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Abstract– Ensemble clustering is a promising approach that combines the results of 
multiple clustering algorithms to obtain a consensus partition by merging different par-
titions based upon well-defined rules. In this study, we use an ensemble clustering ap-
proach for merging the results of five different clustering algorithms that are sometimes 
used in bioinformatics applications. The ensemble clustering result is tested on microar-
ray data sets and compared with the results of the individual algorithms. An external 
cluster validation index, adjusted rand index (C-rand), and two internal cluster valida-
tion indices; silhouette, and modularity are used for comparison purposes.
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1. INTRODUCTION

High throughput data technologies allow the production and analysis of biological 
data to address critical questions related to disease prediction and gene function, among 
others. Microarrays allow the measurement of expression levels of tens of thousands of 
genes simultaneously, in a single chip. Microarray measurements are eventually ex-
pressed as numbers indicating the relative expression values of each gene through an 
image processing process. 

Gene co-expression networks constructed from the microarray data are very complex 
in terms of nodes and edges, since thousands of genes are represented by nodes and tens 
of thousands of relationships are represented by edges. A researcher is often interested 
in finding the effect of a treatment or time course in terms of changes in gene expres-
sion. This treatment or time course change leads researchers to focus on the genes that 
are significantly co-expressed under similar conditions. The classes to which genes be-
long are usually unknown, since most of the time there is little or no a priori informa-
tion about the data, which requires analysis via an unsupervised learning technique. 
Clustering is an unsupervised learning technique that assigns objects into the same clus-
ter based upon a cluster definition or criterion, which is the similarity between the ob-
jects being clustered.

Clustering has been studied for decades. However, there is no best clustering ap-
proach to be used for all applications. A particular clustering approach often has its own 
objective and assumptions about the data to cluster. Hence, combining multiple cluster-
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ing approaches in an ensemble framework [1] may allow one to take advantage of the 
strengths of individual clustering approaches. In that sense, ensemble clustering is a 
promising approach to generating more accurate clusters than might be possible using 
an individual clustering approach. 

In this study, we use an ensemble clustering approach as described in [2] for three dif-
ferent biological data sets. One of the data sets is the “Breast B” cancer diagnosis single 
channel microarray data set having 49 samples with 1213 attributes (corresponding to 
genes). The second is a protein data set that consists of 698 objects (corresponding to 
protein folds) with 125 attributes. The Breast B and protein data sets are detailed in and 
obtained from [3]. The third data set is a yeast cell cycle data set having 384 genes and 
17 samples obtained from [4].

The base clustering algorithms used for the ensemble approach used here are hierar-
chical clustering (HC), K-means, dynamic tree cut (DTC), fuzzy C-means and a com-
munity structure finding algorithm (CSF). All of these algorithms except for fuzzy C-
means were used and detailed in a previous study [5] to compare the performance of the 
individual algorithms with one another. 

In order to evaluate the performance of the ensemble clustering approach, two internal 
and one external cluster validation indices are used. The internal validation indices are 
silhouette (S) [6] and modularity (Q) [7]. The external index is the adjusted rand index 
(C-rand) [8]. These indices are also described in section 3.

The remainder of the paper is organized as follows: section 2 gives background on en-
semble clustering, section 3 concerns the application of the ensemble clustering on the 
three previously mentioned biological data sets and presents results, and section 4 con-
cludes and indicates directions for possible future studies. 

2. BACKGROUND

Combining the clustering results of many algorithms may result in high quality and 
robust clusters, since ensemble approaches such as bagging and boosting are used in 
classification problems and have proven to be effective [1]. The fact that the objects 
have various features (objects may be classified based on different features such as size, 
color, age, etc.) makes it difficult to find an optimal clustering of similar objects. In that 
sense, ensemble clustering is a promising heuristic. 

The ensemble clustering ensemble framework is usually constructed as in Figure 1. 
Ensemble clustering can be difficult in the sense that it is a challenging task to select 
base clustering algorithms, define a consensus function and merge individual partitions 
generated by clustering algorithms via the chosen consensus function [9]. Asur et al. 
[10] proposed an ensemble clustering framework to extract biologically relevant func-
tional modules in protein-protein interaction (PPI) networks. Their method attempts to 
handle the noisy false positive interactions and specific topological interactions present 
in the network. They used graph clustering algorithms, repeated bisections, direct k-way 
partitioning, and multilevel k-way partitioning, to obtain the base clusters, and intro-
duced two topology based distance matrices. One of the distance matrices is based on 
the clustering coefficient [11], and the other one is a distance matrix based on the be-
tweenness [7] measure. The authors used a soft ensemble method such that proteins 
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were able to be assigned to more than one cluster, and they conducted an empirical 
evaluation of the different ensemble methods to show the superior performance of their 
ensemble framework [10].

Figure 1. Ensemble clustering framework: CA refers to clustering algorithm, P refers 
to partition, FC is the consensus function, and CP is the consensus partition. 

There are a large number of fuzzy clustering algorithms with well-understood proper-
ties and benefits in various applications. Nevertheless, there has been very little analysis 
of using fuzzy clustering algorithms in regards to generating the base partitions in clus-
ter ensembles. Wang [12] compared the use of hard and fuzzy C-means [13] algorithms 
in the well-known evidence-accumulation framework of cluster ensembles. In that 
study, it was observed that the fuzzy C-means approach requires much fewer base parti-
tions for the cluster ensemble to converge, and is more tolerant of outliers in the data.

Avogadri and Valentili [14] proposed a fuzzy ensemble clustering approach to address 
the issue of unclear boundaries between the clusters from the biological and biomedical 
gene expression data analysis taking into account their inherent fuzziness. They had a 
goal of improving the accuracy and robustness of clustering results. After applying ran-
dom projections to obtain lower dimensional gene expression data, they applied the 
fuzzy K-means algorithm on the low dimensional data to generate multiple fuzzy base 
clusters. Then, the fuzzy clusters were combined using a similarity matrix where the 
elements of the matrix were generated by the fuzzy t-norms algorithm, and finally, the 
fuzzy K-means algorithm was applied to the rows of the similarity matrix to obtain the 
consensus clustering. It was shown that the proposed ensemble approach is competitive 
with the other ensemble methods.

Microarray experiments often generate a great deal of data. If the data set is very 
large, it is possible to generate an ensemble of clustering solutions, or partition the data 
so that clustering may be performed on tractable-sized disjoint subsets [15]. The data 
can then be distributed at different sites, for which a distributed clustering solution with 
a final merging of partitions is a natural fit. Hore et al. [15] introduced two new ap-
proaches to combining partitions represented by sets of cluster centers. They stated that 
these approaches provided a final partition of data that was comparable to the best exist-
ing approaches and that the approaches could be 100,000 times faster while using much 
less memory. They compared the new algorithms against the best existing cluster en-
semble approaches, clustering all of the data at once, and a clustering algorithm de-
signed for very large data sets. Fuzzy and hard K-means based clustering algorithms 
were used for the comparison.  It was shown that the centroid-based ensemble merging 
algorithms presented in the study generated partitions which were as good as the best 
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label vector method, or the method of clustering all the data at once. The proposed algo-
rithms were also more efficient in terms of speed. 

Asur et al. [9] applied an ensemble approach for clustering scale-free graphs. They 
used metrics based on the neighborhood metric (which uses the adjacency list of each 
node and considers the nodes as having several common neighbors), the clustering coef-
ficient, and the shortest path betweenness of nodes in the network. The scale-free graph 
they used was from a budding yeast PPI network that contained 15147 interactions be-
tween 4741 proteins. It was reported that ensemble clustering can provide improve-
ments in cluster quality for scale-free graphs based upon the preliminary results.

Galluccio et al. [16] proposed an ensemble clustering method called evidence accu-
mulation clustering based on dual rooted prim tree cuts (EAC-DC). Their algorithm 
computes the co-association matrix based on a forward algorithm that repeatedly adds 
edges to Prim's minimum spanning tree (MST) to identify clusters until a satisfying cri-
terion is met. A consensus cluster is then generated from the co-association matrix using 
spectral partitioning. Here, a MST is a fully connected sub-graph with no cycles and a 
dual-rooted tree is obtained by finding the union of two sub-trees. They applied their 
approach to the Iris data set [17], the Wisconsin breast cancer data set [18] (both ob-
tained from [19]) and synthetic data sets, and presented a comparison of their results 
with other existing ensemble clustering methods.

Hu and Yoo [1] used a cluster ensemble in gene expression analysis. In their ensemble 
framework, the partitions generated by each individual clustering algorithm are con-
verted into a distance matrix. The distance matrices are then combined to construct a 
weighted graph. A graph partitioning approach is then used to generate the final set of 
clusters. It was reported that the ensemble approach yields better results than the best 
individual approach on both synthetic and yeast gene expression data sets. 

Fred and Jain [2] combined multiple partitions using evidence accumulation. Each 
partition generated by a clustering algorithm was used as a new piece of knowledge, to 
help uncover the relationships between objects. We used their approach for our ensem-
ble. The core idea behind the ensemble approach here is constructing the co-association 
matrix by employing a voting mechanism for the partitions generated using individual 
clustering algorithms. A co-association matrix C is constructed based upon the formula-
tion below, where nij is the number of times the object pair (i,j) is assigned to the same 
cluster among the N different partitions:

After constructing the co-association matrix, Fred and Jain [2] used single linkage hi-
erarchical clustering to obtain the new cluster tree (dendrogram) and then used a cut-off 
value corresponding to the maximum life time (difference between merge points where 
branching starts) on the tree. They also employed the same ensemble framework using 
K-means partitions with different parameters. They tested their algorithms on ten differ-
ent data sets, comparing the results with other ensemble clustering methods. They re-
ported that their ensemble approach could identify the clusters with arbitrary shapes and 
sizes, and performed better than the other combination methods. 

NnC(i,j) ij /=
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3. APPLICATION TO BIOLOGICAL DATA

As mentioned in the introduction, we use the ensemble approach described in [2]. 
However, we select a different set of base clustering algorithms that may produce better 
results, as stated by Fred and Jain, since the application of evidence accumulation tech-
niques to more powerful clustering methods can lead to better partitions [2]. The en-
semble clustering algorithm steps are as follows:

1. For each partition generated by the base clustering algorithms, construct a binary 
partition matrix P(i, j), where 1 ≤ i ≤ n and 1 ≤ k ≤ r; n = number of attributes; r = 
number of unique clusters
2. Initialize the non-diagonal elements of co-association matrix C(n, n) to zero and the 
diagonal elements to 1.
3. For k = 1 to r do
4.   For i = 1 to n - 1 do
5.     If (P(i, k) = 1) then
6.    For j = i + 1 to n do
7.      If P(j, k) = 1) then
8.        Update the co-association matrix as: 

C(i, j) = C(i, j) + (1/N) where N = number of clusterings from  clustering 
algorithms.

9. Obtain the distance matrix as D(i, j) = 1 – abs(C(i, j))
10. Use Hierarchical Clustering with Complete Linkage (HC-CL) to generate the 
dendrogram
11. Cut the tree at suitable point by visually inspecting the tree (tree height giving the 
maximum cluster lifetime)
For example, for two different partitions of a data set with six objects in each: (1, 1, 1, 

2, 2, 2) and (1, 1, 2, 2, 2, 2), the co-association and distance matrices are given below:

Figure 2. Co-association and distance matrices.

Using the distance matrix as an input for HC-CL, the clusters obtained for this exam-
ple are shown in Figure 3.

We use HC, K-means, C-means, DTC, and CSF to generate five different partitions. 
The workflow to generate the partitions is shown in Figure 4.
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Figure 3. The ensemble clusters obtained using HC-CL from the example problem.

Figure 4. The workflow to generate the partitions, the cluster ensemble and the index 
values, adapted from [5].

The workflow starts with reading the gene expression data set that is represented as an
n x m matrix. Correlation values between objects (genes) and attributes (samples) are 
calculated, and then the average of the absolute correlation values are used as a thresh-
old to convert the complete graph to a binary graph to be used in the CSF algorithm. A 
distance matrix is constructed from the correlation matrix. Distance matrices for genes 
and samples are used in the K-means, HC, and the DTC algorithms to generate the par-
titions.

We use the CSF algorithm [20] for the ease of implementation from the igraph pack-
age [21] in R [22]. We use DTC as in [23]. We report the best result obtained using var-
ious parameters for DTC. We use K-means HC as implemented in the R base package, 
and the fuzzy C-means method as implemented in the R package e1071.

Internal and external cluster validation indices are used to evaluate the performance of 
the individual algorithms and the ensemble clustering. Silhouette, modularity and C-
rand values are calculated using the clusterSim, igraph and flexclust packages in R, re-
spectively. The silhouette index reflects the compactness and separation of clusters [24]. 
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The silhouette index can take on values between -1 and 1, with higher values indicating 
better partitions. Modularity is a measure of data represented as a network, which is rep-
resented by the difference between the fraction of edges in the same clusters and the 
fraction of edges in the same clusters if they were connected randomly [7]. The modu-
larity index can take on values between -1/2 and 1, with higher modularity values also 
indicating better partitions. C-rand is a measure of agreement between two partitions. 
The maximum value of the C-rand index is 1, meaning that two partitions (one of the 
partitions is the true “correct” partition) are exactly the same. It can also take negative 
values.

The performances of the individual algorithms and the ensemble approach based upon 
the three cluster validation indices are summarized in Table 1.

Table 1. Performance measures of individual and ensemble clustering algorithms for 
both genes and samples of three data sets.

Gene/Protein, Sample
Dataset Method Real Alt Silhouette C-rand Modularity

Breast B HC-CL -, 4 3, 4 0.008, 0.364 -, 0.0189 0.014, 0.037
CSF -, 4 38, 3 -0.072, 0.324 -, 0.206 0.032, 0.130
DTC -, 4 12, 2 -0.037, 0.400 -, -0.002 0.028, -0.032
K-means -, 4 3, 4 0.039, 0.091 -, 0.230 0.069, 0.061
C-means -, 4 3, 4 0.019, 0.091 -, 0.230 0.056, 0.061

(1213 genes)
(49 samples)
(real cluster for samples)

Ens. HC-CL -, 4 4, 4 0.025, 0.046 -,0.125 0.027, 0.062
Yeast HC-CL 5, - 5, 4 0.390, 0.290 0.452, - 0.409, 0.425

CSF 5, - 4, 4 0.216, 0.279 0.316, - 0.346, 0.428
DTC 5, - 7, - 0.395, - 0.353, - 0.396, -
K-means 5, - 5, 4 0.417, 0.176 0.500, - 0.403, 0.376
C-means 5, - 5, 4 0.497, 0.290 0.500, - 0.405, 0.425

(384 genes, 17 samples)
(real clusters if genes)

Ens. HC-CL 5, - 5, - 0.151, 0.343 0.351, - 0.215, 0.451
Protein HC-CL 4, - 4, - 0.344, 0.120 0.199, - 0.063, 0.304

CSF 4, - 5, 8 0.188, 0.410 0.135, - 0.097, 0.164

DTC 4, - 9, 5 -0.297, 0.088 0.081, - 0.018, 0.317

K-means 4, - 4, 4 0.379, 0.113 0.127, - 0.056, 0.291

C-means 4, - 4, 4 0.379, 0.075 0.127, - 0.062, 0.443

(698 proteins, 125 samples)
(real cluster of proteins)

Ens. HC-CL 4, - 4, 3 0.078, 0.044 0.157, - 0.022, 0.180

The table exhibits silhouette, C-rand, and modularity values for the partitions identi-
fied in three different data sets, one for genes/proteins and one for samples. The number 
of clusters in a partition known a priori is given under the “Real” column, and the num-
ber of clusters selected by the user is given under “Alt” column of the table for each 
clustering method.

The “Breast B” data set includes 1213 genes and 49 samples. Real clusters (classes) 
are known for the samples, since the samples are the microarray experiments designed 
as control vs. treated or time course. The known clustering for Breast B was based upon 
the known estrogen receptor (ER) types:  25 ER positive samples and 24 ER negative 
samples. The final clustering into four classes consists of: 13 ER+ LN+, 12 ER+ LN-, 
12 ER- LN-, 12 ER- LN- samples, where LN stands for lymphnode tumors [3]. The en-
semble clustering using hierarchical clustering with complete linkage (Ens HC-CL), 
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choosing the number of desired clusters (Alt values in the table) as 4, resulted in the 
second highest silhouette value among all clustering results for the genes.

The yeast cell cycle data set is comprised of 384 genes measured over 17 time points 
(samples), with final values obtained by normalization and standardization. The real 
clusters correspond to 5 yeast cell cycles: early Gap 1 (G1) (beginning of Interphase), 
late G1, S (Synthesis), G2 (Prometaphase), M (Metaphase) [4]. The ensemble clustering 
approach resulted in the highest silhouette and modularity values (see the bolded values 
in the table) among all clustering algorithms for the set of samples. 

The protein data set contained 698 proteins from 125 samples. The real clusters corre-
spond to the 4 classes of protein-folds: α, β, α/β and α+β protein classes. The ensemble 
clustering approach found the second best C-rand value for the proteins shown in the 
table.

The ensemble clustering approach did not produce any negative values for any of the 
cluster validation indices. Hence, Ens HC-CL improves the negative valued partitions.

K-means and C-means resulted in high silhouette and C-rand values. The reason be-
hind this may be that the data follow a specific distribution or have a specific simple 
shape, e.g., sphere, that K-means imposes [2]. 

HC and CSF gave high modularity values, which is reasonable since CSF is generally 
used to maximize the modularity [7] and there are also community structure finding al-
gorithms, see [7], which are hierarchical like HC.

We wanted to see if the ensemble clusters obtained using the ensemble method 
generally agreed with the biological literature using the “Search for relationships 
between many genes, proteins, or keywords” option provided by Chilibot [25], [26], 
which is a freely available online tool that searches abstracts from the PubMed literature 
database [27] for specific relationships between proteins, genes, and keywords [5]. In 
this preliminary analysis, we examined only one cluster obtained from the Breast B data 
set.

We searched for the keyword “Cancer” along with the gene names contained in clus-
ter 1 as we did in [5]. As output, Chilibot provided the number of PubMed literature da-
tabase abstracts containing the keyword “Cancer” associated with a particular gene, 
along with the number of gene interactions, i.e., the number of abstracts where two 
genes appear together, for each gene. We refer to this later value as the “number of 
hits.” Chilibot cannot handle more than fifty items per search [25]. Since the cluster had 
more than fifty genes, we split the search into smaller searches of appropriate size.

We calculated the average number of links from a gene to all other genes, along with 
the average percentage of genes to which each gene is linked in the cluster. The value of 
average hits per gene and average hit percentage in cluster is 12.5 and 9.05 respectively. 
These numbers appear to be rather high considering the analysis that we performed in 
[5], where we carried out a similar analysis for clusters of genes of Breast B data set 
created by CSF and DTC algorithms. Since we have not performed Chilibot analysis for 
all the clusters in this paper, we cannot make a fair comparison of our available results 
with the results in [5]. However, at least with respect to the result corresponding to clus-
ter 1, it seems that there are a considerable number of associations between the genes in 
this cluster based upon the PubMed database. 
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4. CONCLUSION

In this study, we investigated an application of the ensemble clustering approach de-
scribed in [2] using five different clustering algorithms that have not been reported in an 
ensemble framework before. We also evaluated the relative performance of the individ-
ual algorithms and the ensemble approach on three different biological data sets using 
two internal (silhouette and modularity) and one external (C-rand) validation index.

Computational experiments show that the ensemble clustering approach used tended 
to improve the quality of clusters for two of the data sets, based upon the ensemble clus-
tering producing the best and second best values for at least one cluster validation index. 

Using a different clustering algorithm than hierarchical clustering for the ensemble 
approach may improve the results generated by the ensemble as in [16]. Further ex-
periments and investigation of a different combination of clustering algorithms and al-
gorithm parameter settings and/or parameter settings for the ensemble approach are in-
tended for future studies. Supplementary data including figures of the clusters from 
three data sets are available upon request.
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