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Abstract-This paper is concerned with determination of optimal lot size for an 
economic production quantity model with scrap and random breakdown occurring in 
backorder replenishing period. In most real-life manufacturing systems, generation of 
defective items and random breakdown of production equipment are inevitable. To deal 
with the stochastic machine failures, production planners practically calculate the mean 
time between failures (MTBF) and establish the robust plan accordingly, in terms of 
optimal lot size that minimizes total production-inventory costs for such an unreliable 
system. Random scrap rate is considered in this study, and breakdown is assumed to 
occur in the backorder filling period. Mathematical modeling and analysis is used and 
the renewal reward theorem is employed to cope with the variable cycle length. An 
optimal manufacturing lot size that minimizes the long-run average costs for such an 
imperfect system is derived. Numerical example is provided to demonstrate its practical 
usages.
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1. INTRODUCTION

Becoming a low cost producer is one of the main operation strategies and goals of 
most manufacturing firms. To accomplish this goal, the company must be able to 
effectively use its resources and minimize its operating costs. In the field of inventory 
management, Harris [1] first introduced the economic order quantity (EOQ) model to 
assist corporations in reducing total inventory costs. EOQ model uses mathematical 
techniques to balance the setup cost and holding cost, and derives an optimal ordering 
size that minimizes overall inventory costs. In the manufacturing sector, the economic 
production quantity (EPQ) model is often utilized for determining the optimal 
production lot-size that minimizes overall production-inventory costs [2-3]. Regardless 
of the simplicity of EOQ and EPQ models, they are still applied industry- wide today
[4-5].The classic EPQ model implicitly assumes that items produced are of perfect 
quality. But in real-life production systems, due to many reasons generation of defective 
items is inevitable. Hence, studies have been carried out to enhance the classic EPQ 
model by addressing the issue of imperfection quality items produced [6-26].

Boone et al. [12] investigated the impact of imperfect processes on the production 
run time. They built a model in an attempt to provide managers with guidelines to 
choose the appropriate production run times to cope with both the defective items and 
stoppages occurring due to machine breakdowns. Lee and Rosenblatt [16] studied an 
EPQ model with joint determination of production cycle time and inspection schedules, 
and they derived a relationship that can be used to determine the effectiveness of 
maintenance by inspection. Zhang and Gerchak [18] considered joint lot sizing and 
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inspection policy in an EOQ model with random yield. Hayek and Salameh [25]
assumed that all of the defective items produced are repairable and derived an optimal 
operating policy for EPQ model under the effect of reworking of imperfect quality items. 
Stock-out situations may also occur due to the excess demand. Sometimes, these 
shortages can be backordered and satisfied at a future time, hence the overall 
production-inventory costs can be reduced significantly [19-20,24-25].

Random breakdown of production equipment is another common and inevitable 
reliability factors that trouble the production planners and practitioners most. To 
effectively manage and control the disruption and minimize overall production costs, 
become the primary task of most manufacturing firms. It is no wonder that determining 
optimal lot-size (or production uptime) for systems with machine failures has received 
attention from researchers in recent decades (see, for instance [27-38]).

Example of studies that addressed the machine breakdown issues are surveyed
below. Groenevelt, Pintelon, and Seidmann [27] studied two production control policies 
to deal with the machine failures. The first one assumes that the production of the 
interrupted lot is not resumed (called no resumption (NR) policy) after a breakdown. 
While the second policy considers that the production of the interrupted lot will be 
immediately resumed (called abort/ resume (AR) policy) after the breakdown is fixed 
and if the current on-hand inventory falls below a certain threshold level. Both of their 
proposed policies assume that the repair time is negligible and they studied the effects 
of machine breakdowns and corrective maintenance on the economic lot sizing 
decisions. Chiu et al. [30] investigated the optimal run time for EPQ model with scrap, 
rework and random breakdown. They proposed and proved theorems on conditional 
convexity of the integrated cost function and on bounds of the production run time. 
Then, an optimal run time was located by the use of the bisection method based on the 
intermediate value theorem. Makis and Fung [33] studied effects of machine failures on 
the optimal lot size as well as on optimal number of inspections. Formulas for the 
long-run expected average cost per unit time was obtained. Then the optimal 
production/inspection policy that minimizes the expected average costs was derived.
Abboud [38] considered an EMQ model with Poisson machine failures and random 
machine repair time. A simple approximation model was developed to describe the 
behavior of such systems, and specific formulations were derived for the cases where 
the repair times are exponential and constant. This study is concerned with 
determination of optimal lot size for an EPQ model with scrap, shortages allowed and 
backordered, and random breakdown occurring in backorder-filling period. Since little 
attention was paid to the aforementioned area, this paper intends to bridge the gap.

2. ASSUMPTION AND MATHEMATICAL MODELING

This paper considers a manufacturing process with the following features:
(1) It may randomly produce x portion of defective items at a rate d.
(2) All imperfect quality items are assumed not repairable, are treated as scrap.
(3) The production rate P is much larger than the demand rate λ and the production 

rate of scrap items d can be expressed as d=Px.
(4) Shortages are allowed and backordered, they will be satisfied first when the next 

replenishment production cycle begins.
(5) According to the mean time between failures (MTBF) data, a single machine 
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breakdown occurs at only backorder replenishing period with random occurrence 
times (refer to Figure 1).
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Figure 1 : On-hand inventory of perfect quality items in EPQ model with scrap 
and breakdown occurring in backorder-filling period

The abort/resume (AR) inventory control policy is adopted in this study and 
under such policy, when a breakdown takes place the machine is under corrective 
maintenance immediately, and the repair time is assumed to be constant. The interrupted 
lot will be resumed right after the restoration of machine. Cost parameters considered in 
the proposed model include setup cost K, unit holding cost h, unit production cost C, 
disposal cost per scrap item CS, unit shortage/backordered cost b, and cost for repairing 
and restoring machine M. Additional notations are listed below.

t = production time before a random breakdown occurs,
tr = time required for repairing and restoring the machine,
tr’ = time required for producing sufficient stocks to satisfy the demand during 

machine repair time tr,
t4 = time required for filling the backorder quantity B (excluding tr and tr’),
t1 = time for piling up stocks during the production uptime in each cycle,
t2 = time required for depleting all available perfect quality on-hand items,
t3 = shortage permitted time,
T1 = the optimal production uptime to be found for the proposed EPQ model,
H1 = the level of backorder quantity when machine breakdown occurs,
H2 = the level of backorder quantity when machine is repaired and restored,
H3 = the maximum level of on-hand inventory for each production cycle,
Q = production lot size for each cycle,
B = the maximum backorder level allowed for each cycle,
T = the production cycle length,
TC(T1,B) = total production-inventory costs per cycle,
TCU(T1,B) = total production-inventory costs per unit time (e.g. annual),
E[TCU(T1,B)] = the expected total production-inventory costs per unit time.

The production rate P of perfect quality items must always be greater than or 
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equal to the sum of the demand rate λ and the production rate of defective items d. 
Hence, the following condition must hold: (P-d-λ)>0 or (1-x-λ/P)>0. Because t denotes
production time before a breakdown taking place in the backorder replenishing period t4, 
that is t < t4. Let g be the constant machine repair time, hence tr = g. The following 
derivation procedure is similar to what was used by prior studies [20,25].

From Figure 1, one can obtain the following: the level of backorder H1 (when 
machine breakdown occurs); the level of backorder H2 (when machine is repaired and 
restored); the maximum level of on-hand inventory H3; the production uptime T1; the 
cycle length T; tr’; time for piling up stocks t1; time required for depleting all available 
on-hand items t2; t3; time required for filling B (the maximum backorder quantity) t4; 
and the production lot size Q.
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where d=Px.
As depicted in Figure 2, the total scrap items produced during production uptime 

T1 can be obtained as shown in equation (12).
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Total production-inventory cost per cycle TC1(T1,B) is: 
         

         
       

1 1 1 1 3 1 3 2

1 4 1

1 1 2 2 4 3

, / 2 / 2

              / 2 / 2

              / 2 / 2 / 2 / 2

r r

r r

s

t

t

TC T B K C P T C T P x M h H t H t

h d t t d t t d t d T t t t

b B H t H H t H t t B t





               
                
             

   (13)

Substituting all related parameters from equations (1) to (12) in equation (13), one 
obtains TC1(T1,B) as follows.

         
     

1 1 1 1

22 2
1

, 1 1 ( / )

1 2 1
               2 1 2

2 2 1 ( / )

STC T B K M P T C C x gPt hx b x hT P x B g

P x x b hhT P B x
x g B g

x P




  

                 
       
                 

    (14)



Optimal Lot Sizing with Scrap and Random Breakdown Occurring 333

The production cycle length is not constant due to the assumption of random 
scrap rate and a uniformly distributed random breakdown is assumed to occur in the 
backorder filling period. Thus, to take the randomness of scrap and breakdown into 
account, one can use the renewal reward theorem in inventory cost analysis to cope with 
the variable cycle length and the integration of TC1(T1,B) to deal with the random 
breakdown happening in period t4. The expected total production- inventory costs per 
unit time can be calculated as follows.
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Figure 2 : On-hand inventory of scrap items in EPQ model with scrap and 
breakdown occurring in backorder-filling period
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Then equation (16) becomes:
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2.1 Convexity of the expected cost function E[TCU(T1,B)]

The optimal inventory operating policy can be obtained by minimizing the 
expected cost function. For the proof of convexity of E[TCU(T1,B)], one can utilize the 
Hessian matrix equation [39] and verify the existence of the following:
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E[TCU(T1,B)] is strictly convex only if equation (18) is satisfied, for all T1 and B
different from zero. From equations (17) and (18), by computing all the elements of the 
Hessian matrix equation, one obtains:
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Equation (19) is resulting positive because all parameters are positive. Hence, 
E[TCU(T1,B)] is a strictly convex function. It follows that for the optimal production 
uptime T1 and the maximal backorder level B, one can differentiate E[TCU(T1,B)] with 
respect to T1 and with respect to B, and solve linear systems of equations (20) and (21) 
by setting these partial derivatives equal to zero.
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Therefore, one has:
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From equations (4), (23), and (25) one can obtain the optimal lot-size Q* and 
optimal backorder level B* as shown in equations (26) and (27). The expected total 
production- inventory cost E[TCU(T1,B)] can be obtained by substituting T1 and B*

from equations (22) and (23) into equation (16).
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2.2 Results and verification

Suppose that the breakdown factor is not considered, then the cost and time for 
repairing failure machine M=0 and g=0, equations (26) and (27) become the same 
equations as were given by Chiu and Chiu [19]:
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Further, suppose that the regular production process produces no defective items, 
i.e. x = 0, then equations (28) and (29) become the same equations as were presented by
the classic EPQ model with backordering permitted [40]:
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3. NUMERICAL EXAMPLE AND DISCUSSION

Suppose that annual demand of a manufactured product is 3,600 units and the 
production rate of this item is 9,000 units per year. According to the MTBF data from 
the maintenance department a uniformly distributed breakdown is assumed to occur in 
the backorder filling period. When a breakdown happens, the abort/resume policy is 
used. The percentage of scrap items produced x, follows a uniform distribution over the 
interval [0, 0.2]. Other parameters are summarized as follows.

CS = $0.3 disposal cost for each scrap item,
C = $1 per item,
M = $500 repair cost for each breakdown,
K = $450 for each production run,
h = $0.6 per item per unit time,
b = $0.2 per item backordered per unit time,
g = 0.018 years, time needed to repair and restore the machine.

A demonstration of the convexity of the long-run average costs E[TCU(T1,B)] is 
depicted in Figure 3. From equations (23), (26), (27) and (17), one can obtain the 
optimal production uptime T1* =0.9443 years (or the optimal production batch size 
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Q*=8,499), the optimal backorder level B* =3,108, and the optimal long run expected 
costs E[TCU(T1*,B*)]= $5,011.30.

3.1 Sensitivity analyses

Figure 4 shows the behavior of the optimal production lot size Q* with respect to 
random percentage of defective items x, where each x-value represents a uniform 
distributed random variable over the interval [0, x]. It may be seen that as the random 
percentage of defective items x increases, the optimal production lot size Q* decreases 
significantly.

Figure 3: Convexity of the expected cost function E[TCU(T1,B)]

Figure 4: Variation of scrap rate effects on the optimal production lot size Q*

The behavior of the optimal expected cost function E[TCU(T1*,B*)] with respect 
to random percentage of defective items x is depicted in Figure 5. It may be noted that
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as random percentage of defective items x increases, the optimal expected cost function 
E[TCU(T1*,B*)] increases significantly.

Suppose the result of this investigation is not available, one probably can only use 
a closely related lot-size solution given by [24] for solving such an unreliable EPQ 
model and obtaining Q=5,849 (or T1=0.6498) and B=2,180. Plugging this lot-size 
solution into Eq. (17), one has E[TCU(T1,B)]=$5,074.99. It is 4.51% more on total 
setup and holding costs than the optimal production-inventory costs computed by the 
result of the present study.

4. CONCLUSION

In most real-life manufacturing systems, generation of defective items and 
breakdown of production equipment are inevitable. One cannot count on classical EPQ 
model to determine the optimal replenishment policy for such a practical system, 
because it does not consider the imperfect quality factors. The effects of these reliability 
situations on the EPQ model must be specifically investigated in order to minimize 
overall production-inventory costs. Since little attention was paid to the aforementioned 
area, this paper intends to fill the gap.

Figure 5: Variation of scrap rate effects on the optimal expected cost function
E[TCU(T1*,B*)]

Mathematical modeling is employed in this study. The disposal cost for each 
scrap item and the repairing cost for the broken-down machine are included in the cost 
analysis. The renewal reward theorem is utilized to cope with the variable cycle length 
of the proposed system. An optimal production lot size that minimizes the long-run 
average costs for such an imperfect quality EPQ model is derived, where shortages are 
permitted and backordered. A numerical example is provided in Section 3 to 
demonstrate its practical usage. For future research, one interesting topic will be to 
consider reworking of the repairable defective items for the same unreliable systems.

ACKNOWLEDGEMENT
Authors would like to thank to the National Science Council of Taiwan for

supporting this study under Grant #: NSC 97-2221-E-324-024.



C.K. Ting, Y.S. P. Chiu and C.C. H. Chan 338

5. REFERENCES

1. F.W. Harris, How many parts to make at once. Factory, The Magazine of Management. 10, 
135-136, 1913.

2. P.H. Zipkin, Foundations of Inventory Management. McGraw-Hill, New York, 2000.
3. E.A. Silver, D.F. Pyke and R. Peterson, Inventory Management and Production Planning 

and Scheduling, John Wiley & Sons, New York, 1998.
4. S. Osteryoung, E. Nosari, D. McCarty and W. J. Reinhart, Use of the EOQ model for 

inventory analysis. Production and Inventory Management. 27, 39-45, 1986.
5. S. Nahmias, Production & Operations Analysis. 5th Edition, McGraw-Hill, New York, 

183-205, 2005.
6. K.L. Cheung and W.H. Hausman, Joint determination of preventive maintenance and 

safety stocks in an unreliable production environment. Naval Research Logistics. 44(3) , 
257-272, 1997.

7. A. Arreola-Risa and G.A. DeCroix, Inventory management under random supply 
disruptions and partial backorders. Naval Research Logistics. 45, 687-703, 1998.

8. F. Chrysostomos and A. Vlachos. Optimal solution of linear machine layout problem 
using ant colony system. WSEAS Transactions on Information Science & Applications. 2
(6), 652-662, 2005.

9. A. Madureira and J. Santos, Proposal of multi-agent based model for dynamic scheduling 
in manufacturing. WSEAS Transactions on Information Science & Applications. 2 (5), 
600-605, 2005.

10. S.W. Chiu, Optimization problem for EMQ model with backlog level constraint. WSEAS 
Transactions on Information Science & Applications. 4 (4), 687-692, 2007.

11. Y-S.P. Chiu, F-T. Cheng, and C-K. Ting, Algebraic methods for optimizing EPQ model 
with rework and scrap. WSEAS Transactions on Systems. 6 (11), 1319-1323, 2007.

12. T. Boone, R. Ganeshan, Y. Guo and J.K. Ord, The impact of imperfect processes on 
production run times. Decision Sciences, 31(4), 773-785, 2000.

13. T. Bielecki and P.R. Kumar, Optimality of zero-inventory policies for unreliable 
production facility, Operations Research. 36, 532-541, 1988.

14. T.C.E. Cheng, An Economic Order Quantity Model with Demand-Dependent Unit 
Production Cost and Imperfect Production Processes, IIE Transaction. 23, 23-28, 1991.

15. M. Ben-Daya and M. Hariga, Economic Lot Scheduling Problem with Imperfect 
Production Processes, Journal of Operational Research Society. 51, 875-881, 2000.

16. H.L. Lee and M.J. Rosenblatt, Simultaneous Determination of Production Cycle and 
Inspection Schedules in a Production System, Management Science. 33, 1125-1136, 1987.

17. M.J. Rosenblatt and H.L. Lee, Economic Production Cycles with Imperfect Production 
Processes, IIE Transactions. 18, 48-55, 1986.

18. X. Zhang and Y. Gerchak, Joint Lot Sizing and Inspection Policy in an EOQ Model with 
Random Yield, IIE Transaction. 22, 41-47, 1990.

19. S.W. Chiu and Y-S.P. Chiu, Mathematical modeling for production system with 
backlogging and failure in repair, Journal of Scientific & Industrial Research. 65, 6, 
499-506, 2006.

20. S.W. Chiu, Optimal Replenishment Policy for Imperfect Quality EMQ Model with 
Rework and Backlogging. Applied Stochastic Models in Business and Industr. 23, 
165-178, 2007.

21. S.W. Chiu, Effects of service level constraint and failure-in-repair on an economic 
manufacturing quantity model, P I Mech Eng Part B: Journal of Engineering 
Manufacture. 221(7), 1235-1243, 2007.

22. C.H. Kim and Y. Hong, An extended EMQ model for a failure prone machine with 
general lifetime distribution. International Journal of Production Economics. 49, 215-223, 



Optimal Lot Sizing with Scrap and Random Breakdown Occurring 339

1997.
23. Y-S.P Chiu, H-D. Lin, and F-T. Cheng, Optimal production lot sizing with backlogging, 

random defective rate, and rework derived without derivatives. P I Mech E Part B: 
Journal of Engineering Manufacture. 220(9), 1559-1563, 2006.

24. Y-S.P. Chiu and S.W. Chiu, A finite production model with random defective rate and 
shortages allowed and backordered. Journal of Information & Optimization Sciences. 24, 
553-567, 2003.

25. P.A. Hayek and M.K. Salameh, Production lot sizing with the reworking of imperfect 
quality items produced. Production Planning and Control. 12, 584-590, 2001.

26. A.M.M. Jamal, B.R. Sarker and S. Mondal, Optimal manufacturing batch size with 
rework process at a single-stage production system. Computers and Industrial 
Engineering. 47, 77-89, 2004.

27. H. Groenevelt, L. Pintelon and A. Seidmann, Production lot sizing with machine 
breakdowns. Management Science. 38, 104-123, 1992.

28. B.C. Giri and T. Dohi, Exact formulation of stochastic EMQ model for an unreliable 
production system. Journal of the Operational Research Society. 56(5), 563-575, 2005.

29. K.J. Chung, Bounds for production lot sizing with machine breakdowns. Computers and 
Industrial Engineering. 32, 139-144, 1997.

30. S.W. Chiu, S.L. Wang and Y-S.P. Chiu, Determining the optimal run time for EPQ model 
with scrap, rework, and stochastic breakdowns. European Journal of Operational 
Research. 180, 664-676, 2007.

31. H. Kuhn, A dynamic lot sizing model with exponential machine breakdowns. European 
Journal of Operational Research. 100, 514-536, 1997.

32. G.C. Lin and D.E. Kroll, Economic lot sizing for an imperfect production system subject 
to random breakdowns. Engineering Optimization. 38(1), 73-92, 2006.

33. V. Makis and J. Fung, An EMQ model with inspections and random machine failures. 
Journal of Operational Research Society. 49, 66-76, 1998.

34. S.W. Chiu, Production run time problem with machine breakdowns under AR control 
policy and rework. Journal of Scientific & Industrial Research. 66 (12), 979-988, 2007.

35. K. Moinzadeh and P. Aggarwal, Analysis of a production/inventory system subject to 
random disruptions. Management Scienc. 43, 1577-1588, 1997.

36. S.W. Chiu, J-C. Yang, and S-Y.C. Kuo, Manufacturing lot sizing with backordering, scrap, 
and random breakdown occurring in inventory-stacking period, WSEAS Transactions on 
Mathematics. 7(4), 183-194, 2008.

37. B. Liu and J. Cao, Analysis of a production-inventory system with machine breakdowns 
and shutdowns. Computers and Operations Research. 26, 73-91, 1999.

38. N.E. Abboud, A simple approximation of the EMQ model with Poisson machine failures. 
Production Planning and Control. 8(4), 385-397, 1997.

39. Y-S.P. Chiu, S-S. Wang, C-K. Ting, H-J. Chuang, and Y-L. Lien, Optimal run time for 
EMQ model with backordering, failure-in-rework and breakdown happening in 
stock-piling time. WSEAS Transactions on Information Science & Applications. 5 (4), 
475-486, 2008.

40. R.L. Rardin, Optimization in Operations Research. Prentice-Hall, New Jersey, 1998.
41. F.S. Hillier and G.J. Lieberman, Introduction to Operations Research, McGraw Hill, New 

York, 2001.


