

 Mathematical and Computational Applications, Vol. 16, No. 1, pp. 279-289, 2011.

 © Association for Scientific Research

A� EXTE�DED HEURISTIC ALGORITHM TO SETTLE

REACTI�G OBJECTS O� A PLA�AR SURFACE

Gorkem Tokatli
1
, Pinar Dundar

2
, Moharram Challenger

1, 3
, Tufan Turaci

4

1
Ege University, International Computer Institute, Izmir, Turkey

2
Ege University, Mathematics Department, Applied Mathematics, Izmir, Turkey

3
Islamic Azad University, Shabestar Branch, Iran

4
Ege University, Mathematics Department, Computer Science, Izmir, Turkey

gorkem.tokatli@ege.edu.tr, pinar.dundar@ege.edu.tr, challenger@engineer.com, tufanturaci@gmail.com

Abstract- Graph theory is a key subject for both mathematics and computer science. It

is used for modelling many problems such as maximal independent set, minimum

covering and matching. In our study, we have extended the previous work on placing

materials that may react with each other on a 2-D warehouse. We have modelled the

problem using graph theory. Then, we have developed extensions on the heuristic

algorithm which is using Paull-Unger method that finds Maximal Independent Sets.

First two of these extensions include finding solutions with gaps for specific graphs, and

meanwhile capability of performing replacement in any desired rectangle surface. The

last and most effective extension is pruning unnecessary backtracking steps with the

help of smarter heuristics in the algorithm.

Key Words- Graph Theory, Independent Set Problem, Storage Problem, Heuristic

Algorithms.

1. I�TRODUCTIO�

Placing the chemically reacting and interfering objects in an appropriate way is

an important issue for many sectors. Finding a compact placement solution can be hard

for materials that mostly react with others. We have modelled this problem with the

graph data model. In this model, materials are mapped to vertices and the reaction

interferences are mapped to edges. A graph G = (V(G), E(G)) is composed of non-

empty V(G) set of vertices and E(G) set of edges that connects unordered pair of

vertices.

In a graph G, if there is an edge between vertices u and v, this shows that these

two materials react with each other. In a graph G, if there is always a path between any

pair of vertices, then this graph is called Connected Graph [1, 2]. Let S⊆V(G) be a

subset of a set of vertices in a graph G. For any pair of vertices, if there is no edge

existing between them, then this subset is called Independent Set [1, 2]. If an

independent set is not a subset of any other independent sets, then this set is called

Maximal Independent Set [1, 3, 4]. A graph G may have more than one maximal

independent sets. The number of elements in the independent set that has the biggest

number of vertices, is called Independence �umber. It is denoted by β (G) [1, 2].

Definition 1.1. The adjacency matrix of a n-vertices G = (V(G), E(G)) graph is shown

as A(G). This matrix is of nxn structure, and the vertices forms the rows and columns

of the matrix.

G. Tokatli, P. Dundar, M. Challenger and T. Turaci

280

The elements of a A(G) matrix is defined as below [4].





∉

∈
=

)(,0

)(,1

GEvvif

GEvvif
a

ji

ji

ij

 A sample 6 vertice graph and its adjacency matrix representation can be seen on

Figure 1.



























=

010001

101000

010100

001010

000101

100010

)(

f

e

d

c

b

a

GA

fedcba

Figure 1. A Sample Graph and its adjacency matrix

The basic graph definitions and how the problem can be modelled with graph

was shown on the introduction section. The Section 2 will be about the full details of the

problem and the Paull-Unger algorithm which is related to our work. The details of our

new algorithm will be introduced on Section 3, and algorithm analysis and

comparations will be on Section 4. The last section will be about conclusion and future

works that may improve our algorithm.

2. PAULL-U�GER ALGORITHM

Paull-Unger algorithm finds all maximal independent sets and independence

number of a graph.

Definition 2.1. [5] By using an alphabet of { }nσσσ ,...,, 21=∑ , we can create words

kiiix σσσ ...
21

= (ε is a word of zero length). ∑*
denotes the all words that can be

generated from the ∑ alphabet.
{ }alphabetinwordaisxx ∑=∑ ,:*

For all these words, a union operator can be defined. Let x be as above and

ljjjy σσσ ...
21

= . We put the symbols of the second word after we write the first word.

lk jjjiiiyx σσσσσσ
2121

=

as seen, for every x word, xxx == .. εε , then ∑*
= (∑*

,⋅,ε) is a monoid. ∑*
 can be

denoted as a free monoid that is extracted from ∑ alphabet.

Example. If { }1,0=∑ , then { }...,001,000,11,10,01,00,1,0* =∑ . Some union operations

of ∑*
 can be shown as below.

10⋅001 = 10001
10⋅ε = 10

An Extended Heuristic Algorithm to Settle Reacting Objects

on a Planar Surface

281

2.1. Algorithm

With the vertice set of infinite digraph G=(Σ*
, E) that is combined with x ∈ y ⇔

y = xσ (σ∈Σ) equation, lets denote the set of all words that can be generated from the

vertice alphabet of graph G, as Σ*
[5].

 Figure 2. Infinite directed tree Figure 3. Binary Tree

An infinite directed tree graph for B* which is composed of { }1,0=B binary

alphabet, is shown on Figure 2. As shown on the figure, we label the edges that seem as

directed branches, from left to right. This will be necessary if we need to look for the

order which indicates B*. The first node is called root node. This is also the word null in

the set of Σ*
 .

V is a finite subset of B*, and T is in form T = (V,E) and it is an infinite digraph

binary tree,

(i) ()BVxVx ∈∈⇒∈ σσ

(ii) σσ xyforByx =∈∃⇔∈ ,

(i) guarantees that there is a path that connects every other node to the root node.

(ii) is an edge connection that is mentioned before. The subset that shows the sets that

belong to leaves can be defined as below.

() { } VVxBallforVxTLL ⊆∉∈∈== σσ ,:

Example. Figure 3 shows a binary tree. The equation (i) can be tested as below.

VVVVV ∈⇒∈⇒∈⇒∈⇒∈ ε1111101101

It is guaranteed from the equation (i) that, for the word x (x∈Σ*
) that each vertex

represents, the all words that come before them will already exist on the tree. For

example, in Figure 3, 1101 node is made of 110.1 and the node that comes before it is

110 , and it already exists in the tree. This special tree T has the set of vertices as

below.

() { }1101,1100,010,10,00== TLL

T = (V,E) can be used in algorithmic operations, for only finite number of

vertices in V⊆B*.
For this, the most suitable data type for T is data structure.

T: array B
*
 of A

A is the algebra that is used for labelling the vertices. B
*
 is an infinite set, so

labelling all vertices in the algorithm is impossible. Only the V⊆B*
subset will be

labelled. Because of the top to bottom ordering of the vertice labelling, we can say that

G. Tokatli, P. Dundar, M. Challenger and T. Turaci

282

the V subset provides the (i) situation. After the operation finishes, we have a labelled

binary tree.

Labelled binary trees are used to find all maximal independent sets and find β
independence number for a graph G. These calculations were first made by M.C.Paull

and S.H.Unger. The solution can be shown by the algorithm below[5].

T: array B
*
 of P (V)

β, i, j, n: positive integer

E: array n
+
 × n+ of B

L, M: subset of B
*

v: array B of V

x: element of B
*

 σ: element of B
*

begin

T ← ∅;

T[ε] ← V; L ← {ε};
 for j ←1 to n – 1 do

 for i ←j +1 to n do

 if E[i, j] = 1 then

 begin M ← {x ∈ L: {vi, vj}⊆ T[x]};
 L ← L ∼ M;

 v[0] ← vi; v[1] ← vj;

 for x ∈ M do

 for σ ∈ B do

begin T[xσ] ← T[x] ∼ {v[σ]};
 if ((T[xσ]⊄T[y]) for all y ∈ L then

 L ← L ∪{xσ}
end;

end;

β ←
Lx∈

max {|T[x]|}

End.

This algorithm finds the β independence number for a graph G, and finds all sets

of maximal independent sets. There will not be a bigger independent set.

Example. In a military warehouse, it is known that some materials react with each other

when they are placed adjacently. In Figure 4, the materials are mapped to vertices, and

reactions are mapped to edges.

An Extended Heuristic Algorithm to Settle Reacting Objects

on a Planar Surface

283

 Figure 4. Sample Graph Figure 5. Two Sample Solutions

In the graph above, a and b may react with each other, but a and d don’t react.

This means that a and d can be put together. The problem is to find a compact solution

that will place these materials together in a warehouse. Figure 5(a) and Figure 5(b) are

some solutions for this problem. However, the solutions in Figure 5 are not feasible.

The base and extended algorithms on the next section will find feasible solutions on the

platform.

2. THE BASE ALGORITHM WITH �EW EXTE�SIO�S

In order to solve the problem, we need to put some rules that seperates feasible

and infeasible solutions. According to this, for n number of materials and minimum t

integer that provides nt >2 , we can say that a solution which can fit into tt × square

matrix is a feasible solution. Thus, we can make an algorithm for generating feasible

solutions in a reasonable time.

There is no way to find an algoritm which will find the best solution logically,

like many graph theoretic problems. Therefore, brute force[6] methods are more

suitable to this type of problems. An heuristic approach to brute force that finds feasible

solutions in a short time was introduced in study[7]. We have made extensions to this

heuristic which improve the performance.

3.1. Classical Brute Force Approach

The most basic method to solve this problem will be to try every material to the

square matrice randomly or in straight order, and backtrack when there is a conflict.

A basic order of trying to place materials to the corner by preserving the square

shape can be as in Figure 6. According to this order, the materials are randomly placed

as long as there are no conflicts. If the last material causes a conflict, then the material is

changed with another available. If any of available material is suitable, then the

previous material is also removed and another material is tried(backtracking). This

method allows trying all n! combinations.

Searching the whole n! combinations becomes impossible for bigger n values.

Because of this, another method that will help coming across a solution much faster, is

needed.

G. Tokatli, P. Dundar, M. Challenger and T. Turaci

284

1 2 5 10

4 3 6 11

9 8 7 12

16 15 14 13

Figure 6. A probable brute force order for placing materials to corner.

3.2. Base Heuristic Approach

According to the previous work[7], the base idea of this approach is to make

mistakes as early as possible in trial-error stages. In order to do this, Paull-Unger

algorithm is used to find maximal independent sets. Then, the elements in the sets are

ordered according to the number of repetitions in these sets from the smallest to biggest.

By doing this, we get a list of materials that are ordered from the most problematic to

place, to the easiest one.

Then, starting with the most problematic material, the materials are placed to the

left top corner in the order that is shown in Figure 7. The aim of this order is to detect a

probable conflict as early as possible, and minimize the time spent on backtracking.

As an example, the situation in Figure 7 after placing the 9
th
 material, can be

observed. The following placements will have the risk of conflicting with the placement

5, 6, 7, 8 and 9. If backtracking is inevitable, then this should be done as early as

possible, so the sides of the earliest placements should be covered first. In the figure,

sides of 5, 6, 7, 8 and 9 are filled in the order.

1 2 5 10

3 4 7 12

6 8 9 14

11 13 15 16

Figure 7. New order for placing materials to corner

The recursive algorithm for this method is shown below.

Find(Loc L, int field[T][T], list PUList[N]){

 i:=0

 While i<N DO

 if (IsNodeUsed(PUList, i) = false) Then

 node := PUList[i];

 if(Control(L, node, field) = true) Then

 field[L.X][L.Y] := node

 SetUsed(PUList, i)

 Find(NextLoc(L, field), field, PUList)

 end if

 SetFree(PUList, i)

 end if

 i=i+1;

 end while

} //End Function

An Extended Heuristic Algorithm to Settle Reacting Objects

on a Planar Surface

285

The Paull Unger order that helps the speedup is taken as input. The Is�odeUsed

function checks that if the material is used before. �extLoc function returns the next

location to place, according to our order. SetUsed and SetFree functions marks that

materials in the Paull Unger order, according to if they are used or not. Control function

checks if the material that will be placed causes a conflict.

N � Number of materials.

T � Row number of the square matrix.

L � The location of the platform that will be filled.

PUList � The list of materials in the Paull Unger order.

It is observed that this algorithm finds solutions in much less steps with the help

of Paull Unger material ordering and the specific placement order.

3.3. Extensions to Heuristic Approach

Three extensions are added into the base algorithm in this paper. These

extensions are as below.

Extension 1- Adding Blanks

Heuristic approach finds solutions that fit into a minimum suitable square

matrix. Total node number is generally smaller than the available places in the matrix,

so there will usually be empty places. The heuristic always attempts to find fully filled

solutions, and leaves empty spaces in only the lower right end of the matrix. This

approach will not find solutions with blanks inside, as can be seen on the next figure.

 This extension helps the algorithm to start finding the solutions first without any

blanks, if there is any. But some graphs can have no such a solution; therefore it tries to

find solutions with one blank in them, two blanks and so on.

A B C

D F

E G

Figure 8. Finding solutions with blanks.

This improves the algorithm to find solutions for special graphs which has no blank-less

solutions. An example of finding solutions with blanks is shown on Figure 8.

The main method of this extension is shown underneath.

 for(blank = 0 ; blank <= N blank++){

 init_all();

G. Tokatli, P. Dundar, M. Challenger and T. Turaci

286

 Find (tmp, Set, Arr);

 AddBlankNode();

 }

Extension 2- Placing in Any Rectangle

According to this extension, algorithm can do placement in any rectangular area,

while the base heuristic algorithm finds solutions for only square surface. This is

achieved by limiting the dimensions and omitting unwanted solutions (placements).

This extension provides flexibility for the heuristic. The method for the extension is

shown below.

Loc XYNext(int x, int y){

 Loc L;

 do{

 L = MyNext(x,y);

 x=L.X;

 y=L.Y;

 }while (L.X>=X||L.Y>=Y);

 return L;

 }

Extension 3- Reducing Steps

The last and the most effective extension is about building a smarter heuristic

which prunes unnecessary steps in backtracking.

While placing materials in the described heuristic, backtracking is made when

there is no suitable material for placing to the current location. Some parts of those

backtracking movements are redundant and those movements lead to unnecessary trials

which will not affect the conflict on the current location. The idea is to backtrack

directly to the source of the conflict, which is the neighbour location that causes conflict

on the current place. Using these shortcuts to the conflict sources prunes the mostly

redundant branches on the tree of possibilities. The pseudo code with the extension is as

below.

Find(Loc L, int field[T][T], list PUList[N]){

 i:=0

 While i<N DO

 if (IsNodeUsed(PUList, i) = false) Then

 node := PUList[i];

 if(Control(L, node, field) = true) Then

 field[L.X][L.Y] := node

 SetUsed(PUList, i)

 Find(NextLoc(L, field), field, PUList)

 if(btnode!=-1) //if in backtrack mode

 if(btnode==node) //btrack node reached

 btnode=-1; //end backtrack

 else return; // else backtrack until btnode

 end if

 end if

An Extended Heuristic Algorithm to Settle Reacting Objects

on a Planar Surface

287

 SetFree(PUList, i)

 end if

 i=i+1;

 end while

 if (No node fits into Location L)

 btnode=nearest_conflicting_node;

 end if

}

The backtracking method using this shortcut may cause pruning some solutions,

when a node placed in the backtracking path is suitable for the conflict. To avoid this,

the placed nodes are checked for suitability while in backtrack mode. When a node in

the path is found to be suitable for the conflict, backtracking ends, thus possibility of

pruning solutions is prevented.

4. A�ALYSIS OF ALGORITHM

The worst case of the run time can be stated as !� . The first material can be put

on N different ways. The second is N-1, third is N-2 , and it goes on resulting a total

combination of !� steps of search in worst case. In realistic graphs, the state space will

be lowered by the effect of pruning after each conflict, so the number of steps will be

lower.

The base algorithm searches the whole state space and finds all the solutions that

fit the rules. The first feasible solution is enough for us, so the base and the extended

algorithm is optimised to find the first solution as fast as possible. With the help of Paull

Unger material order and the order of filling locations, these algorithms searches the

parts of the state space that seems to have more solutions. The elimination of

problematic materials at the first steps will cut off most of the unnecessary

combinations, prune the branches of the state space tree that are far to solution, and will

lead to result. These optimizations will dramatically lower the steps needed to find a

solution in compare to !� . The results of these optimizations can be seen on Figure 9.

As seen on figure, the number of steps needed with using base Paull-Unger ordering is

much lower than the reverse order and the random order.

#Solution

Worst

Ordering

Random

Ordering

Paull Unger Ordering

(Base Algorithm)

The Extended

Algorithm

1 1417 463 89 87

2 1481 511 294 269

3 2599 549 376 344

4 2655 2828 393 360

5 6516 4808 410 377

6 9289 5256 456 419

7 9419 5270 634 589

8 11951 5285 641 596

9 12457 5296 688 636

10 14055 9348 696 644

11 16403 9358 721 668

12 17086 9540 873 815

G. Tokatli, P. Dundar, M. Challenger and T. Turaci

288

13 18467 9546 883 824

Figure 9. The number of steps for finding solutions with different orderings

Figure 10 shows the comparation of orderings in means of time in graphics. As

seen on figure, the base algorithm has a linear graphic, while the other orderings tend to

exponentially increase. We have observed that the time of a random ordering lies

between the two orderings.

Our backtracking extension prunes unnecessary steps in backtracking in the case

of a conflict. The effects of this extended algorithm can be seen on the rightmost

column of Figure 9, and graphically on Figure 11. This improvement yields to an

average of 8% decrease on the time needed to find a solution.

 Figure 10. The time comparation of the new algorithm ordering and other orderings

Figure 11. Comparison of steps for finding solutions

An Extended Heuristic Algorithm to Settle Reacting Objects

on a Planar Surface

289

5. CO�CLUSIO�S A�D FUTURE WORKS

According to previous work on this subject [7], a practical algorithm which

approaches the settling problem with graph modelling and solves in much shorter time,

has been made. The key ideas behind the speedup were that the materials are placed in

an order generated by Paull Unger ordering, and locations are filled in a special order.

The effect of Paull Unger ordering can be seen on Figure 10.

Three extensions have been made on this paper. There may be no gapless

solution exist for some special graphs. Using the base algorithm will not return results

for those graphs. For this case, the first extension is made to try several blanks in

locations when there is no gapless result. The second extension has been made to add

ability of situating materials in any type of arbitrary rectangles. Finally, the third and the

biggest extension has been made to reduce backtracking steps by pruning unnecessary

recursions during backtracks. This leads to using 8% less time to find a feasible

solution, which is a notable performance improvement considering the problem is an

NP-Complete replacement problem.

As a future work, we plan to design an algorithm for non-planar 3D

environments, with dynamic programming methods.

6. REFERE�CES

[1] Christofides,N.,Graph Theory an Algorithmic Approach, Academic Pres, London,

(1986).

[2] West D.B., Introduction to Graph Theory, Prentice Hall, NJ, (2001).

[3] Blidia M., Chellali M., Favaron O., Meddah N., Maximal k- independent sets in

graphs. Discuss. Math. Graph Theory 28 (2008) ,no.1,151-163.

[4] Chartrand G., Lesniak L., Graphs & Digraphs, Greg Hubit Bookworks, (1986).

[5] Prather Ronald E., Discrete Mathematical Structures for Computer Science,

Houghton Mifflin Company, (1976).

[6] Coreman T., Leiserson C., Rivest R., Stein C., Introduction to Algorithms, 3rd

Edition, The MIT Press, (2009).

[7] Dundar P., Tokatli G., Challenger M., Turaci T., A Heuristic Algorithm for Placing

Chemically Reacting Materials on a Platform, National Conference on Informatics,

Mugla University, Turkey, 10-12 Feb 2010.

