  and a 

distance d , ],[][ dAT  . This coordinate transformation can be represented by a dual 

quaternion 

  ksjsisZ
2

ˆ
sinˆ

2

ˆ
sinˆ

2

ˆ
sinˆ

2

ˆ
cosˆ

321


 .    

 The dual quaternion Ẑ  is the sum of real Z  and *Z  components. Z  is the 

quaternion obtained from the rotation matrix ][A . kcjciccZ 3210  , where 

2
cos0


c , 11

2
sin sc


 , 22

2
sin sc


 , 33

2
sin sc


  are the Euler parameters of ][A . *Z  

is the quaternion produced from  DZZ
2

1*  , where D  is the quaternion, 

kdjdidD 321  , relates to translation vector ),,( 321 dddd 


. The compenents of Ẑ  

are known as the dual Euler parameters of the spatial displacement. Using the dual 

Euler parameters, the dual orthogonal (dual rotation) matrix   ][A  is generated by  

  ]ˆ[
2

ˆ
sin2]ˆ[

2

ˆ
cos

2

ˆ
sin2]ˆ[ 22 SSIA


 ,  (see [8]). On the other hand 

from a given dual rotation matrix ]ˆ[A , the dual Euler parameters hence the dual 

quaternion Ẑ  can be obtained.  
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 Originally in this paper the dual Euler parameters and the dual quaternion Ẑ  

results from the Rodrigues 
2

11


Tansb  , 

2
22


Tansb  , 

2
33


Tansb    and the dual 

Rodrigues  parameters        )
2

1(
22

2
*

1

*

1

*

1


TansTansb  ,    

       )
2

1(
22

2
*

2

*

2

*

2


TansTansb  ,    )

2
1(

22

2
*

3

*

3

*

3


TansTansb   [see 15]. 

 If a screw ),( vw


(where ),,( 321 wwww


 is the angular velocity and 

),,( 321 vvvv 


 is the translation velocity) is defined by the dual quaternion  

kvwjvwivww )()()(ˆ
332211  


 then the final screw (the transformed screw), 

kvwjvwivww )()()(ˆ
332211
 


 is obtained by  

   ZwZw ˆˆˆˆ


   

That is 

                w

ˆ )ˆˆˆˆ(ˆ)ˆˆˆˆ( 32103210 kcjciccwkcjcicc 


                                              (3) 

 

 
Let us expand the dual Euler parameters iĉ  given by (2) as follows; 

 
b

b
sccc i

iiii

ˆ

2

ˆ
sinˆ

2

ˆ
sinˆ

* 
   

     ))
)(

()(
2

cos
22

(sin
3

**

b

bbb

b

b

b

b iii




  





 

     ))
)(

(
2

sin
2

cos
2

(
2

sin
***

b

bbb

b

b

b

b

b

b iiii 



 





 

O  

3R
 

v


 

w


 

v

  

w

  

   dAT ,  

Figure 1. Screw transformation 
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since  
2

tan


b


, 

 ))
2

cot)(
2

(
2

cot(
2

cos
2

cosˆ
**

*

iiiii bbbbbbc 



 

,  3,2,1i .                   (4) 

From (1) we get      

                                )
2

tan1(
2

tan
2

2
*

* 
bb


                                                              (5) 

Substituting the equation (5) into (4) yields 

 )
2

sin
22

cos(
2

cosˆ
*

* 



iii bbbc  ,   3,2,1i .                                              (6) 

On the other hand, the expansion of (3) gives,  

  kvwjvwivwkwjwiww )()()(ˆˆˆˆ
332211321
 


 

     iwccccwccccwcccc }ˆ)ˆˆ2ˆˆ2(ˆ)ˆˆ2ˆˆ2(ˆ)ˆˆˆˆ{( 32031230211

2

3

2

2

2

1

2

0   

      jwccccwccccwcccc }ˆ)ˆˆ2ˆˆ2(ˆ)ˆˆˆˆ(ˆ)ˆˆ2ˆˆ2{(( 310322

2

3

2

2

2

1

2

013021   

      kwccccwccccwcccc }ˆ)ˆˆˆˆ(ˆ)ˆˆ2ˆˆ2(ˆ)ˆˆ2ˆˆ2{( 3

2

3

2

2

2

1

2

02103212031                   (7) 

 
 

2.1. The Transformed Velocities 

 Substituting the dual Euler parameters 0ĉ  in (2) and 321
ˆ,ˆ,ˆ ccc  in (6) into (7) gives 

the transformed (or the final) angular ),,( 321 wwww 


 and linear  ),,( 321 vvvv 


 

velocities as, 

O  

̂  

x

ˆ  x


ˆ  

s

ˆ  

b


ˆ

 

Study Mapping 

w


 

v


 

w

  

v

  

l  l  

DUS 

O  

3R  

Figure 2. The relation between the rotation of DUS and the Screw Transformation 
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).)1()(2)(2(
2

cos

),)(2)1()(2(
2

cos

),)(2)(2)1((
2

cos

3

2

2

2

1

2

323211312

2

1

33212

2

3

2

1

2

21213

2

2

331222131

2

3

2

2

2

1

2

1

wbbbwbbbwbbbw

wbbbwbbbwbbbw

wbbbwbbbwbbbw













                          (8) 





































32313

*

2

*

13

*

2

*

31

23212

*

3

*

3

*

12

*

21

1

2

3

2

2

2

11

*
*

33

*

22

*

11

1

)(
2

cos)
2

sin
2

(

)(
2

cos)
2

sin
2

(

)1(
2

cos
2

1
)

2
sin

2
(

2
cos2

vbbbwccbbcb

vbbbwcbcbcb

vbbbwcbcbcb

v








, 





































31323

*

1

*

23

*

32

*

1

2

2

3

2

2

2

12

*
*

33

*

22

*

11

13211

*

3

*

3

*

12

*

21

2

)(
2

cos)
2

sin
2

(

)1(
2

cos
2

1
)

2
sin

2
(

)(
2

cos)
2

sin
2

(

2
cos2

vbbbwccbcbb

vbbbwcbcbcb

vbbbwcbcbcb

v








,     (9) 





































3

2

3

2

2

2

13

*
*

33

*

22

*

11

21322

*

1

*

23

*

32

*

1

12311

*

2

*

13

*

2

*

31

3

)1(
2

cos
2

1
)

2
sin

2
(

)(
2

cos)
2

sin
2

(

)(
2

cos)
2

sin
2

(

2
cos2

vbbbwcbcbcb

vbbbwccbcbb

vbbbwccbbcb

v








, 

where   
2

sin
22

cos
*

** 
iii bbc  ,   3,2,1i . 

 It is seen from (8) and (9) that the transformed screw is computed directly from 

the dual rotation angle ̂ , the Rodrigues parameters and the dual Rodrigues parameters. 

 

3. APPLICATION OF DUAL EULER PARAMETERS TO THE SCREW 

TRANSFORMATION 

 

Theoretically the formulas (8) and (9) are obtained from the rotations of the DUS. Let 

us examine (8) and (9) on an example by taking a dual rotation matrix, that is an  

orthogonal dual matrix 






















100

01

01

ˆ 



A on DUS and ascrew axis l    in 3R . 
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 Let l  be the screw axis passing through )2,
2

1
,

2

1
( p


 with the direction 

)0,
2

1
,

2

1
(x


 and let ),( vw


be the screw with angular velocity )

4
,

4
,

8
(


w


 

secrad  and the translation velocity )1,2,1(v


seccm  at that moment. The dual vector 

vwvww

 ),(ˆ )

4
,2

4
,

8
( 








  defines this screw. l  has the moment vector 

xpx


*  of a unit force on l  with respect to the origin. Hence )0,1,1(* x


. Therefore 

the Plücker coordinates of  l , that is )0,1,1,0,
2

1
,

2

1
(),( * xx


, defines the point 

)0,
2

1
,

2

1
(ˆ *   xxx


 on DUS. The effect of rotation Â  on DUS causes the 

transformed screw axis l  and the transformed screw ),(ˆ vww

  in 3R . 

  Â  takes x

ˆ  to x


ˆ  which corresponds to l  in 

3R . Hence, 
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Then the Plücker coordinates of l  are )0,
2

12
,

2
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,0,

2

1
,

2

1
(),( * 



 xx
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, where 


 *ˆ xxx


 . Hence )0,

2

1
,

2

1
(x


 is the unit direction vector to l  and 

)0,
2

12
,

2

12
(* 




x


 is moment vector of l  determined for a unit force on l  with 

respect to the origin. Let p

  denotes any point on l . Since xpx




* , by the 

vectorial division (inverse operation for the vector product) x
x

xx
p













 
*

, where   

is a real parameter. If we take 1  then )21,
2

1
,

2

1
( p


 on l . It is found that 

l  is passing through )21,
2

1
,

2

1
( p


 with the direction vector 

)0,
2

1
,

2

1
(x


.On the other hand, by the Cayley mapping, 
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so the dual Rodrigues vector is )1,0,0(ˆ b


 [15]. Since 

2

ˆ
tanˆ 

b


, we find the dual 

rotation angle as, 


 
2

ˆ * . Using the formulas (8) and (9) the final angular 

velocity )
4

,
8

,
4

(

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

secrad  and the translation velocity 

)1,1
4

,2
8

( 
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v


seccm  are easily obtained.  

 
 

3. CONCLUDING REMARKS 

 

 In the classical method, the real part Z  of the dual quaternion *ˆ ZZZ   is 

defined by  ksjsisZ
2
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2
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2

sin
2

cos 321


 ,  where   is the rotation angle 

and ),,( 322 ssss   is the rotation axis of the spatial motion. The dual part *Z  is given 

by the formula DZZ
2

1*  , where kdjdidD 321   is the dual quaternion formed 

from the translation vector ),,( 321 dddd  . Therefore the transformed screw zwzw ˆˆˆˆ


  

is proposed from the translation and the rotarion of the rigid body in real space. But in 

this paper instead of working on the real entities of the spatial motion, the quantity Ẑ  is 

established using the Rodrigues and the dual Rodrigues parameters of the one parameter 

motion on DUS which corresponds to the given spatial motion. The formulas (8) and (9) 

of the screw have informative coordinates about the rotations of the DUS. So for a 
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Figure 3. The application of a given rotation Â  to the Screw Transformation 
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given orthogonal dual matrix Â  and a screw l  one can easily compute the final (the 

transformed) screw l  by directly using Â . 
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