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Abstract- Graph theory is a key subject for both mathematics and computer science. It 

is used for modelling many problems such as maximal independent set, minimum 

covering and matching. In our study, we have extended the previous work on placing 

materials that may react with each other on a 2-D warehouse. We have modelled the 

problem using graph theory. Then, we have developed extensions on the heuristic 

algorithm which is using Paull-Unger method that finds Maximal Independent Sets. 

First two of these extensions include finding solutions with gaps for specific graphs, and 

meanwhile capability of performing replacement in any desired rectangle surface. The 

last and most effective extension is pruning unnecessary backtracking steps with the 

help of smarter heuristics in the algorithm.  

 

Key Words- Graph Theory, Independent Set Problem, Storage Problem, Heuristic 

Algorithms. 

 

1. I�TRODUCTIO� 

 

Placing the chemically reacting and interfering objects in an appropriate way is 

an important issue for many sectors. Finding a compact placement solution can be hard 

for materials that mostly react with others. We have modelled this problem with the 

graph data model. In this model, materials are mapped to vertices and the reaction 

interferences are mapped to edges. A graph G = (V(G), E(G)) is composed of non-

empty V(G) set of vertices and E(G) set of edges that connects unordered pair of 

vertices.  

In a graph G, if there is an edge between vertices u and v, this shows that these 

two materials react with each other.  In a graph G, if there is always a path between any 

pair of vertices, then this graph is called Connected Graph [1, 2]. Let S⊆V(G) be a 

subset of a set of vertices in a graph G. For any pair of vertices, if there is no edge 

existing between them, then this subset is called Independent Set [1, 2]. If an 

independent set is not a subset of any other independent sets, then this set is called 

Maximal Independent Set [1, 3, 4]. A graph G may have more than one maximal 

independent sets. The number of elements in the independent set that has the biggest 

number of vertices, is called Independence �umber. It is denoted by β (G) [1, 2]. 

 

Definition 1.1. The adjacency matrix of a n-vertices G = (V(G), E(G)) graph is shown 

as A(G). This matrix is of nxn  structure, and the vertices forms the rows and columns 

of the matrix. 
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The elements of a A(G) matrix is defined as below [4]. 
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           A sample 6 vertice graph and its adjacency matrix representation can be seen on 

Figure 1. 
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Figure 1. A Sample Graph and its adjacency matrix 

 

The basic graph definitions and how the problem can be modelled with graph 

was shown on the introduction section. The Section 2 will be about the full details of the 

problem and the Paull-Unger algorithm which is related to our work. The details of our 

new algorithm will be introduced on Section 3, and algorithm analysis and 

comparations will be on Section 4. The last section will be about conclusion and future 

works that may improve our algorithm. 

 

2. PAULL-U�GER ALGORITHM 

 

Paull-Unger algorithm finds all maximal independent sets and independence 

number of a graph. 

Definition 2.1. [5] By using an alphabet of { }nσσσ ,...,, 21=∑ , we can create words  

kiiix σσσ ...
21

= (ε is a word of zero length). ∑* 
denotes the all words that can be 

generated from the ∑ alphabet.  
{ }alphabetinwordaisxx ∑=∑ ,:*  

For all these words, a union operator can be defined. Let x be as above and 

ljjjy σσσ ...
21

= . We put the symbols of the second word after we write the first word. 

lk jjjiiiyx σσσσσσ .......
2121

=  

as seen, for every x word, xxx == .. εε , then ∑* 
= (∑*

,⋅,ε) is a monoid. ∑*
 can be 

denoted as a free monoid that is extracted from ∑ alphabet.  
 

Example. If { }1,0=∑ , then { }...,001,000,11,10,01,00,1,0* =∑ . Some union operations 

of  ∑*
 can be shown as below.  

10⋅001 = 10001 
10⋅ε = 10 
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2.1. Algorithm 

With the vertice set of infinite digraph G=(Σ*
, E) that is combined with x ∈  y ⇔ 

y = xσ (σ∈Σ) equation, lets denote the set of all words that can be generated from the 

vertice alphabet of graph G, as Σ*
[5]. 

                            
                 Figure 2. Infinite directed tree                            Figure 3. Binary Tree 

 

An infinite directed tree graph for B* which is composed of  { }1,0=B  binary 

alphabet, is shown on Figure 2. As shown on the figure, we label the edges that seem as 

directed branches, from left to right. This will be necessary if we need to look for the 

order which indicates B*. The first node is called root node. This is also the word null in 

the set of Σ*
 . 

V is a finite subset of B*, and T is in form  T = (V,E) and it is an infinite digraph 

binary tree,  

(i) ( )BVxVx ∈∈⇒∈ σσ   

(ii) σσ xyforByx =∈∃⇔∈ ,  

(i) guarantees that there is a path that connects every other node to the root node. 

(ii) is an edge connection that is mentioned before. The subset that shows the sets that 

belong to leaves can be defined as below. 

( ) { } VVxBallforVxTLL ⊆∉∈∈== σσ ,:  

Example. Figure 3 shows a binary tree. The equation (i) can be tested as below.  

VVVVV ∈⇒∈⇒∈⇒∈⇒∈ ε1111101101  

It is guaranteed from the equation (i) that, for the word x (x∈Σ*
) that each vertex 

represents, the all words that come before them will already exist on the tree. For 

example, in Figure 3, 1101 node is made of 110.1 and the node that comes before it is 

110 , and it already exists in the tree. This special tree T  has the set of vertices as 

below.  

( ) { }1101,1100,010,10,00== TLL  

T = (V,E) can be used in algorithmic operations, for only finite number of 

vertices in V⊆B*. 
For this, the most suitable data type for T is data structure.  

T: array B
*
 of A 

A is the algebra that is used for labelling the vertices.  B
* 
 is an infinite set, so 

labelling all vertices in the algorithm is impossible. Only the V⊆B* 
subset will be 

labelled. Because of the top to bottom ordering of the vertice labelling, we can say that 
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the V subset provides the (i) situation. After the operation finishes, we have a labelled 

binary tree. 

Labelled binary trees are used to find all maximal independent sets and find β 
independence number for a graph G. These calculations were first made by M.C.Paull 

and S.H.Unger. The solution can be shown by the algorithm below[5]. 

 

T: array B
*
 of P  (V) 

β, i, j, n: positive integer 

E: array n
+
 × n+ of B   

L, M: subset of B
*
 

v: array B of V    

x: element of B
* 

 σ: element of B
*
 

begin   

T ← ∅;  

T[ε] ← V; L ← {ε}; 
      for j ←1 to n – 1 do 

      for i ←j +1 to n do 

      if E[i, j] = 1 then  

      begin M ← {x ∈ L: {vi, vj}⊆ T[x]}; 
               L ← L ∼ M; 

 v[0] ← vi; v[1] ← vj;  

              for x ∈ M do 

              for σ ∈ B do 

begin T[xσ] ← T[x] ∼ {v[σ]}; 
 if ((T[xσ]⊄T[y])  for all y ∈ L then  

   L ← L ∪{xσ} 
end; 

end; 

β ← 
Lx∈

max {|T[x]|} 

End. 

 

This algorithm finds the β independence number for a graph G, and finds all sets 

of maximal independent sets. There will not be a bigger independent set. 

 

Example. In a military warehouse, it is known that some materials react with each other 

when they are placed adjacently. In Figure 4, the materials are mapped to vertices, and 

reactions are mapped to edges. 
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          Figure 4. Sample Graph                               Figure 5. Two Sample Solutions     

         

In the graph above, a and b may react with each other, but a and d don’t react. 

This means that a and d can be put together. The problem is to find a compact solution 

that will place these materials together in a warehouse. Figure 5(a) and Figure 5(b) are 

some solutions for this problem. However, the solutions in Figure 5 are not feasible. 

The base and extended algorithms on the next section will find feasible solutions on the 

platform. 

 

2. THE BASE ALGORITHM WITH �EW EXTE�SIO�S 
 

In order to solve the problem, we need to put some rules that seperates feasible 

and infeasible solutions. According to this, for n number of materials and minimum t 

integer that provides nt >2  , we can say that a solution which can fit into tt ×  square 

matrix is a feasible solution. Thus, we can make an algorithm for generating feasible 

solutions in a reasonable time. 

There is no way to find an algoritm which will find the best solution logically, 

like many graph theoretic problems. Therefore, brute force[6] methods are more 

suitable to this type of problems. An heuristic approach to brute force that finds feasible 

solutions in a short time was introduced in study[7]. We have made extensions to this 

heuristic which improve the performance. 

 

3.1. Classical Brute Force Approach 

The most basic method to solve this problem will be to try every material to the 

square matrice randomly or in straight order, and backtrack when there is a conflict. 

A basic order of trying to place materials to the corner by preserving the square 

shape can be as in Figure 6. According to this order, the materials are randomly placed 

as long as there are no conflicts. If the last material causes a conflict, then the material is 

changed with another available. If any of available material is suitable, then the 

previous material is also removed and another material is tried(backtracking). This 

method allows trying all n! combinations.  

Searching the whole n! combinations becomes impossible for bigger n values. 

Because of this, another method that will help coming across a solution much faster, is 

needed. 
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1 2 5 10 

4 3 6 11 

9 8 7 12 

16 15 14 13 

Figure 6. A probable brute force order for placing materials to corner. 
 

3.2. Base Heuristic Approach 

According to the previous work[7], the base idea of this approach is to make 

mistakes as early as possible in trial-error stages. In order to do this, Paull-Unger 

algorithm is used to find maximal independent sets. Then, the elements in the sets are 

ordered according to the number of repetitions in these sets from the smallest to biggest. 

By doing this, we get a list of materials that are ordered from the most problematic to 

place, to the easiest one. 

Then, starting with the most problematic material, the materials are placed to the 

left top corner in the order that is shown in Figure 7. The aim of this order is to detect a 

probable conflict as early as possible, and minimize the time spent on backtracking.  

As an example, the situation in Figure 7 after placing the 9
th
 material, can be 

observed. The following placements will have the risk of conflicting with the placement 

5, 6, 7, 8 and 9. If backtracking is inevitable, then this should be done as early as 

possible, so the sides of the earliest placements should be covered first. In the figure, 

sides of 5, 6, 7, 8 and 9 are filled in the order. 

 
1 2 5 10 

3 4 7 12 

6 8 9 14 

11 13 15 16 

Figure 7. New order for placing materials to corner 

 

The recursive algorithm for this method is shown below. 

 

Find(Loc L, int field[T][T], list PUList[N]){ 

    i:=0 

   While i<N DO 

        if (IsNodeUsed(PUList, i) = false) Then   

            node := PUList[i]; 

            if(Control(L, node, field) = true ) Then 

               field[L.X][L.Y] := node 

               SetUsed(PUList, i) 

               Find(NextLoc(L, field), field, PUList) 

            end if 

            SetFree(PUList, i) 

         end if 

         i=i+1; 

    end while 

} //End Function 
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The Paull Unger order that helps the speedup is taken as input. The Is�odeUsed 

function checks that if the material is used before. �extLoc function returns the next 

location to place, according to our order. SetUsed and SetFree functions marks that 

materials in the Paull Unger order, according to if they are used or not. Control function 

checks if the material that will be placed causes a conflict. 

N � Number of materials. 

T � Row number of the square matrix. 

L � The location of the platform that will be filled. 

PUList � The list of materials in the Paull Unger order. 

It is observed that this algorithm finds solutions in much less steps with the help 

of Paull Unger material ordering and the specific placement order. 

 

3.3. Extensions to Heuristic Approach 

Three extensions are added into the base algorithm in this paper. These 

extensions are as below.    

Extension 1- Adding Blanks 

Heuristic approach finds solutions that fit into a minimum suitable square 

matrix. Total node number is generally smaller than the available places in the matrix, 

so there will usually be empty places. The heuristic always attempts to find fully filled 

solutions, and leaves empty spaces in only the lower right end of the matrix. This 

approach will not find solutions with blanks inside, as can be seen on the next figure.  

    This extension helps the algorithm to start finding the solutions first without any 

blanks, if there is any. But some graphs can have no such a solution; therefore it tries to 

find solutions with one blank in them, two blanks and so on.  

 
 

A B C 

D  F 

E G  

Figure 8. Finding solutions with blanks. 

 

This improves the algorithm to find solutions for special graphs which has no blank-less 

solutions. An example of finding solutions with blanks is shown on Figure 8. 

The main method of this extension is shown underneath. 

    for(blank = 0 ; blank <= N blank++){ 

 init_all(); 
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 Find (tmp, Set, Arr); 

 AddBlankNode(); 

   } 

Extension 2- Placing in Any Rectangle 

According to this extension, algorithm can do placement in any rectangular area, 

while the base heuristic algorithm finds solutions for only square surface. This is 

achieved by limiting the dimensions and omitting unwanted solutions (placements). 

This extension provides flexibility for the heuristic. The method for the extension is 

shown below. 

 

Loc XYNext(int x, int y){ 

 Loc L; 

 do{ 

         L = MyNext(x,y); 

       x=L.X; 

       y=L.Y; 

 }while (L.X>=X||L.Y>=Y); 

 return L; 

     } 

Extension 3- Reducing Steps 

The last and the most effective extension is about building a smarter heuristic 

which prunes unnecessary steps in backtracking. 

While placing materials in the described heuristic, backtracking is made when 

there is no suitable material for placing to the current location. Some parts of those 

backtracking movements are redundant and those movements lead to unnecessary trials 

which will not affect the conflict on the current location. The idea is to backtrack 

directly to the source of the conflict, which is the neighbour location that causes conflict 

on the current place. Using these shortcuts to the conflict sources prunes the mostly 

redundant branches on the tree of possibilities. The pseudo code with the extension is as 

below. 

 

Find(Loc L, int field[T][T], list PUList[N]){ 

    i:=0 

   While i<N DO 

        if (IsNodeUsed(PUList, i) = false) Then   

            node := PUList[i]; 

            if(Control(L, node, field) = true ) Then 

               field[L.X][L.Y] := node 

               SetUsed(PUList, i) 

               Find(NextLoc(L, field), field, PUList) 

  if(btnode!=-1)             //if in backtrack mode 

  if(btnode==node)   //btrack node reached 

         btnode=-1;        //end backtrack 

     else return;    // else backtrack until btnode 

                  end if 

            end if 
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            SetFree(PUList, i) 

       end if 

       i=i+1; 

   end while 

   if (No node fits into Location L) 

       btnode=nearest_conflicting_node; 

   end if 

} 

The backtracking method using this shortcut may cause pruning some solutions, 

when a node placed in the backtracking path is suitable for the conflict. To avoid this, 

the placed nodes are checked for suitability while in backtrack mode. When a node in 

the path is found to be suitable for the conflict, backtracking ends, thus possibility of 

pruning solutions is prevented. 

 

4. A�ALYSIS OF ALGORITHM 
 

The worst case of the run time can be stated as !� . The first material can be put 

on N different ways. The second is N-1, third is N-2 , and it goes on resulting a total 

combination of !� steps of search in worst case. In realistic graphs, the state space will 

be lowered by the effect of pruning after each conflict, so the number of steps will be 

lower. 

The base algorithm searches the whole state space and finds all the solutions that 

fit the rules. The first feasible solution is enough for us, so the base and the extended 

algorithm is optimised to find the first solution as fast as possible. With the help of Paull 

Unger material order and the order of filling locations, these algorithms searches the 

parts of the state space that seems to have more solutions. The elimination of 

problematic materials at the first steps will cut off most of the unnecessary 

combinations, prune the branches of the state space tree that are far to solution, and will 

lead to result. These optimizations will dramatically lower the steps needed to find a 

solution in compare to !� . The results of these optimizations can be seen on Figure 9. 

As seen on figure, the number of steps needed with using base Paull-Unger ordering is 

much lower than the reverse order and the random order. 

 

#Solution 

Worst 

Ordering 

Random   

Ordering 

Paull Unger Ordering 

(Base Algorithm) 

The Extended 

Algorithm 

1 1417 463 89 87 

2 1481 511 294 269 

3 2599 549 376 344 

4 2655 2828 393 360 

5 6516 4808 410 377 

6 9289 5256 456 419 

7 9419 5270 634 589 

8 11951 5285 641 596 

9 12457 5296 688 636 

10 14055 9348 696 644 

11 16403 9358 721 668 

12 17086 9540 873 815 
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13 18467 9546 883 824 

Figure 9. The number of steps for finding solutions with different orderings 

 

Figure 10 shows the comparation of orderings in means of time in graphics. As 

seen on figure, the base algorithm has a linear graphic, while the other orderings tend to 

exponentially increase. We have observed that the time of a random ordering lies 

between the two orderings. 

Our backtracking extension prunes unnecessary steps in backtracking in the case 

of a conflict. The effects of this extended algorithm can be seen on the rightmost 

column of Figure 9, and graphically on Figure 11. This improvement yields to an 

average of 8% decrease on the time needed to find a solution.   

 

 
  Figure 10. The time comparation of the new algorithm ordering and other orderings   

 

 

 
Figure 11. Comparison of steps for finding solutions 
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5. CO�CLUSIO�S A�D FUTURE WORKS 

 

According to previous work on this subject [7], a practical algorithm which 

approaches the settling problem with graph modelling and solves in much shorter time, 

has been made. The key ideas behind the speedup were that the materials are placed in 

an order generated by Paull Unger ordering, and locations are filled in a special order. 

The effect of Paull Unger ordering can be seen on Figure 10.  

Three extensions have been made on this paper. There may be no gapless 

solution exist for some special graphs. Using the base algorithm will not return results 

for those graphs. For this case, the first extension is made to try several blanks in 

locations when there is no gapless result. The second extension has been made to add 

ability of situating materials in any type of arbitrary rectangles. Finally, the third and the 

biggest extension has been made to reduce backtracking steps by pruning unnecessary 

recursions during backtracks. This leads to using 8% less time to find a feasible 

solution, which is a notable performance improvement considering the problem is an 

NP-Complete replacement problem. 

As a future work, we plan to design an algorithm for non-planar 3D 

environments, with dynamic programming methods.  
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