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Abstract- Differential Quadrature Method (DQM) has been applied to the solution of 
aquifer flow problems. Three examples from of each of the three one-dimensional 
aquifer flow equation problems, a confined aquifer flow with time dependent boundary 
conditions, a composite confined aquifer and an unconfined aquifer with seepage, were
examined. The results of DQM solution were then compared with the results obtained 
from analytical solution, the Explicit Finite Differences Method and Implicit Finite 
Differences Method. Based on the comparison results, it was concluded that the DQM 
provides similar results but with relatively faster calculation speed, less nodes and 
memory usage.
Keywords- Differential Quadrature Method, One-Dimensional Flow, Confined
Aquifer, Unconfined Aquifer.

1. INTRODUCTION

The one-dimensional unsteady flow equation for groundwater flow is a parabolic 
differential equation, and typically, Finite Differences Methods (FDM) and Finite 
Elements Method (FEM) are used for the numerical solution. In the solution of 
differential equations, DQM can be used as an alternative to these conventional 
methods. In the homogeneous or heterogeneous soil, confined or unconfined aquifer 
problems are common in Hydrogeology, Civil Engineering, Irrigation and Drainage 
Engineering.  During recent years, the studies and research on the aquifer problems 
related to the initial and boundary conditions have been successfully carried out; 
meanwhile, many computational method and techniques have been developed for 
numerical solution of the governing equations.

Lockington [17] has studied the response of unconfined aquifer to sudden 
change in boundary head. In his paper, the analytical approximations to the solution of 
the one-dimensional Boussinesq equation were obtained using a weighted residual 
method. Wang and Anderson [32] have studied several groundwater flow problems, in a 
finite aquifer with recharge boundary, by using an explicit finite difference method for 
numerical solution. Onder [22] has found an analytical solution for one of the problems
that Wang and Anderson had, by examining the flow resulting from a sudden rise or 
decline in the water stage of a flood channel in a composite aquifer. As “the case (1)”, 
this problem was examined in the present study. 

Homogeneous semi-infinite aquifer problems have been examined several times 
in the past, for instance, the solution for drawdown resulting from a step change in the 
drain is available in the literature [18, 20, 22, 24]. Non-uniform aquifer problem is “the 
case (2)” in the present study.
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Bear [2] has addressed steady state flow in heterogeneous aquifers; Boonstra and 
Boehmer [5] have generated an approximate solution to the problem of groundwater 
flow in a composite dike aquifer system for the case that a well in the dike is pumped at 
a constant rate. Singh [31] has developed a semi-analytical model for computing 
drawdown in and around a partially penetrating large diameter well. Butter and Liu [6]
have presented a semi-analytical solution for the analysis of drawdown data obtained 
from pump test performed in non-uniform aquifers, which represent a linear strip case. 
Guo [10] has examined a transient ground water flow between reservoirs and water 
table aquifers, and has given an analytical solution method. Ostfeld et al. [23] have
proposed a general analytical solution scheme for determining groundwater levels for 
channel/group-water systems with recharge, and, use of Laplace transform method to 
solve a linearized form of the Boussinesq equation. A solution for leaky one-
dimensional flow problem with storage and skin effect in finite-width sink was offered 
[21]. Li et al. [14] has presented the confined-unconfined flow in a horizontal confined 
aquifer. Surface water / groundwater interactions have been studied by several
researchers using different techniques and approaches [15, 19, 23]. As the last 
numerical example, surface and groundwater interact in an unconfined aquifer is “the 
case (3)” in this present study. 

Also, Finite Element Method (FEM) has found a wide range of applications in 
groundwater investigations. Khebchareon and Saenton [13] used Crank-Nicolson and
Galerkin Finite Element Method for 1D groundwater. Liou and Yeh [16] investigated a 
one-dimensional groundwater transport equation with two uncertain parameters, 
groundwater velocity and longitudinal dispersivity. A comparison, between these FEM 
solutions and DQM solutions that were obtained from the examples examined in the 
present study, was performed.

2. DIFERENTIAL QUADRATURE METHOD 

The DQM, providing a solution to the differential equations of any systems, was 
developed first by Richard Bellman [3]. Afterwards, that was developed by Shu [27].
DQM is an alternative approach to the standard methods such as finite difference and 
finite elements, for the initial value and boundary conditions encountered in physics and 
mathematics [28]. In the DQM, a partial derivative of a function with respect to a space 
variable at a discrete point is approximated as a weighted linear sum of the function 
values at all discrete points in the region of that variable. The method can be written as,
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where xj are the discrete points in the variable, )(r
xu  is the rth order derivative of the 

function,  u(xj) are the function values at these points, and A(r)
ij  are the weight 

coefficients for the rth order derivative of the function. Considering the weight 
coefficients, Shu and Xue [30], made important studies, and they proposed some 
solutions in their studies. Determining the weight coefficients is the most crucial step in 
use of DQM. For calculation of the weight coefficients, a function is chosen. According 
to the chosen function, the method can take different names. In the Polynomial 
Differential Quadrature (PDQ),  the function is approximated by a (N-1)th degree 
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polynomial; in the Fourier Expansion Base Differential Quadrature (FDQ), the function 
is approximated by a Fourier series expansion; and another way to determine the 
weighting coefficients is to employ harmonic functions named the Harmonic 
Differential Quadrature (HDQ) [27,8]. Civalek [8] had compared the methods of 
differential quadrature (DQ) and harmonic differential quadrature (HDQ) and, in his 
other studies, DQ and HDQ methods are presented for buckling, bending, and free 
vibration analysis of thin isotropic plates and columns [33,34]. 

At some boundary value problems, DQM performance is highly dependent on 
the boundary conditions and sampling grid points. The overall sensitivity of the model 
especially depends on the location and number sampling grid points. However, the 
boundary conditions can be easily implemented to DQ system. The boundary 
conditions, which are usually Dirichlet,  Neuman and/or mixed type function,  do not 
create any difficulty in this implementation process [4, 7]. Civalek [7] implies that the 
determination of the effective choice for any problem reduces the analysis time. For 
instance, previous studies show that, in the problems that have linear equations and 
homogeneous boundary conditions, selecting equal intervals are adequate for solution. 
In vibration problems, the choice of grid points through the Chebyshev-Gauss-Lobatto 
method is more reasonable[7]. Similarly, in the water wave propagation and diffusion 
problems, the method can be used [11, 12].  

3. DQM IN GROUNDWATER FLOW APPLICATIONS

The basic equations of groundwater flow are obtained by means of mass 
conservation principle combined with Darcy law [2]. In the one-dimensional unsteady 
flow, definition of mass conservation and use of notation in Fig.1, Eq. (2) can be 
written. 
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In this equation; T=K.B is transmissivity capacity; h, h1 and h2 define the 
piezometric levels at main aquifer, unconfined aquifer and bottom aquifer respectively;
K, K1 and K2 are permeability coefficients in main aquifer and semipervious stratums;
B, B1 and B2 are width in main aquifer and semipervious stratums. According to h, h1

and h2 piezometric levels the leaking can be to inside or outside.

Fig. 1. Leaky confined aquifer
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In the unconfined aquifer as Fig. 2, use of u=h2 transformation Eq. (2) is 
linearized according to h2, Eq. (3) can be written. 
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In the equation, hKT . on condition that h  is mean piezometric level, qS is 
seepage from soil surface.

Fig. 2. Leaky and unconfined aquifer

Determining the boundary conditions, for example, in the condition of 
h(x,0)=hi,1=f(x), h(0,t)=h1,s=g(x) and  h(L,t)=hN,s,=f(t),  the Eq.2 and Eq.3, can be 
rewritten for the solution of DQM as seen in Eq. 4 and Eq.5
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where, R,N...,i ,....,32s    and   ,,32   . 
In the present study, Polynomial Differential Quadrature Method (PDQM) was 

used and the coefficients of weight matrices were calculated by use of Quan and 
Chang’s Approach [11, 29, 25, 26]. In the distribution, grid points are more frequently 
near boundaries (non-equally).  Chebyshev-Gauss-Lobatto grid points distribution is 
more appropriate in the time dependent problems [7]. Therefore, in the DQM solutions, 
Chebyshev-Gauss-Lobatto grid-points distribution was used, because the problem is 
depended on the time.

4. NUMERICAL SOLUTIONS

For the one-dimensional aquifer flow equation problems three examples (a 
confined aquifer flow with time dependent boundary conditions, a composite confined 
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aquifer and an unconfined aquifer with seepage) were solved. The results obtained from 
the DQM solutions were compared with the results of Explicit Finite Differences 
Method (EFDM) and Implicit Finite Differences Method (IFDM).
4.1. Case 1

A confined aquifer having independent or time dependent boundary conditions 
in Fig. 3 was selected as Case 1. This aquifer has a transmissivity capacity (T) of 0.02 
m2/min; a storage coefficient (S) of 0.002; and length (L) of 100 m [32]. The initial and 
boundary conditions for the solution of Equation 7 which is written for 1D flow are h(x, 
0)=16m, h(0,t)=16 m and  h(L,t) =11 m. The same example was solved use of analytical 
method and numerical method by Onder [22], and, the results were compared. 

In this study, the piezometric level changes were calculated using DQM; which 
were compared with the EFDM, IFDM and analytical solution use of given by Onder 
[22]. 

Fig. 3. Confined aquifer.

In the numerical solutions, different number of grid points were used. The 
differences between analytical solution and numerical solutions are calculated, and in 
the different times, Root Mean Square Error values for DQM, IFDM and EFMD are 
given in Table 1. For different number of grid points, ei error values and RMS Error can 
be written as follows: 
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where h is the difference between analytical solution and numerical solution. 
Results of DQM, IFDM and EFDM solutions are given in Fig. 4 for some number of 
grid points. In the EFDM, some unstable results can occur depending on the soil 
hydraulic properties and the size of the spatial and temporal mesh. For the stable 
solution, CFL (Courant-Friedrichs-Lewy) condition may be agreed [9]. Thus, some 
results can’t be obtained in EFDM. accordingly.

t>0
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Table 1. RMS Error values 
Nx-Nt 50sec 100sec 500sec
11-11 1.02E-03 1.62E-03 1.61E-03
11-51 9.95E-06 3.89E-07 1.88E-05
51-51 3.29E-05 3.59E-05 4.39E-05
101-11 1.24E-03 3.59E-05 4.39E-05D

Q
M

101-51 3.30E-05 3.60E-05 4.41E-05
11-11 9.21E-02 1.12E-01 3.82E-02
11-51 1.96E-02 2.39E-02 6.35E-03
51-101 1.03E-02 1.24E-02 2.89E-03
101-1001 1.03E-03 1.26E-03 2.82E-04IF

D
M

101-5001 7.52E-03 2.11E-03 5.59E-04
11-11/21 3.01E-02 1.96E-02
11-51/51/101 8.68E-03 7.80E-03 1.33E-03
51-501/501/5001 6.93E-04 8.56E-04 1.83E-05
101-1001/2001 3.47E-04 2.15E-04E

FD
M

101-5001/5001/10001 9.10E-05 8.32E-05 1.44E-05

As seen in the table, results of DQM convergence rapidly as increasing Nt

values. DQM solution use of few number of grid points, the results are obtain closer to 
analytical solution. Also, RMS Error values at DQM are smaller than the other 
numerical methods. Furthermore, the less grid points are used in DQM. 

Fig. 4. Results of DQM, IFDM and EFDM solution for some number of grid points

4.2. Case 2
A heterogeneous semi infinite confined aquifer in Fig. 5 was selected as the case 

2. The aquifer has two regions at the different soil properties. Left boundary condition is 
a sudden rise from 28 m to 25 m. The aquifer set a limit to impervious stratums at over 
and under. Consequently, in Eq(4) K1 and K2 is zero. The composite aquifer has the 
following properties: Transmissivity of region (1) T1= 800 m2/day and of region (2)
T2=200 m2/day, storage coefficient of region (1) S1=0.0004, and of region (2)
S2=0.0004.
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Fig. 5. Composite aquifer

This problem is solved use of DQM, EFDM and IFDM and results are compared to 
analytical solution give by Onder [22]. In Fig. 6, error values are given for some grid 
points.  RMS Error values are seen in the Table 2. When the results are compare to 
analytical solution, it’s seen that DQM results use of less grid points are very close to 
analytical solution than the other numerical methods. In the case as case 1, its seen that 
results of DQM convergence rapidly.

Table 2. RMS Error values for heterogeneous semi infinite confined aquifer problem.
DQM IFDM EFDM

Nx-Nt RMS Error Nx-Nt RMS Error Nx-Nt RMS Error
11-11 3.03E-02 11-11 8.72E-02 11-11 1.11E-01
11-51 3.03E-02 11-51 1.04E-01 11-51 1.10E-01
51-51 3.16E-03 51-101 4.70E-03 51-101 1.61E-03
101-11 3.16E-03 101-1001 2.33E-03 101-1001 2.36E-03
101-51 9.53E-05 101-5001 2.39E-03 101-5001 2.40E-03

Fig. 6. Results of DQM (ei-axis 0 through 0.3 is enlarged)
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4.3. Case 3
In the case 3, an unconfined aquifer between two drainage canals was 

investigated (Fig. 7). From surface soil to the aquifer a seepage exist (qS>0). h0 initial 
boundary value is 1 m, in the drainage canals water levels is 1m, and water level is a 
sudden rise to 2 m in the left canal boundary condition. Also, the seepage value from 
surface soil to the aquifer is supported qS =0.02 m/day [23].

In this study, this example was solved for a sudden rise in the drainage canal 
conditions use of DQM, IFDM and EFDM. Results of DQM, IFDM and EFDM are 
given in the Fig. 8 for different number of gird points. As seen in Case 1 and 2 that 
DQM results are closer to analytical solution than IFDM and EFDM. Therefore, the 
RMS differences between all numerical methods and DQM (Nx=101, Nt=51) are given 
in Table 3. 

Fig. 7. Unconfined aquifer

Fig. 8. Results of DQM, IFDM and EFDM in Case 2.
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Table 3. RMS Differences between numerical solutions and  DQM (Nx=101, Nt=51) at 
t=10 day. 

Nx\Nt 11 21 31 41 51
11 1.25E-04 6.12E-07 6.13E-07 6.12E-07 6.12E-07
21 1.79E-04 2.52E-06 1.56E-05 2.58E-06 2.52E-06
31 1.85E-04 3.34E-05 3.57E-05 3.36E-05 3.34E-05
41 1.86E-04 3.26E-05 3.48E-05 3.29E-05 3.26E-05
51 1.83E-04 2.46E-13 1.19E-05 3.71E-06 2.46E-13

D
Q

M

101 1.84E-04 2.55E-16 1.20E-05 3.72E-06 2.55E-16

Nx\Nt 11 51 101 501 1001 2001 5001
11 2.93E-02 6.25E-03 3.27E-03 1.30E-03 1.20E-03 1.18E-03 1.18E-03
51 3.08E-02 6.56E-03 3.31E-03 6.83E-04 3.54E-04 1.92E-04 1.02E-04

101 3.10E-02 6.60E-03 3.33E-03 6.88E-04 3.56E-04 1.91E-04 9.43E-05IF
D

M

201 3.11E-02 6.61E-03 3.34E-03 6.91E-04 3.58E-04 1.92E-04 9.46E-05

Nx\Nt 11 51 101 501 1001 2001 5001

11 6.35E-03 1.43E-03 1.10E-03 1.13E-03 1.16E-03 1.17E-03 1.18E-03
51 1.22E-04 5.70E-05 4.39E-05 5.07E-05

101 6.13E-05 3.48E-05 3.35E-05E
FD

M

201 3.30E-05

5. CONCLUSION

A DQM approach has been used first time in the groundwater hydraulics in this 
study. DQM has found increasing use in recent years in Hydraulic Engineering, because 
it is an alternative approach to the conservative methods. From the previous applications 
of DQM, it is seen that the results of DQM are converged rapidly and closer to 
analytical solutions than other numerical solutions [12].

In this study, with different boundary conditions, one dimensional groundwater 
problems were solved. The DQM results were then compared with analytical solution 
and the results obtained from IFDM and EFDM. The study has shown that the DQM is
quickly converged and closer to analytical solution than the other methods. In the case 
1, the results of DQM at 11x11 grid points are similar to results at 101x1001 grid points 
in IFDM and at 11x101 grid points in EFDM. In the case 2, the results of DQM at 
51x51 are more closely to analytical solution results than 101x1001 grid points in IFDM 
and EFDM. The use of relatively fewer nodes with an acceptable accuracy is an 
advantage of the method, in order to save compile time and memory usage. 

In the application of the method, choosing grid points and test function are 
important step to facilitate the stability of numerical solution. Parametric preferences in 
this study are appropriate for groundwater flow problems. 
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