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Abstract- In this paper, we studied Bayesian analysis proposed by Bretthorst[6] for a 
general signal model equation and combined it with a simulated annealing (SA)
algorithm to obtain a global maximum of a posterior probability density function (PDF)
for frequencies. Thus, this analysis offers different approach to finding parameter values 
through a directed, but random, search of the parameter space. For this purpose, we 
developed a Mathematica code of this Bayesian approach together with SA and used it
for recovering sinusoids from noisy data. Simulations results support its effectiveness. 
Key Words- Bayesian Statistical Inference Simulated Annealing, Parameter 
Estimations, Power Spectral Density, Cramér-Rao lower bound.

1. INTRODUCTION

Let the vectorθ contain the parameters to be estimated from the (measurements) 
vector ,D which is the output of the physical system that one wants to be modeled.                                       

In many experiments, the recorded data 1{ ,..., }Nd dD  are sampled from an unknown 

model function ( ; )f t θ  at discrete times 1( ,..., )T
Nt t . Often one assumes a signal model 

equation as follows:
( ; ) ( ),i i id f t e t θ                                                                                                         (1)           

where ( )ie t  represents the noise, assumed to be drawn independently from a zero mean 

Gaussian probability distribution with a standard deviation of . Different models 
correspond to different choices of signal model function ( ; )f t θ . According to Bretthorst
[6], the most general signal model may be given in the following form:

 
1

( ; ) ;{ }
m

j j
j

f t B G t 


 θ ,                                                                                             (2)

where  ;{ }jG t   is a function of 1{ ,..., }  that we label collectively{ }  and jB

represents the amplitude corresponding to the j th model function  ;{ }jG t  . The goals 

of data analysis are usually to use the observed data D to infer the values of 
parameters 1 1 2{ ,..., ; ,..., }( 2 )B B m    θ .

In this paper, we address the problem of estimation of sinusoids in white 
Gaussian noise within a Bayesian framework. This is of great interest in many fields of 
science, including seismology, nuclear magnetic resonance and radar. Under an
assumption of a known number of sinusoids, several algorithms have already been used
in parameter estimation literature, such as least-square fitting [9], discrete Fourier 
transform [1], and periodogram [2].  The discrete Fourier transform has been a very 
powerful tool in Bayesian spectral analysis since Cooley and Tukey introduced the fast 
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Fourier transform (FFT) technique in 1965, followed by the rapid development of 
computers. After Jaynes [3] derived a periodogram directly from the principles of 
Bayesian inference, researchers in different branches of science have given much 
attention to the relationship between Bayesian inference and parameter estimation and 
they have done excellent works in this area for last fifteen years [4-7].

We consider here a Bayesian approach, proposed by Bretthorst, in which the 
posterior PDF for { }  has to be maximized. Unfortunately, conventional algorithms [9] 
based on a gradient direction fail to converge for this maximization problem. Even 
when they converge, there is no assurance that they have found a global, rather than a 
local maximum. This is because a log of the posterior PDF is so sharply peaked and 
highly nonlinear function of{ } . Bretthorst pointed it out and used a pattern search 
algorithm described by Hook-Jevees [10] to overcome this problem but, this approach 
does not converge unless starting point is much closer to the optimum{ } . Our 
contribution is therefore to develop a computer program using Mathematica [8] that 
combines this Bayesian approach with a very different optimization algorithm called SA 
[11]. It explores the entire surface of the posterior PDF for the frequencies and tries to 
optimize it while moving both uphill and downhill in order to escape from local 
maxima. Furthermore, it is largely independent of the starting values, often a critical 
input in conventional algorithms. Finally, we use it for estimating parameters of the 
sinusoids corrupted by a random noise.

2. BAYESIAN PARAMETER ESTIMATION

Let us now reconsider the problem given in Equation (1) within the Bayesian 

framework. If  2{ },{ },B  is a set of parameters of interest, then their joint PDF

given the observed data D  is proportional to 

     2 2 2{ },{ }, | , { },{ }, | |{ },{ }, ,P B P B P B     D Ι Ι D Ι .                               (3)

The quantity  2{ },{ }, |P B  Ι  is called the prior PDF; it represents prior knowledge of 

the parameters  2{ },{ },B  given the information I . The sampling PDF

 2|{ } { }, ,P B D , Ι  is the likelihood of D . A key component in Bayes theorem is the 

likelihood function  2|{ },{ }, ,P B D Ι that is proportional to the PDF for the noise. If

 is known, then the likelihood function takes on the form:                                                            

 2 2 2
2

|{ },{ }, , (2 )
2

N NQ
P B exp  



    
 

D Ι .                                                            (4)       

The exponent Q  is defined as follows
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 D ,                                                  (5)   
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where 2 2
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

    . In order to 

obtain the PDF for{ } , we integrate out the nuisance parameters{ }B and  dependence, 

   { } | , { } { }, | , { }P P B I d B d    D Ι , D .                                                             (6)      

To do it analytically, it is necessary to make the matrix jk  to be diagonal, effectively 

by introducing new orthogonal model functions,

   
1

1
;{ } ;{ } , ( 1,..., )

m

j jk kk
j

H t a G t j m 
 

  .                                                    (7)

This diagonalization process gives a new expression for the signal model function,

 
1

( ; ) ;{ }
m

k k
k

f t A H t 


 θ ,                                                                                              (8)      

where the new amplitudes kA ’s are related to the old amplitudes jB ’s by

1

, ( 1,..., )
m

k k j kj
j

A B k m 


                                                                                       (9)

and where kju represents the j th component of the k th normalized eigenvector of jk , 

with j  as the corresponding eigenvalue. Substituting these expressions into Equation 

(5) and define

   
1

,{ } , 1,...,
N

j i j i
i

h d H t j m


  ,                                                                            (10)

to be the projection of the data onto the orthogonal model functions  ,{ }jH t  , we can 

then proceed to perform m Gaussian integrations over jA . If   is known, the joint PDF

of the { }  parameters, conditional on the data is given by
2

2
({ } | , )

2
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P I exp


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 

h
D ,                                                                                         (11)  

where 2 2

1

1 m

j
j

h
m 

 h .  If   is not known, by using the Jeffreys prior [15] and integrating

Equation (6) over parameter we obtain

22
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P I

N

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h
D
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.                                                                                 (12)

This has the form of the Student t- distribution. It is desirable to compute the variances 

associated with those parameters. To do this, we can expand the function 2h  in a 
Taylor series at the point ˆ{ }  which maximizes the PDF in Equation (11) or (12), such
that 
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. For an arbitrary signal model the matrix jkb  cannot be 

calculated analytically; however, it can be evaluated numerically. This can be done by
first changing to the orthogonal variables and performing the  Gaussian integrals. Let 

j and kju  represent the thj  eigenvalue and eigenvectors of the matrix jkb , respectively.

Then the new orthogonal variables are given by 

1 1

, k jk
j j k kj j

k k k

s u
s r u r

 


 

   .                                                                                 (14)    

From these, we get the estimated frequency jw  in the form: 

2
2

1

ˆ lj
j j

l l

u

  


     .                                                                                            (15)                                                    

One can also show that j jA h   . By using Equation (9) we get the estimated amplitude

kB  in the form:

2

1 1

1 1m m

k j jk jk jk
j j jj

B h a a a
 

                                                                          (16)                                                  

3. CONTINUOUS GLOBAL OPTIMIZATION ALGORITHM

Bayesian parameter estimation turns into the global optimization problem [12] 
which is a task to find the best possible solution for the problem in Equations (11) and 
(12):

 
{ }
max ({ }| , )P I





D ,                                                                                          (17)

where  0,2  . Although there is numerous other approaches [13, 16] to solve this 
maximization problem, the SA algorithm, suggested by Corana et. al. [11] and modified 
by Goffe et. al. [12] is chosen here because it is generally applicable and easy to 

implement. This begins with initial guesses of 0ω and 0  (called temperature). Each 

step of this algorithm replaces the current frequency by a random nearby frequency. In 

other words, the next candidate point kω  is generated by varying one component 

 1,...,j  of the current iteration ( 1)kω  at a time:
1k k

j j    ,                                                            (18)

where    0,1N   ω  is recalculated until min max
j j j     for upper and lower 

limit max
j  and min

j , respectively (ordering 10 ... 2      ).  The step size   is 

calculated from the square root of the Cramer-Rao lower bound (CRLB)   ω [13] that 
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is a lower limit to the variance of the measurement of j , so this generates a natural 

scale size of the search space around its estimated value.  It is expected that better 
solutions lie close to solutions that are already good and so normally distributed step 

size are used.  Thus, the point kω  is accepted as the k th iteration point 

if    ( 1), ,k kP I P Iω D ω D . Otherwise, it is accepted or rejected according to the 

Metropolis-criterion [14]:

   ( 1)

1

, ,
exp

k k

k

P I P I
p





 
  
  

ω D ω D
,                                       (19)

where p  is a uniformly distributed random number from 0,1 . This continues until all 

  components have been altered and thus   new points have successively accepted or 

rejected according to the Metropolis criterion.  After this process is repeated sn times,

the whole cycle is then repeated n  times, after which the temperature is decreased by a 

factor 0k    (called annealing or cooling schedule). Termination of the algorithm 

occurs when average function value of sequences of points after each sn n   step cycle 

reaches a stable state:

       , , ( 1,..., 4) and , ,k k l k optP I P I l P I P I     ω D ω D ω D ω D ,         (20)

where is a small positive number defined by user,  ,optP Iω D  is the value of the PDF

at the best point kω and l  indicates the last four successive iteration values of the PDF

that are being stored. 

4. COMPUTER SIMULATED EXAMPLES
To verify the performance of the proposed algorithm, we generated a data vector 

from multiple frequency sinusoids. Here it  runs over the symmetric time interval T  to 

T in (2 1) 512T    integer steps and (0, )ie N � . We first consider a signal model

with two closed harmonic frequencies:
0.5403 cos(0.3 ) 0.8415 sin(0.3 )

0.4161cos(0.31 ) 0.9093 sin(0.31 ) , ( 1, ..., 512)
i i i

i i i

d t t

t t e i

= -

- - + =
                         (21)     

Table 1. Computer simulations for two closed harmonic frequency signal model
Bayesian Parameter estimation

Parameters Estimated Values

1w 0.300082± 0.0009384

2w 0.310574± 0.0010515

1B 0.520649± 0.0632635

2B -0.869805± 0.0631361

3B -0.381937± 0.0634942

      : Unknown

N     :  512
m     :  6

SNR: 1.02936

̂     : 0.99639

4B -0.855687± 0.0636233
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         Figure 1. Recovering signals from noisy data produced from two closed harmonic
                 Frequency signal model.

We carried out the Bayesian analysis of the simulated data, assuming that we know the 
mathematical form of the signal model but, not the value of the parameters. As an initial 

estimate of the frequencies 0ω  for the maximization procedure, it is possible to take 
random choices from the interval  0,2 . However, it is better to start with the locations 

of the peaks chosen automatically from the Fourier power spectral density graph by 
using a computer code written in Mathematica. After reasonable values of parameters 
that  control the simulated annealing routine are chosen as 20sn  ,  max 100,5Tn 

and 0.01  , the algorithm starts at some high temperature 0 =100 and  generates the 

sequence of points until a sort of equilibrium is approached; that is a sequence of points 
0 1 2, , ,...ω ω ω  whose average value of  ,P Iω D  reaches a stable value as iteration 

proceeds. During this phase the step size is naturally adjusted. The best point ω  reached 
so far is recorded. After thermal equilibration, 0  is reduced by a factor 0.85   and 

a new sequence is made starting from this best pointω , until thermal equilibrium is 
reached again and so on. Therefore it proceeds toward better maxima even in the 
presence of many local maxima. Consequently, the process is stop at a temperature low 
enough that no more useful improvement can be expected, according to a stopping 
criterion in Equation (20). Once the frequencies are estimated, we carried on calculating 
the estimated amplitudes associated with the errors.  However, an evaluation of the 
posterior PDF at a given point ω  cannot be made analytically and also requires a 
numerical calculation of projections on to orthonormal model functions, related to 
eigen-decomposition of   ω . It is therefore expected that its evaluation at ω  requires 

larger consumption of time as the length of ω  increases. 
The computer program we developed was run on the workstation in two cases 

where the standard deviation of the noise is known or not. The computer simulations 
illustrated in Table 1 show the results when   is known but they are almost similar 
with those obtained in the case   is unknown.  Estimated parameter values, quoted as 
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(value) ± (standard deviation), indicate that all values of the parameters within the 
calculated accuracy are clearly recovered.  The estimated value of signal to noise ratio 
(SNR) and the standard deviation of the noise are also shown in Table 1. On the other 
hand,   Figures 1 shows the power of the method for recovering the signal from the 
noisy data. In general, we consider a multiple harmonic frequency signal model which 
is also used by Bretthorst [6]:

   

  cos(0.1 t 1) 2cos(0.15 2) 5cos(0.3 3)

2cos(0.31 4) 3cos( +5)      ( 1 ,...,512)
i i i i

i i i

d t t

t t e i

      

   
.                                      (22)

The best estimates of parameters are tabulated in Table 2.  Once again, all the 
frequencies have been well resolved, even the third and fourth frequencies, which are 
very close not to be separated by the Fourier power spectral density shown in Figure 3.  
Actually with the Fourier spectral density when the separation of two frequencies is less 
than the Nyquist step, defined as 2 / N , two frequencies are indistinguishable. In this 
example these two frequencies are separated by 0.01, which is less than the Nyquist step 
size. Therefore, there is no way by using the Fourier power spectral density that one can 
resolve these closed frequencies less than the Nyquist step, however Bayesian power 
spectral density shown in Figure 3 gives us very good results with high accuracy. The
results we obtained so far are also consistent with that of Bretthorst [6].

Moreover, we initially assumed that the noise in data were drawn from the 
Gaussian density with the mean 0   and the standard deviation  . Figure 2 shows 
the exact and estimate PDF of the random noise in data. It is seen that the estimated 
(dotted) PDF is closer to the true (solid) PDF and the histogram of the data is also much 
closer to the true PDF.  The histogram is known as a nonparametric estimator of the
PDF because it does not depend on specified parameters.  

We generated 64 data samples from a single frequency signal model and added it 
to the variety of noise levels. After 50 independent trials, the mean square errors (MSE) 
were calculated and their logarithmic values were plotted with respect to SNR that 
varies between zero and 20 dB.  It can be seen from Figure 4 that the proposed 
estimator has threshold about 3 dB of SNR and follows nicely the CRLB after this 
value. As expected, larger SNR ratio gives smaller MSE.
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Table 2. Computer simulations for a multiple harmonic frequency model1

Figure 2. Comparison of exact and estimate PDF of noise in data  1  .

5. CONCLUSION

In this work we have partially developed a Bayesian approach with a simulated 
annealing and applied it to spectral analysis and parameter estimation problems. Overall 
results show that it provides rational approach for estimating, in an optimal way, values 
of parameters of sinusoids corrupted by random noise. Both frequency and amplitudes 
can be recovered from the experimental data and the prior information with high 
accuracy, especially the frequency which is the most important parameter in spectral 
analysis.  Although it requires a large consumption of CPU time, it is competitive when 
compared to the multiple runs often used with conventional algorithms to test different 
starting values. For a sufficiently high SNR the MSE will attain Cramer-Rao lower 
bound so that it justifies the accuracy of the frequency estimation. Moreover, 

                                                

1
In order to compare the results with Bretthorst's in this example we converted

2 2 , ( 1,..., ).i i ia B B i   

    Parameters        True values    Estimated values      Bretthorst's results

1 0.10 0.1006 0.0004 0.0998 0.0001
2 0.15 0.1495 0.0002 0.1498 0.0002
3 0.30 0.3001 0.0001 0.3001 0.0002
4 0.31 0.3099 0.0004 0.3120 0.0001

F
re

qu
en

ci
es

5 1.00 1.0000 0.0001 0.9999 0.0001

          1a          1.0     0.99 0.08     0.99 0.08

           2a          2.0     1.96 0.08     2.08 0.08

          3a       5.0     5.10 0.09     4.97 0.08

          4a         2.0    1.81 0.09      1.95 0.08

A
m

pl
it

ud
es

          5a          3.0    2.95 0.08      2.92 0.08
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Mathematica is a powerful system for doing mathematics on the computer and it has
grown to become today an unparalleled platform for all forms of computations.
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              Figure 3.  Spectral analysis of multiple frequency signal models.
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       Figure 4.  Mean square frequency errors versus SNR ( 0.3  , N = 64).
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