You are currently viewing a new version of our website. To view the old version click .
  • Mathematical and Computational Applications is published by MDPI from Volume 21 Issue 1 (2016). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Association for Scientific Research (ASR).
  • Article
  • Open Access

1 August 2011

An Integrated Neural Network Structure for Recognizing Autocorrelated and Trending Processes

Department of Industrial Engineering, Dokuz Eylul University, 35160, Tinaztepe, Buca - Izmir, Turkey

Abstract

Data sets collected from industrial processes may have both a particular type of trend and correlation among adjacent observations (autocorrelation). In the present paper, an integrated neural network structure is used to recognize trend stationary first order autoregressive (trend AR(1)) process. The proposed integrated structure operates as follows. (i) First a combined neural network structure (CNN), that is composed of appropriate number of linear vector quantization (LVQ) and multi layer perceptron (MLP) neural networks, is used to recognize the trended data, (ii) then, the Elman’s recurrent neural network (ENN) is used to diagnose the autocorrelation through the data. Correct classification rate is used as performance criteria. Results indicate that proposed structure is effective and competitive with other combined neural network structures.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.