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1.INTRODUCTION

In this paper, we are concerned with the following initial boundary value
problem for the damped nonlinear hyperbolic equation:

U, + AU+ BA°U, +Ag(AU) =0, XeQ,t>0 (1)
u(x,0)=u,(x), u,(x,0) =u,(x), xeQ (2)
u(x,t)=0, xeoQ,t>0 3)

where a and S are positive constants, Q is bounded domain in R" with smooth
boundary 6Q. A and A’ denotes Laplacian and biharmonic operators respectively,
g(s) is the given nonlinear function.

This problem describes the motion of the neo-Hookean elastomer rod; for more
physical interpretation of problems (1)-(3) we refer to [1].

There are some studies about this problem. For example, Uniform stabilization
of the energy of a nonlinear damped hyperbolic equation is studied in [2]. Blow up
results to the IBVP problem (1)-(3) is given by [3]. The authors of [1] studied a general
class of abstract evolution equations

Uy + Au+Au, +N"g(Nu)=f(t)
u(0) = ¢, 4)
ut(o):¢l

where A,A,,N and f satisfy certain assumptions(see[1]).

Global in time existence, uniqueness, regularity and continuous dependence on
the initial data ¢,and ¢, of a generalized solution of problem (4) are proven in [1].

The spatial decay estimates for a class of nonlinear damped hyperbolic equations

investigated in [4]. Also they compared the solutions of two-dimensional wave
equations with different damped coefficients.
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The aim of the present paper is to prove the continuous dependence of solutions
to the problem (1)-(3) on coefficients « and f.

Throughout this paper we use the notation ||||p for the norm in L°(QQ). We

denote |||| the norm in ||[|,. H*(Q), H'(€), H,(Q) and H;(Q) are the usual Sobolev

spaces.
The following existence theorem is proved [1].

Theorem 1. Let (Uy,U,) belong to Hy(Q)x L’ (Q). Assume that there exist positive

constants ¢, for i =1,2,3 such that

%l(kl +k,—)|x[ —¢, <G <, | +c,

fore >0, where we set G(X) = .[ g(t)dt. There are positive constants d, for i =1,2 such
0

that
la()|<d, |x|+d,
g'(x)>—-a, fora>0
Then (1)-(3) admits a unique solution u e C(R";H; (Q))nC'(R";1*(Q)).
Firstly, let us obtain some a priori estimates which we will use next sections. We
multiply (1) by u, in L*(Q) we get
d 2
pm E(t)+ B||au | =0 (A)
where
E(t) =< u | +Zauf + [ G (au)dx.
22 )
We integrate (A) from Oto t we have,

E(0)-E(t)=j j Ay ds (B)

Thus,
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2
Ay < ~EM®<D, (©)

and

t

[lau,] ds <D, (D)
0

where D, _2 E(0) and D, :@.
a

2. CONTINUOUS DEPENDENCE ON THE COEFFICIENT «
In this section we prove that the solution of the problem (1)-(3) depends

continuously on the coefficient « .
Now assume that U and v are the solutions of the problems respectively

Uy + o, AU+ BA’U +Ag(AU)=0, XeQt>0 (5)
u(x,0)=u,(x), u,(x,0) =u,(x), xeQ (6)
u(x,t)=0, xeoQ,t>0 (7)
Ve + o, AV + BAY, +AQ(AV) =0, XxeQt>0 (8)
V(X,0) =U,(x),V,(X,0) =u,(X), Xe 9)
V(X,t)=0, xeoQ,t>0 (10)

Let us define the difference variables w and & by w=u-Vv and o =q,—a, then w
satisfy following the initial boundary value problem

W, + AW+ oA’V + BA’W, + Ag (Au)—Ag (AV) =0, xeQ,t>0 (11)
W(x,0)=0,w,(X,0)=0, XxeQ (12)
w(x,t)=0, xeoQ,t >0 (13)

The main result of this section is the following theorem.
Theorem 2. Assume that
la(s)—g()| < Kls—t| (14)

for some K. Let w be the solution of the problem (11)-(13). Then w satisfies the
estimate
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i+ |aw]” < D, (a, —ar, ) ™t
where D; and M, are constants.
Proof. Multiplying (11) by W, in L*(Q) we get

d|1
S 2w+ S |+ gl < ellovllsm+ flo o) g (svjlawfex @)
Q

From (15) and (14) we obtain,

d

5 B0+ Bl < faf|av] ]|+ K faw] |aw] (16)

where
1 2« 2
E (1) =—=||w|| +—=[Aw]|[ .
=2+ L]
Using Cauchy-Schwarz inequality at the right hand side of (16) we get,

de (t)sm”Av”HM E (t) (17)
dt " 2 !

2
where M, = max {K—,l} . Applying Gronwall 's inequality with (C) we obtain

oE
E (1) <e™t Dgp (18)
2e

which is desired result.

3. CONTINUOUS DEPENDENCE ON THE COEFFICIENT B

In this section we prove that the solution of the problem (1)-(3) depends
continuously on the coefficient f.

Now assume that U and v are the solutions of the problems respectively

Uy + oAU+ AU, +Ag(AU)=0, XeQ,t>0 (19)
u(x,0)=u,(x), u,(x,0)=u,(x), xeQ (20)
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u(x,t) =0, xeoQ,t>0 (21)
Ve +aAV+ BAN, +Ag(AV) =0, XxeQ,t>0 (22)
V(Xa O) = UO(X)> Vt(X7 0) = ul(x)a Xe Q (23)
V(X,t)=0, xeoQ,t>0 (24)

Let us define the difference variables w and f by w=u-v and = -, then w
satisfy following the initial boundary value problem

W, +aA’W+ AW, + BAY, + Ag (Au)-Ag(AV) =0, XeQ,t>0 (25)
W(x,0)=0,w,(X,0)=0, XxeQ (26)
W(Xx,t)=0, xeoQ,t >0 (27)

The main result of this section is the following theorem.

Theorem 3. Assume that (14) is satisfied and let w be the solution of the problem
(25)-(27). Then w satisfies the estimate

]+ ecawl” < D, (5 - )" €™
where D, and M, are constants.
Proof. Multiplying (25) by W, in L*(Q) we get

d|1
S S+ S [+ o < )+ o (au)- o (av)anfox  23)
Q

From (28) and (14) we get,
d
5 O+ B law ] < [ lav v+ K v faw] (29)
where
1
E,(0= L+ 2w

Cauchy-Schwarz inequality and from (29) we obtain,
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d B
G B0 %”Avt I” +M,E, (t) (30)

2

where M, = max {K—,l} . Applying Gronwall 's inequality with (D) we obtain,
as

5t th

E (t)<eM' =2
(D) e

18 (18)

Hence proof is completed.
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