CONTINUOUS DEPENDENCE FOR THE DAMPED NONLINEAR HYPERBOLIC EQUATION

Metin Yaman, Şevket Gür
Department of Mathematics, Sakarya University
Esentepe, Sakarya, Turkey
myaman@sakarya.edu.tr, sgur@sakarya.edu.tr

Abstract

This paper gives the continuous dependence of solutions for the damped nonlinear hyperbolic equation.

Key Words- Damped nonlinear hyperbolic equation, Continuous Dependence

1.INTRODUCTION

In this paper, we are concerned with the following initial boundary value problem for the damped nonlinear hyperbolic equation:
$u_{t t}+\alpha \Delta^{2} u+\beta \Delta^{2} u_{t}+\Delta g(\Delta u)=0, \quad x \in \Omega, t>0$
$u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega$
$u(x, t)=0, x \in \partial \Omega, t>0$
where α and β are positive constants, Ω is bounded domain in R^{n} with smooth boundary $\partial \Omega . \Delta$ and Δ^{2} denotes Laplacian and biharmonic operators respectively, $g(s)$ is the given nonlinear function.

This problem describes the motion of the neo-Hookean elastomer rod; for more physical interpretation of problems (1)-(3) we refer to [1].

There are some studies about this problem. For example, Uniform stabilization of the energy of a nonlinear damped hyperbolic equation is studied in [2]. Blow up results to the IBVP problem (1)-(3) is given by [3]. The authors of [1] studied a general class of abstract evolution equations

$$
\begin{align*}
& u_{t t}+A_{1} u+A_{2} u_{t}+N^{*} g(N u)=f(t) \\
& u(0)=\varphi_{0} \tag{4}\\
& u_{t}(0)=\varphi_{1}
\end{align*}
$$

where A_{1}, A_{2}, N and f satisfy certain assumptions(see[1]).
Global in time existence, uniqueness, regularity and continuous dependence on the initial data φ_{0} and φ_{1} of a generalized solution of problem (4) are proven in [1].

The spatial decay estimates for a class of nonlinear damped hyperbolic equations investigated in [4]. Also they compared the solutions of two-dimensional wave equations with different damped coefficients.

The aim of the present paper is to prove the continuous dependence of solutions to the problem (1)-(3) on coefficients α and β.

Throughout this paper we use the notation $\|\cdot\|_{p}$ for the norm in $L^{p}(\Omega)$. We denote $\|$.$\| the norm in \|.\|_{2} . H^{2}(\Omega), H^{1}(\Omega), H_{0}^{1}(\Omega)$ and $H_{0}^{2}(\Omega)$ are the usual Sobolev spaces.

The following existence theorem is proved [1].
Theorem 1. Let $\left(u_{0}, u_{1}\right)$ belong to $H_{0}^{2}(\Omega) \times L^{2}(\Omega)$. Assume that there exist positive constants c_{i} for $i=1,2,3$ such that
$\frac{-1}{2}\left(k_{1}+k_{2}-\varepsilon\right)|x|^{2}-c_{1} \leq G(x) \leq c_{2}|x|^{2}+c_{3}$
for $\varepsilon>0$, where we set $G(x)=\int_{0}^{x} g(t) d t$. There are positive constants d_{i} for $i=1,2$ such that
$|g(x)| \leq d_{1}|x|+d_{2}$
$g^{\prime}(x) \geq-a$, for $a>0$
Then (1)-(3) admits a unique solution $u \in C\left(R^{+} ; H_{0}^{2}(\Omega)\right) \cap C^{1}\left(R^{+} ; L^{2}(\Omega)\right)$.
Firstly, let us obtain some a priori estimates which we will use next sections. We multiply (1) by u_{t} in $L^{2}(\Omega)$ we get
$\frac{d}{d t} E(t)+\beta\left\|\Delta u_{t}\right\|^{2}=0$
where
$E(t)=\frac{1}{2}\left\|u_{t}\right\|^{2}+\frac{\alpha}{2}\|\Delta u\|^{2}+\int_{\Omega} G(\Delta u) d x$.
We integrate (A) from 0 to t we have,
$E(0)-E(t)=\beta \int_{0}^{t}\left\|\Delta u_{s}\right\|^{2} d s$

Thus,

$$
\begin{equation*}
\|\Delta u\|^{2} \leq \frac{2}{\alpha} E(t) \leq D_{1} \tag{C}
\end{equation*}
$$

and
$\int_{0}^{t}\left\|\Delta u_{s}\right\|^{2} d s \leq D_{2}$
where $D_{1}=\frac{2}{\alpha} E(0)$ and $D_{2}=\frac{E(0)}{\beta}$.

2. CONTINUOUS DEPENDENCE ON THE COEFFICIENT α

In this section we prove that the solution of the problem (1)-(3) depends continuously on the coefficient α.

Now assume that u and v are the solutions of the problems respectively

$$
\begin{align*}
& u_{t t}+\alpha_{1} \Delta^{2} u+\beta \Delta^{2} u_{t}+\Delta g(\Delta u)=0, \quad x \in \Omega, t>0 \tag{5}\\
& u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega \tag{6}\\
& u(x, t)=0, \quad x \in \partial \Omega, t>0 \tag{7}\\
& v_{t t}+\alpha_{2} \Delta^{2} v+\beta \Delta^{2} v_{t}+\Delta g(\Delta v)=0, \quad x \in \Omega, t>0 \tag{8}\\
& v(x, 0)=u_{0}(x), v_{t}(x, 0)=u_{1}(x), \quad x \in \Omega \tag{9}\\
& v(x, t)=0, \quad x \in \partial \Omega, t>0 \tag{10}
\end{align*}
$$

Let us define the difference variables w and α by $w=u-v$ and $\alpha=\alpha_{1}-\alpha_{2}$ then w satisfy following the initial boundary value problem

$$
\begin{align*}
& w_{t t}+\alpha_{1} \Delta^{2} w+\alpha \Delta^{2} v+\beta \Delta^{2} w_{t}+\Delta g(\Delta u)-\Delta g(\Delta v)=0, \quad x \in \Omega, t>0 \tag{11}\\
& w(x, 0)=0, w_{t}(x, 0)=0, \quad x \in \Omega \tag{12}\\
& w(x, t)=0, \quad x \in \partial \Omega, t>0 \tag{13}
\end{align*}
$$

The main result of this section is the following theorem.
Theorem 2. Assume that
$|g(s)-g(t)| \leq K|s-t|$
for some K. Let w be the solution of the problem (11)-(13). Then w satisfies the estimate
$\left\|w_{t}\right\|^{2}+\alpha_{1}\|\Delta w\|^{2} \leq D_{3}\left(\alpha_{1}-\alpha_{2}\right)^{2} e^{M_{1} t} t$
where D_{3} and M_{1} are constants.

Proof. Multiplying (11) by w_{t} in $L^{2}(\Omega)$ we get
$\frac{d}{d t}\left[\frac{1}{2}\left\|w_{t}\right\|^{2}+\frac{\alpha_{1}}{2}\|\Delta w\|^{2}\right]+\beta\left\|\Delta w_{t}\right\|^{2} \leq|\alpha|\|\Delta v\|\left\|\Delta w_{t}\right\|+\int_{\Omega}|g(\Delta u)-g(\Delta v)|\left|\Delta w_{t}\right| d x$
From (15) and (14) we obtain,
$\frac{d}{d t} E_{1}(t)+\beta\left\|\Delta w_{t}\right\|^{2} \leq|\alpha|\|\Delta v\|\left\|\Delta w_{t}\right\|+K\|\Delta w\|\left\|\Delta w_{t}\right\|$
where
$E_{1}(t)=\frac{1}{2}\left\|w_{t}\right\|^{2}+\frac{\alpha_{1}}{2}\|\Delta w\|^{2}$.
Using Cauchy-Schwarz inequality at the right hand side of (16) we get,
$\frac{d}{d t} E_{1}(t) \leq \frac{|\alpha|^{2}}{2 \varepsilon}\|\Delta v\|^{2}+M_{1} E_{1}(t)$
where $M_{1}=\max \left\{\frac{K^{2}}{\alpha_{1} \varepsilon}, 1\right\}$. Applying Gronwall 's inequality with (C) we obtain
$E_{1}(t) \leq e^{M_{1} t} \frac{D_{1} t}{2 \varepsilon}|\alpha|^{2}$
which is desired result.

3. CONTINUOUS DEPENDENCE ON THE COEFFICIENT β

In this section we prove that the solution of the problem (1)-(3) depends continuously on the coefficient β.

Now assume that u and v are the solutions of the problems respectively
$u_{t t}+\alpha \Delta^{2} u+\beta_{1} \Delta^{2} u_{t}+\Delta g(\Delta u)=0, \quad x \in \Omega, t>0$
$u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega$

$$
\begin{equation*}
u(x, t)=0, \quad x \in \partial \Omega, t>0 \tag{21}
\end{equation*}
$$

$$
\begin{align*}
& v_{t t}+\alpha \Delta^{2} v+\beta_{2} \Delta^{2} v_{t}+\Delta g(\Delta v)=0, \quad x \in \Omega, t>0 \tag{22}\\
& v(x, 0)=u_{0}(x), v_{t}(x, 0)=u_{1}(x), \quad x \in \Omega \tag{23}\\
& v(x, t)=0, \quad x \in \partial \Omega, t>0 \tag{24}
\end{align*}
$$

Let us define the difference variables w and β by $w=u-v$ and $\beta=\beta_{1}-\beta_{2}$ then w satisfy following the initial boundary value problem

$$
\begin{align*}
& w_{t t}+\alpha \Delta^{2} w+\beta_{1} \Delta^{2} w_{t}+\beta \Delta^{2} v_{t}+\Delta g(\Delta u)-\Delta g(\Delta v)=0, \quad x \in \Omega, t>0 \tag{25}\\
& w(x, 0)=0, w_{t}(x, 0)=0, \quad x \in \Omega \tag{26}\\
& w(x, t)=0, \quad x \in \partial \Omega, t>0 \tag{27}
\end{align*}
$$

The main result of this section is the following theorem.
Theorem 3. Assume that (14) is satisfied and let w be the solution of the problem (25)-(27). Then w satisfies the estimate

$$
\left\|w_{t}\right\|^{2}+\alpha\|\Delta w\|^{2} \leq D_{4}\left(\beta_{1}-\beta_{2}\right)^{2} e^{M_{2} t}
$$

where D_{4} and M_{2} are constants.
Proof. Multiplying (25) by w_{t} in $L^{2}(\Omega)$ we get

$$
\begin{equation*}
\frac{d}{d t}\left[\frac{1}{2}\left\|w_{t}\right\|^{2}+\frac{\alpha}{2}\|\Delta w\|^{2}\right]+\beta_{1}\left\|\Delta w_{t}\right\|^{2} \leq|\beta|\left\|\Delta v_{t}\right\|\left\|\Delta w_{t}\right\|+\int_{\Omega}|g(\Delta u)-g(\Delta v)|\left|\Delta w_{t}\right| d x \tag{28}
\end{equation*}
$$

From (28) and (14) we get,

$$
\begin{equation*}
\frac{d}{d t} E_{2}(t)+\beta_{1}\left\|\Delta w_{t}\right\|^{2} \leq|\beta|\left\|\Delta v_{t}\right\|\left\|\Delta w_{t}\right\|+K\|\Delta w\|\left\|\Delta w_{t}\right\| \tag{29}
\end{equation*}
$$

where

$$
E_{2}(t)=\frac{1}{2}\left\|w_{t}\right\|^{2}+\frac{\alpha}{2}\|\Delta w\|^{2} .
$$

Cauchy-Schwarz inequality and from (29) we obtain,
$\frac{d}{d t} E_{2}(t) \leq \frac{|\beta|^{2}}{2 \varepsilon}\left\|\Delta v_{t}\right\|^{2}+M_{2} E_{2}(t)$
where $M_{2}=\max \left\{\frac{K^{2}}{\alpha \varepsilon}, 1\right\}$. Applying Gronwall 's inequality with (D) we obtain,
$E_{2}(t) \leq e^{M_{2} t} \frac{D_{2} t}{2 \varepsilon}|\beta|^{2}$
Hence proof is completed.

4. REFERENCES

1. H.T Banks, D.S. Gilliam, V.I. Shubov, Global solvability for damped abstract nonlinear hyperbolic systems, Differential and Integral Equations, 10(2), 309-332, 1997.
2. M.A. Aassila, A. Guesma, Energy decay for a damped nonlinear hyperbolic equation, Applied Math. Letter 12, 49-52, 1999.
3. G, Chen, Y. Wong, Z. Zhao, Blow up of solution of an initial boundary value problem for a damped nonlinear hyperbolic equation, Applied Math. Letter 17, 491497, 2004.
4. F. Tahamtani , K. Mosaleheh and K.Seddighi, Spatial decay estimates for a class of nonlinear damped hyperbolic equations, IJMMS 27:1, 17-26, 2001.
