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Abstract -In this work, the energy levels and transition probabilities B(E2) of some 
even-even Te (Z=52, N=68-80 and N=84) and even-even Xe nuclei (Z=54, N=68-80 and 
N=84-88) have been investigated by using the interacting boson model (IBM-1 and 
IBM-2). The results were compared with some previous experimental and theoretical 
values. It was seen that an acceptable degree of agreement between the predictions of the 
model (IBM-1 and IBM-2) and the experiment is achieved.
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1. INTRODUCTION
The interacting boson model [1] is a valuably interpretive model aiding to 

understand the nuclear structure. IBM defines six-dimensional space described by in 
terms of unitary group, U(6). Different reductions of U(6) gives three dynamical 
symmetry limits known as harmonic oscillator, deformed rotor and asymmetric 
deformed rotor which are labeled by U(5), SU(3) and O(6) respectively [2]. However, 
one should not confuse the symmetry triangle of the IBM [3,4] to the triangle of the 
collective model [5,6,7] in which X(5) and E(5) appear. In the present study, the 
interacting boson model is used as a method of solution and the new different 
parameters of IBM-1 and IBM-2 are used to describe the structures of 120-132Te, 
136Te, 122-134Xe and 138-142Xe isotopes. 

Recently, the Xe [8–17] and Te [18–25] region with the mass number A 120–
140 has been studied experimentally and interpreted by several models [23–28]. The 
ground state properties of even–even Xe isotopes have been the subject to theoretical 
and experimental studies [29–37] involving in-beam γ -ray spectroscopy. Very little is 
known about the multipolarities of interband transitions in tellurium nuclei. In order to 
explain these large Q(2+) values, a considerable amount of theoretical work has been 
developed. 

The low-lying states showing a rich collective structure in this region, were 
investigated extensively in terms of various models, such as the interacting boson model 
(IBM) [1,8,24,38-42], the fermion dynamical symmetry model (FDSM) [43,44], the 
pair-truncated shell model (PTSM) [45-47] and the nucleon-pair shell model [48-51].
The outline of the remaining part of this paper is as follows: starting from an 
approximate theoretical background of the model, we give the basic formulations 
defined in the IBM-1 and IBM-2 in Section 2. Then, the previous experimental and 
theoretical [9,15-22,25–29] data are compared with the calculated values and the 
general features of even-even Te and Xe isotopes in the range A=120-132, A=136 for Te 
and A=122-134, A=138-142 for Xe are reviewed in Section 3. The last section contains 
some concluding remarks.
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2. THEORY
2.1. IBM-1 Model

The IBM-1 model describes the low-lying energy states of the even-even xenon 
nuclei as a system of interacting s-boson and d-boson. The most general Hamiltonian
that has been used to calculate the level energies is [1-3],
      Hsd = d ηd + κQ .Q + κL·L + κP·P + q3T3 

.T3 + q4T4 
.T4,       (1)
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2.2. IBM-2 Hamiltonian
The IBM-2 Hamiltonian that has been used to calculate the level energies is [4], 
H =  dn +  dn +  QQ + V + V + M                         (5)

where dn is the neutron (proton) d-boson number operator.

dn =
~

† dd ,  ,

md 

~

=   m
m d  ,1                             

(6)

where 
†s , md 

†  and s , md  represent the s  and d -boson creation and annihilation 

operators. The rest of the operators in the Eq.(5) are defined as 
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In this case M v
affects only the position of the non-fully symmetric states 

relative to the symmetric ones. For this reason M
v is often referred to Majorana force.

2.3. B(E2) Transition
As appropriate physical quantities we have used intraband B(E2) ratios as well as 
quadrupole moment ratios within the low-lying state bands. The electric quadrupole 
transition operator [52] employed in this study is given by,

   T (E2) = 
Qe + 

 Qe                         
(9)

where
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In this expression  is a dimensionless coefficient and e are the effective 

quadrupole charges. Thus, the reduced electric quadrupole transition rates between 
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3. CALCULATIONS

This section has been divided into two parts describing energy spectra and 
electromagnetic transition rates in such Te and Xe isotopes separately.
3.1. Energy Spectra

The Tables 1 and 2 contain the IBA-1 and IBM-2 Hamiltonians’ parameters (in 
MeV) used in the present study to calculate the energies of the positive parity low-lying 
levels of 120-128Te, 122-134Xe and 138-142Xe isotopes. N=1 and N changes from 7 to 1 for 
Te isotopes 120-128Te. Moreover, the Xenon isotopes have N=2 while N varies from 8 
to 1 for 122-134Xe and finally varies from 1 to 3 for 138-142Xe. The Hamiltonian parameter 
values of IBM-1 and IBM-2 were estimated by fitting to the experimental energy levels 
and it was made by allowing one parameter to vary while keeping the others constant.
This procedure was carried out iteratively until an overall fit was achieved. 

Table 1. Parameters used in IBM-1 Hamiltonian for 120-128Te, 122-134Xe
and 138-142Xe nuclei (in MeV).

A
Z X N EPS ELL QQ CHQ OCT HEX

120
52 68Te 8 0.819 -0.0059 -0.030 -1.1 -0.0011 -0.0078

122
52 70Te 7 0.787 -0.0059 -0.030 -1.1 -0.0011 -0.0078

124
52 72Te 6 0.792 -0.0059 -0.030 -1.1 -0.0011 -0.0078

126
52 74Te 5 0.823 -0.0059 -0.030 -1.1 -0.0011 -0.0078

A
Z X N EPS ELL QQ CHQ OCT HEX

122
54 Xe68 9 0.640 -0.0059 -0.030 -1.1 -0.0011 -0.0078

124
54 Xe70 8 0.616 -0.0042 -0.030 -1.1 -0.0011 -0.0078

126
54 Xe72 7 0.561 -0.0059 -0.030 -1.1 -0.0011 -0.0078

128
54 Xe74 6 0.630

-0.0059
-0.030 -1.1

-
0.0011

-0.0078

130
54 Xe76 5 0.692 -0.0059 -0.030 -1.1 -0.0011 -0.0085

132
54 Xe78 4 0.792 -0.0059 -0.030 -1.1 -0.0011 -0.0078
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134
54 Xe80 3 0.943 -0.0059 -0.030 -1.1 -0.0011 -0.0078

138
54 Xe84 3 0.683

-0.0059
0.030 -1.1 -0.0030 -0.0078

140
54 Xe86 4 0.498 -0.0059 -0.055 -1.1 -0.0011 -0.0078

142
54 Xe88 5 0.438 -0.0059 -0.050 -1.1 0.0000 -0.0078

Except the IBM-2 parameter values for 122-134Xe, we did the IBM-1 calculations using 
code PHINT [53] and IBM-2 by code NP-BOS [54] with our own parameters. 

Table 2. Parameters used in IBM-2 Hamiltonian for 120-128Te, 122-134Xe [16]
and 138-142Xe nuclei (in MeV).

          

*[16]

A
Z X N N N     CL (L=0,2,4) CL (L=0,2,4)

120
52 Te68 1 7 8 0.70 -0.08 0.8 -1.2 0 0

122
52 Te70 1 6 7 0.70 -0.08 0.5 -1.2 0 0

124
52 Te72 1 5 6 0.73 -0.08 0.8 -1.2 0 0

126
52 Te74 1 4 5 0.80 -0.09 0.2 -1.2 0 0

128
52 Te76 1 3 4 0.80 -0.06 0.9 -1.2 0 0

122
54 Xe68* 2 7 9 0.62 -0.09 0.3 -1.2 0 0

124
54 Xe70* 2 6 8 0.60 -0.08 0.5 -1.2 0 0

A
Z X N N N     CL (L=0,2,4) CL (L=0,2,4)

126
54 Xe72* 2 5 7 0.59 -0.08 1.2 -1.2 0 0

128
54 Xe74* 2 4 6 0.64 -0.08 0.4 -1.2 0 0

130
54 Xe76* 2 3 5 0.72 -0.08 0.4 -1.2 0 0

132
54 Xe78* 2 2 4 0.700 -0.080 0.3 -1.2 0 0

134
54 Xe80* 2 1 3 0.940 -0.080 0.2 -1.2 0 0

138
54 Xe84 2 1 3 0.676 -0.080 1.2 -1.2 0 0

140
54 Xe86 2 2 4 0.500 -0.085 1.2 -1.2 0 0

142
54 Xe88 2 3 5 0.500 -0.250 1.2 -1.2 0 0
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Where; N= number of bosons, EPS = d , ELL = 10 T1, QQ = 2κ , OCT = T3.T3, 

            HEX = T4.T4  and CHQ = 
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3.2. Electromagnetic Transition rates
The stable even-even nuclei in Te, Xe, Ce and Nd isotopic chains represent 

excellent opportunities for studying the behavior of the total low-lying E2 strengths in 
the transitional region from deformed to spherical nuclei. After having obtained wave 
functions of the states, we can calculate the electromagnetic transition rates between 
low-lying states of all chain for 120-128Te and 122-134Xe isotopes. Calculation of 
electromagnetic transitions is a sign of good test for the nuclear model wave functions. 
To determine the boson effective charges e (  , ) we perform a fit to the 

experimental B(E2) values in such isotopes. The matrix elements of the E2 operator of 
Eq.(9) have been calculated by using the following values of effective charge 
parameters.
           In IBM-1 calculations:   Nuclei     E2SD    E2DD       Nuclei     E2SD    E2DD       

                122
54 Xe          0.12 0.3        120

52 68Te      0.10        0.0

       124
54 Xe          0.14 0.0        122

52 70Te    0.27        0.0

       126
54 Xe         0.12 0.0       124

52 72Te      0.28        0.0

       128
54 Xe        0.14 0.0        126

52 74Te        0.28        0.0

   Nuclei     E2SD    E2DD       Nuclei     E2SD    E2DD        

         130
54 Xe        0.15 0.0        128

52 76Te        0.29        0.0

       132
54 Xe        0.14       0.0          134

54 Xe         0.15     0.0

Here, proton boson effective charge parameter, e is denoted by E2SD and 

neutron boson effective charge parameter, e is denoted by E2DD. In IBM-2 

calculations, the parameter values of Te nuclei are as follows: E2SD=0.28 and 
E2DD=0.2 for N=68,70,72,74; E2SD=0.29 and E2DD=0.2 for N=76. The effective 
boson parameter values for IBM-2 calculation of Xe nuclei are taken from [16]. Here, 
the effective charges appear as new parameters and the units are in eb. So, the Fig. 1 
(Fig. 1a for 120-128Te isotopes and Fig. 1b for 122-134Xe isotopes) shows B(E2;2 

10 
1 ), 

B(E2;4 
12 

1 ) and B(E2;2 
2 2 

1 ) transition probabilities calculated in the framework 
of IBM-1 and IBM-2 for some levels, respectively. In this Fig., the results of the present 
work were compared with some previous experimental [10,15,51] and theoretical 
[9,25,51] values and it was seen that they are in good agreement especially for 
B(E2;2 

10 
1 ), and B(E2;4 

12 
1 ). Moreover the general agreement between the 

calculation and their corresponding experimental values for B(E2;2 
2 2 

1 ) transition in 
Xe nuclei are a little different but reasonable. As it is seen from the Fig., B(E2) values 
for the transitions of 2 

10 
1  and 4 

12 
1  decreases smoothly after the neutron number 

N=70. They are nicely reproduced by the experiment and the fits of them are 
satisfactory. Such transitions for both Te and Xe chains are of the same order of 
magnitude and B(E2;2 

2 2 
1 ) is also expected to show the similar distribution. The 
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large B(E2) values in 122Te and in 124Xe nuclei are the main indicator of the vibrational 
characters. No any experimental B(E2) values exist for 4 

12 
1  transitions in Te, and 

for 2 
2 0 

1  in both Te and Xe chains. To the best of our knowledge they are the ones 
that are also still not known so far and described naturally by the present work. 
B4/2=B(E2;4 

12 
1 )/ B(E2;2 

10 
1 ) gives a good systematic of basic observables about 

intraband structure for 120-128Te and 122-134Xe isotopes. So, Fig. 1 also indicates the 
calculated B4/2 ratios in IBM-1 and IBM-2, and they are seen reasonably well.

4. CONCLUSIONS

The main points obtained in this paper can be summarized as follows. The 
positive parity states of even-even Te (Z=52, N=68-80 and N=84) and even-even Xe 
nuclei (Z=54, N=68-80 and N=84-88) have been discussed within the first and the 
second version frameworks of interacting boson model and it was seen that they are 
generally in good agreement with the experimental data. Moreover, most of the 
calculated values in fig. 1 are much better than the previous theoretical results. The 
calculated results shown in such figure indicate the elegance of the fits presented in this 
manuscript and they suggest the success of the guess in parameterization. That is, the 
sets of parameters used in the calculations for all Te and Xe isotopes are the best 
approximation that has been carried out so far. Since they give information on structural 
changes in nuclear deformation and shape-phase transitions, even-even 120-128Te are 
very interesting sequence of nuclei and very few works exist in the literature for them. 
B(E2) transition probabilities of some even-even Te and Xe isotopes are calculated by 
using the model perspectives. And then, it was seen that the calculated results have 
generally nice agreement with experimental and theoretical ones. As a result, it may be 
concluded that nuclear behaviors of the chains of Te and Xe isotopes are well studied in 
this work and it was seen that dominant vibrational characters exist in the sequence of 
even-even Te nuclei. Furthermore, the rotor features also exist in Xe, but with a 
dominancy of vibrational character. As a recent paper, K. Nomura et al. [55] can be 
seen to realize the results of different calculation method for Xe region. In that paper, 
they determines the interacting boson model (IBM) Hamiltonian microscopically for 
general cases of low-lying quadrupole collectivity by appling it to several other isotopic 
chains, Ba, Xe, Ru, Pd, W, and Os, in comparison to the experimental data. In their 
work, the predicted spectra and the B(E2) ratios are presented for heavy neutron-rich 
exotic nuclei in experimentally unexplored regions such as the right-lower corner of 
208Pb on the nuclear chart.
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Fig. 1 Comparison of calculated IBM-1 and IBM-2 results of B(E2;2 
10 

1 ), B(E2;4 
12 

1 ) and 

B(E2;2 
2 2 

1 ) transition probabilities for (a) 120-128Te and, (b) 122-134Xe isotopes. The results of the 
present work were compared with some previous experimental [10,15,51] and theoretical [9,25,51] 
values. The figure also indicates the calculated B4/2 ratios in IBM-1 and IBM-2 along with theoretical 
and experimental ones.
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